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Preface

These are the proceedings of the RoboCup 2004 Symposium, held at the Instituto
Superior Técnico, in Lisbon, Portugal in conjunction with the RoboCup com-
petition. The papers presented here document the many innovations in robotics
that result from RoboCup. A problem in any branch of science or engineering
is how to devise tests that can provide objective comparisons between alter-
native methods. In recent years, competitive engineering challenges have been
established to motivate researchers to tackle difficult problems while providing
a framework for the comparison of results. RoboCup was one of the first such
competitions and has been a model for the organization of challenges follow-
ing sound scientific principles. In addition to the competition, the associated
symposium provides a forum for researchers to present refereed papers. But, for
RoboCup, the symposium has the greater goal of encouraging the exchange of
ideas between teams so that the competition, as a whole, progresses from year
to year and strengthens its contribution to robotics.

One hundred and eighteen papers were submitted to the Symposium. Each
paper was reviewed by at least two international referees; 30 papers were ac-
cepted for presentation at the Symposium as full papers and a further 38 were
accepted for poster presentation. The quality of the Symposium could not be
maintained without the support of the authors and the generous assistance of
the referees.

The Symposium was co-located with the 5th IFAC/EURON International
Symposium on Intelligent Autonomous Vehicles (IAV 2004) and featured four
distinguished plenary speakers: Hugh Durrant-Whyte, Luigia Carlucci Aiello,
James Albus, and Shigeo Hirose. The program included a discussion panel on
Applications of RoboCup Research whose members were Hiroaki Kitano, Chris-
tian Philippe, and M. Isabel Ribeiro. The panel was organized and moderated
by Hans-Dieter Burkhard.

RoboCup has grown into a major international meeting with many peo-
ple contributing their time and effort. The Symposium organization was made
easy for us by the RoboCup Organizing Committee. We particularly thank the
RoboCup General Chairs, Pedro Lima and Luis Custódio and their team. Thanks
also to the Institute for Systems and Robotics for their support of the Sympo-
sium.

October 2004 Daniele Nardi
Martin Riedmiller

Claude Sammut
José Santos-Victor
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Organization XI

Symposium Program Committee

Tamio Arai, Japan
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Vlatko Bečanović, Ramin Hosseiny, Giacomo Indiveri . . . . . . . . . . . . . . 426



XVI Table of Contents

Interpolation Methods for Global Vision Systems
Jacky Baltes, John Anderson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

A Method of Pseudo Stereo Vision from Images of Cameras Shutter
Timing Adjusted

Hironobu Fujiyoshi, Shoichi Shimizu, Yasunori Nagasaka,
Tomoichi Takahashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Automatic Distance Measurement and Material Characterization with
Infrared Sensors

Miguel Angel Garcia, Agusti Solanas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Posters

A Novel Search Strategy for Autonomous Search and Rescue Robots
Sanem Sarıel, H. Levent Akın . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

World Modeling in Disaster Environments with Constructive
Self-Organizing Maps for Autonomous Search and Rescue Robots
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RoboCup 2004 Overview

Pedro Lima and Luis Custódio

Institute for Systems and Robotics, Instituto Superior Técnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

{pal, lmmc}@isr.ist.utl.pt

1 Introduction

RoboCup is an international initiative with the main goals of fostering research
and education in Artificial Intelligence and Robotics, as well as of promoting
Science and Technology to world citizens. The idea is to provide a standard
problem where a wide range of technologies can be integrated and examined,
as well as being used for project-oriented education, and to organize annual
events open to the general public, where different solutions to the problem are
compared.

Fig. 1. A view of some of the RoboCup2004 participants, at the entrance of the venue

The RoboCup Federation stated the ultimate goal of the RoboCup initia-
tive as follows: “By 2050, a team of fully autonomous humanoid robot soccer
players shall win a soccer game, complying with the official FIFA rules, against
the winner of the most recent World Cup of Human Soccer.” [1]. This main
challenge lead robotic Soccer matches to be the main part of RoboCup events,
from 1997 to 2000. However, since 2000, the competitions include Search and

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 P. Lima and L. Custódio

Rescue robots as well, so as to show the application of Cooperative Robotics
and Multi-Agent Systems to problems of social relevance [2]. Also in 2000 was
introduced RoboCup Junior, now a large part of any RoboCup event, aiming
at introducing Robotics to children attending primary and secondary schools
and including undergraduates who do not have the resources yet to take part in
RoboCup senior leagues [3].

RoboCup2004 was held in Lisbon, Portugal, from 27 June to 5 July. As in past
years, RoboCup2004 consisted of the 8th Symposium and of the Competitions.
The competitions took place at the Pavilion 4 of Lisbon International Fair (FIL),
an exhibition hall of approximately 10 000 m2, located at the former site of
Lisbon EXPO98 world exhibition. The Symposium was held at the Congress
Center of the Instituto Superior Técnico (IST), Lisbon Technical University.
Together with the competitions, two regular demonstrations took place on a
daily basis: SegWay soccer, by a team from Carnegie-Mellon University, and
SONY QRIO robot, by a team from SONY Japan.

Portugal was chosen as the host of the 2004 edition due to its significant
representation in RoboCup committees, competitions and conferences, as a result
of the effort of the country in recent years to attract young people to Science
and Technology and also because EURO2004TM , the 2004 European Soccer Cup,
took place in Portugal, therefore improving the chances to bring the media to
cover the event.

RoboCup2004 was locally organized by a Portuguese committee composed of
15 researchers and university professors from several Universities, therefore un-
derlining the national nature of the event organization. This committee worked
closely with the international organizing and technical committees to set up
an event with the record number of 1627 participants from 37 countries, and
an estimated number of 500 robots, split by 346 teams. Twenty technicians
from FIL were involved in the preparation of the competition site, and 40 stu-
dent volunteers supported the event realization. The event was hosted by the
Institute for Systems and Robotics, a research institute located in the cam-
pus of IST.

In the following sections we will briefly overview the main research progresses
this year, the technical challenges and the competition results by league, with a
brief report on the Symposium, whose accepted papers are the core of this book.
More details on competitions, photos, short video clips and other related infor-
mation can be found in the official web page of the event at www.robocup2004.pt.

2 Soccer Middle-Size Robot League

In this league, two teams of 4-6 mid-sized robots with all sensors on-board play
soccer on a field. Relevant objects are distinguished by colours. Communication
among robots (if any) is supported on wireless communications. No external
intervention by humans is allowed, except to insert or remove robots in/from the
field. There were 24 teams in Lisbon selected by the league technical committee
from the 34 teams that submitted the qualification material.
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2.1 Research Issues

The 2004 rules introduced a set of changes in the games:

1. the field was enlarged to 8m × 12m;
2. the number of players is now flexible and determined by the area occupied

by the whole team, even though it can only range from 4 to 6 robots per
team;

3. the light used was the artificial light of the exhibition hall, i.e., no spe-
cial overhead illumination as in past events, therefore with possible non-
uniformity and less strong illumination;

4. a referee box was used, but only to start and stop the games for now.

The purpose of 1 and 2 was mainly to improve teamwork, as larger fields tend
to encourage passing the ball among robots, as well as cooperative localization
of the ball and cooperative navigation among teammates, since relevant objects
and landmarks are less often seen during the game. Change 3 was common to
almost all the leagues and intended to be a step towards vision under natural
illumination in RoboCup. Finally, the introduction of a referee box, already
existing in the Small Size and 4-Legged leagues, brings further autonomy and
requires further intelligence and team-play to the robots.

After the usual initial adaptation phase, most teams handled the new rules
quite well. This year, most teams had their robots running well from the be-
ginning of the tournament, without so many technical problems as in the past,
except those concerning wireless communications, which is the main unsolved
technical problem in RoboCup events so far.

2.2 Technical Challenges

Every year, the league technical committee (TC) prepares technical challenge
competitions where teams show specific skills and technical achievements. There
were two technical challenges this year:

– Ball Control and Planning,
– Free Demonstration of scientific or engineering achievements.

In the Ball Control and Planning Challenge, several obstacles are arbitrarily
positioned in the field, and the robot must take the ball from one goal to the
other with minimum or no contact with the obstacles and within a limited time.

In the Free Challenge, teams are free to pick their most relevant technical
and/or scientific recent achievement and demonstrate it. The demonstration is
evaluated by the members of the TC.

2.3 Results

The 24 teams were organized in 4 groups of 6 teams each, which played a round-
robin tournament. Then, the 4 best teams in each group, in a total of 16, were
grouped in 4 groups of 4 teams each, for another round-robin tournament. Fi-
nally, the first and second place teams from each group were qualified for the
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Table 1. Soccer Middle-Size League top three teams

rank team
1 EIGEN (Keio University, Japan)
2 WinKIT (Kanazawa Institute of Technology, Japan)
3 CoPS Stuttgart (University of Stuttgart, Germany)

Table 2. Overall rank for Soccer Middle-Size League technical challenges

rank team
1 Persia (Isfahan University of Technology, Iran)
2 AllemaniACs (Technical University of Aachen, Germany)
3 Clockwork Orange (Delft University of Technology, The Netherlands)

playoff phase, which consisted of quarter-finals, semi-finals and final (as well as
third-fourth place game). The top three teams of the soccer competition are
listed in Table 1.

The winners of the technical challenges were:

– Ball Control and Planning challenge: Persia (Isfahan University of Technol-
ogy, Iran)

– Free Demonstration challenge: Persia (Isfahan University of Technology, Iran)

The overall rank for the Middle-Size League technical challenges is shown in
Table 2.

3 Soccer Small-Size Robot League

Two teams of 5 small robots without on-board sensors play soccer on a field
with an overhead camera which provides feedback to an external computer of
the game state (e.g., ball, own and opponent player locations). Relevant ob-
jects are distinguished by colour and coloured coded markers on the top of the
robots. Commands are sent by the external computer to the robots using wire-
less communications. No external intervention by humans is allowed, except to
insert or remove robots in/from the field. There were 21 teams in Lisbon se-
lected by the league technical committee from the 39 teams that submitted the
qualification material.

3.1 Research Issues

The main research challenges for 2004 resulted from three main changes in the
rules:

1. the light used was the artificial light of the exhibition hall, i.e., no special
overhead illumination as in past events. In this league, this is a particularly
troublesome issue, due to the shadow cast by the camera mounting structure
on the field;
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Table 3. Soccer Small-Size League top three teams

rank team
1 FU Fighters (Freie Universität Berlin, Germany)
2 Roboroos (University of Queensland, Australia)
3 LuckyStar (Ngee Ann Polytechnic, Singapore)

2. the field was almost doubled to 4 × 5.5 m;
3. the field boundary walls were removed.

The purpose was, similarly to what happened in the Middle-Size League,
to encourage more cooperation among robot teammates (especially passes) and
to move towards a closer-to-reality perception scenario. The illumination issue
was particularly effective in this league, as some teams were relying on their
good quality top cameras and had not invested on advanced vision algorithms,
required to overcome non-uniform light conditions and low-light illumination.
On the other hand, the improvement in teamwork, with many passes and robot
formations, was visible as expected, and interesting to follow. The need for better
ball control was also noticeable, both for pass reception improvement and to
avoid the ball going out of the field most of the time. Some teams in this league
show very interesting kicking devices, including some which are capable to raise
the ball above the ground.

3.2 Results

In the round-robin phase, the teams were split in 4 groups. The top 2 teams
from each group proceeded to the playoff phase. The top three teams are listed
in Table 3.

4 Soccer 4-Legged Robot League

Two teams of up to 4 four-legged robots (SONY’s specially programmed AIBO
robots), with all sensors on-board, play soccer on a field. Relevant objects are
distinguished by colours. Communication among robots (if any) is supported on
wireless communications. No external intervention by humans is allowed, except
to insert or remove robots in/from the field. There were 23 teams in Lisbon
selected by the league technical committee from the 32 teams that submitted
the qualification material.

4.1 Research Issues

This is the real robot league with the most standardized hardware, as all the
platforms are SONY’s specially programmed AIBOs. Consequently, teams share
their code every year and the advances in software are considerably faster than
for other real robot leagues. Nevertheless, this year there were two types of
robots: the new ERS-7 AIBOs and the old ERS-210 AIBOs. The former are
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significantly faster robots, and this made a difference in terms of competition,
as only one team with ERS-210 robots made it to the quarter-finals.

The 4-Legged League was the only real robot league which could not use
yet the natural light of the hall, still requiring strong local illumination from
projectors located around the fields. This is mainly due to the low sensitivity to
light of the AIBOs cameras.

The AIBO’s 3-degree-of-freedom single camera forces the teams to work on
selective directed vision problems, leading to research advances in active vision
(e.g., where to look), cooperative world modelling and navigation. Also, some of
the rule changes for 2004 fostered the introduction of cooperative localization
algorithms, as a consequence of removing the two central beacons of the field,
therefore reducing the frequency of landmarks visibility by the robots.

Another rule change concerned obstacle avoidance, less enforced in the past
in this league. Gait optimization was also a hot topic among teams, so as to
speed up the robots, including the utilization of learning techniques. The fastest
gait speed increased from 27 cm/s in 2003 to 41 cm/s this year.

4.2 Technical Challenges

Three technical challenges were held in the 2004 edition of the Four-Legged
League:

– The Open Challenge, similar to the free challenge in the Soccer Middle-Size
League, where free demonstrations were assessed by the other teams. The
demonstrations included robot collaboration, ball handling, object recogni-
tion, and tracking by vision or sound.

– The Almost SLAM Challenge, where a landmark-based self-localization prob-
lem involving learning initially unknown landmark colours was the goal.

– The Variable Lighting Challenge involved light changing conditions over a
3-minutes time interval, during which a robot had to score as many goals
as possible. This was surely hard for 4-Legged teams, and the winner only
scored twice.

4.3 Results

In the round-robin phase, the teams were split in 4 groups. The top 2 teams
from each group proceeded to the playoff phase. The top three teams are listed
in Table 4.

Regarding the technical challenges, the winners were:

– Open Challenge: GermanTeam, demonstrating four robots moving a large
wagon.

– Almost SLAM Challenge: rUNSWift (University of New South Wales, Aus-
tralia).

– Variable Lighting Challenge: ASURA (Kyushu Institute of Technology,
Japan).

The top three teams from the overall result for technical challenges are listed
in Table 5.
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Table 4. Soccer 4-Legged League top three teams

rankteam
1 GermanTeam (HU Berlin, U. Bremen, TU Darmstadt, U. Dortmund, Germany)
2 UTS Unleashed! (University of Technology, Sydney, Australia)
3 NUBots (University of Newcastle, Australia)

Table 5. Soccer 4-Legged League top three teams in the overall technical challenge

rank team
1 UTS Unleashed! (University of Technology, Sydney, Australia)
2 ARAIBO (University of Tokyo, Chuo University, Japan)
3 ASURA (Kyushu Institute of Technology, Japan)

5 Soccer Humanoid Robot League

Humanoid robots show basic skills of soccer players, such as shooting a ball, or
defending a goal. Relevant objects are distinguished by colours. So far, no games
took place, penalty kicks being the closest situation to a 1-on-1 soccer game.
There were 13 teams in Lisbon selected by the league technical committee from
the 20 teams that submitted the qualification material.

5.1 Research Issues

This league made its debut in RoboCup2002, and its main research challenge
is to maintain the dynamic stability of robots while walking, running, kicking
and performing other tasks. Moreover, perception must be carefully coordinated
with biped locomotion to succeed.

This year, significant advances were observed in the humanoids, namely on
the technological side. Some teams showed progresses on features such as the
more ergonomic mechanical design and the materials used, the ability to walk on
uneven terrain, the walking speed, the ability to kick towards directions depend-
ing on sensing (e.g., the goal region not covered by the goalie), body coordination,
cooperation among robots (a pass was demonstrated by Osaka University) and
omnidirectional vision (used by Team Osaka ViSion robot). Also relevant is the
fact that most robots came equipped with an internal power supply and wireless
communications, thus improving autonomy. Tele-operation of the robots was not
allowed this year.

5.2 Technical Challenges

In the humanoid league, since no games are played yet, the main events are
the technical challenges: Humanoid Walk, Penalty Kick and Free Style. This
year, humanoid walk included walking around obstacles and balancing walk on
a slope. In the free style challenge, a pass between two robots and robot gym-
nastics could be observed, among other interesting demonstrations. Next year,
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Table 6. Soccer Humanoid Robot League technical challenges

Soccer Humanoid Walk technical challenge
rank team
1 Team Osaka (Systec Akazawa Co., Japan)
2 Robo-Midget (Singapore Polytechnic, Singapore)
3 Senchans (Osaka University, Japan )

Soccer Humanoid Free Style technical challenge
rank team
1 Team Osaka (Systec Akazawa Co., Japan)
2 Robo-Erectus (Singapore Polytechnic, Singapore)
3 NimbRo (U. of Freiburg, Germany )

Soccer Humanoid Penalty Kick H80 technical challenge
rank team
1 Senchans (Osaka University, Japan)
2 Robo-Erectus 80 (Singapore Polytechnic, Singapore)

Soccer Humanoid Penalty Kick H40 technical challenge
rank team
1 Team Osaka (Systec Akazawa Co., Japan)
2 Robo-Erectus 40 (Singapore Polytechnic, Singapore)

challenges will attempt to promote the current weakest points in the humanoid
league, by improving battery autonomy, onboard computing, locomotion and
real-time perception.

5.3 Results

The winner of the Best Humanoid Award was Team Osaka ViSion humanoid,
from Systec Akazawa Co., Japan. The results for the other technical challenges
are listed in Table 6.

6 Soccer Simulation League

In this league, two teams of eleven virtual agents each play with each other,
based on a computer simulator that provides a realistic simulation of soccer
robot sensors and actions. Each agent is a separate process that sends to the
simulation server motion commands regarding the player it represents, and re-
ceives back information about its state, including the (noisy and partial) sensor
observations of the surrounding environment. There were 60 teams in Lisbon
selected by the league technical committee from the 196 teams that submitted
the qualification material.
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6.1 Research Issues

The main novelty in the Soccer Simulation League in 2004 was the introduction
of the 3D soccer simulator, where players are spheres in a three-dimensional
environment with a full physical model. Besides that, two other competitions
already running in past tournaments were present: the 2D and the Coach
competitions.

The best teams from the past 2D competitions were able to quickly adapt
their code to face the new challenges of the 3D competition quite well. Those
challenges included the possibility to move in 3 directions, the motion inertia
and delayed effects of motor commands. In the 2D competition, remote partici-
pation through Internet was possible for the first time. Participants in the Coach
competition must provide a coach agent that can supervise players from a team
using a standard coach language. Coaches are evaluated by playing matches with
a given team against a fixed opponent.

The main research topics in the league are reinforcement learning, and differ-
ent approaches to select hard-coded behaviours, such as evolutionary methods
or rule based systems.

6.2 Results

The top three teams in the three competitions are listed in Tables 7-9.

Table 7. Soccer Simulation League top three teams in the 3D competition

rank team
1 Aria (Amirkabir University of Technology, Iran)
2 AT-Humboldt (Humboldt University Berlin, Germany)
3 UTUtd 2004 (University of Tehran, Iran)

Table 8. Soccer Simulation League top three teams in the 2D competition

rank team
1 STEP (ElectroPult Plant Company, Russia)
2 Brainstormers (University of Osnabrück, Germany)
3 Mersad (Allameh Helli High School, Iran)

Table 9. Soccer Simulation League top three teams in the Coach competition

rank team
1 MRL (Azad University of Qazvin, Iran)
2 FC Portugal (Universities of Porto and Aveiro, Portugal)
3 Caspian (Iran University of Science and Technology, Iran)
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7 Rescue Real Robot League

The RoboCupRescue Real Robot League competition acts as an international
evaluation conference for the RoboCupRescue Robotics and Infrastructure
Project research. The RoboCupRescue Robotics and Infrastructure Project stud-
ies future standards for robotic infrastructure built to support human wel-
fare. The U.S. National Institute of Standards and Technology (NIST) Urban
Search and Rescue (USAR) arena has been used in several RoboCupRescue
and AIAA competitions and was used in Portugal as well. A team of multiple
(autonomous or teleoperated) robots moves inside this arena, divided in 3 re-
gions of increasing difficulty levels, searching for victims and building a map of
the surrounding environment, to be transmitted and/or brought back by the
robot(s) to the human operators. There were 20 teams in Lisbon selected by the
league technical committee from the 37 teams that submitted the qualification
material.

7.1 Research Issues

The competition requires robots to demonstrate capabilities in mobility, sensory
perception, planning, mapping, and practical operator interfaces, while search-
ing for simulated victims in unstructured environments. The actual challenges
posed by the NIST USAR arena include physical obstacles (variable flooring,
overturned furniture, and problematic rubble) to disrupt mobility, sensory ob-
stacles to confuse robot sensors and perception algorithms, as well as a maze
of walls, doors, and elevated floors to challenge robot navigation and mapping
capabilities. All combined, these elements encourage development of innovative
platforms, robust sensory fusion algorithms, and intuitive operator interfaces to
reliably negotiate the arena and locate victims.

Each simulated victim is a clothed mannequin emitting body heat and other
signs of life including motion (shifting or waving), sound (moaning, yelling, or
tapping), and carbon dioxide to simulate breathing. They are placed in specific
rescue situations (surface, lightly trapped, void, or entombed) and distributed
throughout the arenas in roughly the same percentages found in actual earth-
quake statistics.

This year, two new league initiatives were introduced:
1. a high fidelity arena/robot simulation environment to provide a development

tool for robot programming in realistic rescue situations;
2. a common robot platform for teams to use if they choose, based on a stan-

dard kit of components, modular control architecture, and support for the
simulation mentioned above.

7.2 Results

The competition rules and scoring metric focus on the basic USAR tasks of
identifying live victims, assessing their condition based on perceived signs of life,
determining accurate victim locations, and producing human readable maps to
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enable victim extraction by rescue workers — all without damaging the environ-
ment or making false positive identifications.

After several rounds of competitive missions, the scoring metric produced
three awardees that demonstrated best-in-class approaches in each of three crit-
ical capabilities:

1. Toin Pelicans team (University of Toin, Japan) for their multi-tracked mobil-
ity platform with independent front and rear flippers, as well as an innovative
camera perspective mounted above and behind the robot that significantly
improved the situational awareness by the operator.

2. Kurt3D team (Fraunhofer Institute for Artificial Intelligence Systems, Ger-
many) for their application of state-of-the-art 3D mapping techniques using
a tilting line scan lidar.

3. ALCOR team (University of Rome “La Sapienza”, Italy) for their intelligent
perception algorithms for victim identification and mapping.

8 Rescue Simulation League

The main purpose of the RoboCupRescue Simulation League is to provide emer-
gency decision support by integration of disaster information, prediction, plan-
ning, and human interface. A generic urban disaster simulation environment
was constructed based on a computer network. Heterogeneous intelligent agents
such as fire fighters, commanders, victims, volunteers, etc. conduct search and
rescue activities in this virtual disaster world. There were 17 teams in Lisbon
selected by the league technical committee from the 34 teams that submitted
the qualification material.

8.1 Research Issues

The main research objective of this league is the introduction of advanced and
interdisciplinary research themes, such as behaviour strategy (e.g. multi-agent
planning, real-time/anytime planning, heterogeneity of agents, robust planning,
mixed-initiative planning) for AI/Robotics researchers or the development of
practical comprehensive simulators for Disaster Simulation researchers.

In 2004, the league was split in two competitions:

– Agent Competition, where a team has a certain number of fire fighters,
police, and ambulance agents and central stations that coordinate each agent
type. The agents are assumed to be situated in a city in which a simulated
earthquake has just happened, as a result of which, some buildings have
collapsed, some roads have been blocked, some fires have started and some
people have been trapped and/or injured under the collapsed buildings. The
goal of each team is to coordinate and use its agents to minimize human
casualties and the damage to the buildings.

– Infrastructure Competition, where the performance of the simulator
components developed by the teams is tested. The awarded team is requested
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to provide the component for the next year’s competition. For this reason
teams are expected to accept the open source policy before entering the
competition.

8.2 Results

In the Agent competition, the preliminaries consisted of two stages. In the first
stage, the teams competed on six maps with different configurations. The first 6
teams went to the semi-final. The remaining 11 teams competed in the second
stage which was designed to test the robustness of the teams under varying
perception conditions. The latter stage top 2 teams went to the semi-finals too.
The top 4 teams of the semi-finals competed in the final.

The final standings were:
1. ResQ (University of Freiburg, Germany), with platoon agents that have re-

active and cooperative behaviours which can be overridden by deliberative
high-level decisions of the central station agents.

2. DAMAS-Rescue (Laval University, Canada), with a special agent program-
ming language. Using this language, their Fire Brigade agents choose the
best fire to extinguish based on the knowledge they have learned with a
selective perception learning method.

3. Caspian (Iran University of Science and Technology, Iran).
In the Infrastructure competition, only the ResQ Freiburg team competed,

presenting a 3D-viewer and a Fire Simulator. The 3D-viewer is capable of vi-
sualizing the rescue simulation both online and offline. The Fire Simulator is
based on a realistic physical model of heat development and heat transport in
urban fires. Three different ways of heat transport (radiation, convection, direct
transport) and the influence of wind can be simulated as well as the protective
effects of spraying water on buildings without fire.

9 RoboCup Junior

RoboCupJunior is a project-oriented educational initiative that sponsors local,
regional and international robotic events for young students. It is designed to
introduce RoboCup to primary and secondary school children.

RoboCupJunior offers several challenges, each emphasizing both cooperative
and competitive aspects. In contrast to the one-child-one-computer scenario typ-
ically seen today, RoboCupJunior provides a unique opportunity for participants
with a variety of interests and strengths to work together as a team to achieve
a common goal. Several challenges have been developed: dance, soccer and
rescue.

By participating in RoboCupJunior, students especially improve their indi-
vidual and social skills (building self-confidence, developing a goal-oriented, sys-
tematic work style, improving their presentation and communication abilities,
exercising teamwork, resolving conflicts among team members). RoboCupJunior
has spread in more than 20 countries around the world. We estimate that this
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Fig. 2. The RoboCup2004 Junior area

year more than 2000 teams world-wide adopted the RoboCupJunior challenges
and prepared for participation in RoboCup in local, regional, or national com-
petitions. The largest RoboCupJunior communities are China (approximately
1000 teams), Australia (approximately 500 teams), Germany, Japan, and Por-
tugal (over 100 teams each).

Lisbon hosted the largest RoboCup Junior event so far, with 163 teams from
17 countries, 677 participants, and about 300 robots.

9.1 Competitions

The Lisbon RoboCupJunior event featured competitions in eight leagues, cover-
ing four different challenges: RoboDance, RoboRescue, RoboSoccer 1-on-1, and
RoboSoccer 2-on-2 - and in each challenge two age groups - Primary for stu-
dents aged under 15, and Secondary for students aged 15 and elder. The teams
qualifying for the playoffs were interviewed in order to scrutinize their ability to
explain their robot designs and programs.

The RoboRescue challenge is performed in an environment mimicking an
urban search and rescue site. Robots have to follow a curved path, marked by a
black line, through several rooms with obstacles and varying lighting conditions.
The task is to find two kinds of victims on the path, marked by green and silver
icons. Points are awarded for successful navigation of rooms and for detecting
and signalling victims, and the time for executing the task is recorded when
it is completed. Perhaps surprisingly, the vast majority of teams demonstrated
perfect runs and quickly navigated through the environment while finding and
signalling all victims, so that the timing was the decisive factor for making it to
the finals and winning.
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The RoboSoccer challenge play soccer on a pitch which is covered by a large
grayscale floor and surrounded by a black wall. The only difference is that the
1-on-1 field is smaller. Goals can be detected by their walls coloured gray, and
the well-known infrared-emitting ball is used for play. In both 1-on-1 and 2-on-2
Primary leagues, teams were split by three groups and played a single round
of round-robin games. Teams placed first and second after round-robin directly
qualified for the playoffs, and the remaining two playoff spots were determined
among the three teams placed third. In 2-on-2 Secondary, we had 6 groups in
round-robin and teams placed first and second advanced to the second round. On
playoff day, four groups of three teams each played a second round of round-robin
games, and the best team from each group advanced directly to the semifinals.
Even seasoned RoboCupJunior organizers were stunned by sophisticated robots
and the spectacular level of play the teams demonstrated across all of the four
Junior soccer leagues.

The RoboDance challenge asks students to design some kind of stage perfor-
mance which involves robots. Students may engage themselves as part of the per-

Table 10. Junior Leagues top three teams

RoboDance Primary RoboDance Secondary
1 Coronation Quebec 1 (Canada) 1 Kao Yip Dancing Team (China)
2 The Rock (Germany) 2 Mokas Team (Portugal)
3 Peace of the World (Japan) 3 Gipsies (Israel)

RoboRescue Primary RoboRescue Secondary
1 Chongqing Nanan Shanh (China) 1 Dunks Team Revolution (Portugal)
2 Dragon Rescue 100% (Japan) 2 Ren Min (China)
3 Chongqing Nanan Yifen (China) 3 Across (USA)

RoboSoccer 1-on-1 Primary RoboSoccer 1-on-1 Secondary
1 Shanghai Road of Tianjin (China) 1 Liuzhou Kejiguang (China)
2 Shenzhen Haitao (China) 2 I Vendicatori (Italy)
3 Wuhan Yucai (China) 3 TianJin Xin Hua (China)

RoboSoccer 2-on-2 Primary RoboSoccer 2-on-2 Secondary
1 NYPSTC1 (Singapore) 1 Kao Yip 1 (China)
2 Ultimate (Japan) 2 Espandana Juniors (Iran)
3 Red and Blue (South Korea) 3 Kitakyushu A.I. (Japan)

Table 11. Junior Dance League award winners

Category RoboDance Primary RoboDance Secondary
Programming ChaCha (Japan) Godzillas (Portugal)
Construction The Rock (Germany) Pyramidical Dragon (Portugal)
Costume Turtles (Portugal) Hunan Changsha Yali (China)
Choreography Crocks Rock (Australia) Joaninhas (Portugal)
Creativity Hong Kong Primary Dancing Team

(China)
Bejing No. 2 Middle School (China)

Originality Ridgment Pearl (UK) Mokas Team (Portugal)
Entertainment Value RoCCI Girls (Germany) The Rocking Robot (UK)
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formance, or give a narrative to the audience while the robots perform on stage.
There is a two minute time limit for the performance, and an international judge
committee assesses the performance in seven categories. RoboDance is without
doubt the RoboCupJunior activity allowing most flexibility in the design and
programming of the robots, and challenges students’ inspiration and creativity.
All teams of the same age group performed on stage on one the preliminaries,
and the best three teams advanced to the finals.

9.2 Results

The top three teams for the different Junior leagues, as well as the winners of
the Dance League awards are listed in Tables 10 and 11, respectively.

10 Symposium

The 8th RoboCup International Symposium was held immediately after the
RoboCup2004 Competitions as the core meeting for the presentation of scien-
tific contributions in areas of relevance to RoboCup. Its scope encompassed,
but was not restricted to, the fields of Artificial Intelligence, Robotics, and
Education.

The IFAC/EURON 5th Symposium on Intelligent Autonomous Vehicles
(IAV04) took also place at Instituto Superior Técnico, Lisbon from 5 to 7 July
2004. IAV2004 brought together researchers and practitioners from the fields
of land, air and marine robotics to discuss common theoretical and practical
problems, describe scientific and commercial applications and discuss avenues
for future research.

On July 5, the IAV04 Symposium ran in parallel with the RoboCup Sympo-
sium and both events shared two plenary sessions:

– James Albus, NIST, USA, “RCS: a Cognitive Architecture for Intelligent
Multi-agent Systems”.

– Shigeo Hirose, Tokyo Institute of Technology, Japan, “Development of Res-
cue Robots in Tokyo Institute of Technology”.

The other two plenary sessions specific to the RoboCup2004 Symposium were:

– Hugh Durrant-Whyte, U. Sydney, Australia, “Autonomous Navigation in
Unstructured Environments”.

– Luigia Carlucci Aiello, Universitá di Roma “La Sapienza”, Italy, “Seven
Years of RoboCup: time to look ahead”.

118 papers were submitted to the RoboCup2004 Symposium. Among those,
68 were accepted and are published in this book: 30 as regular papers, 38 as
shorter poster papers.
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This year, the awarded papers were:

Scientific Challenge Award: “Map-based Multi Model Tracking of a Moving
Object”, Cody Kwok and Dieter Fox.

Engineering Challenge Award: “UCHILSIM: A Dinamically and Visually
Realistic Simulator for the RoboCup Four Legged League”, Juan Cristóbal
Zagal Montealegre and Javier Ruiz-del-Solar.

11 Conclusion

Overall, RoboCup2004 was a successful event, from a scientific standpoint. The
main technical challenge of holding the competitions under a reduced artificial
light of the exhibition hall, instead of having special illumination per field as
in the past, was overcome by most teams without significant problems, thus
showing the evolution on perception robustness within the RoboCup community.
Another noticeable improvement is the increase in teamwork across most real
robot soccer leagues, from passes to dynamic behaviour switching, including
formation control and cooperative localization. Even in the humanoid league a
pass between biped robots was demonstrated by one of the teams.

On the educational side, RoboCup Junior was a tremendous success, despite
the increased organizational difficulties brought by the fact that the number of
participants almost doubled that of 2003.

The next RoboCup will take place in Osaka, Japan, in July 2005.
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Abstract. In this paper we propose an approach for tracking a moving target
using Rao-Blackwellised particle filters. Such filters represent posteriors over the
target location by a mixture of Kalman filters, where each filter is conditioned on
the discrete states of a particle filter. The discrete states represent the non-linear
parts of the state estimation problem. In the context of target tracking, these are
the non-linear motion of the observing platform and the different motion models
for the target. Using this representation, we show how to reason about physical
interactions between the observing platform and the tracked object, as well as
between the tracked object and the environment. The approach is implemented on
a four-leggedAIBO robot and tested in the context of ball tracking in the RoboCup
domain.

1 Introduction

As mobile robots become more reliable in navigation tasks, the ability to interact with
their environment becomes more and more important. Estimating and predicting the
locations of objects in the robot’s vicinity is the basis for interacting with them. For
example, grasping an object requires accurate knowledge of the object’s location relative
to the robot; detecting and predicting the locations of people helps a robot to better interact
with them. The problem of tracking moving objects has received considerable attention
in the mobile robotics and the target tracking community [1, 2, 9, 11, 5, 6]. The difficulty
of the tracking problem depends on a number of factors, ranging from how accurately
the robot can estimate its own motion, to the predictability of the object’s motion, to the
accuracy of the sensors being used.

This paper focuses on the problem of tracking and predicting the location of a ball with
a four-legged AIBO robot in the RoboCup domain, which aims at playing soccer with
teams of mobile robots. This domain poses highly challenging target tracking problems
due to the dynamics of the soccer game, coupled with the interaction between the robots
and the ball. We are faced with a difficult combination of issues:

– Highly non-linear motion of the observer: Due to slippage and the nature of legged
motion, information about the robot’s own motion is extremely noisy, blurring the
distinction between motion of the ball and the robot’s ego-motion. The rotation
of these legged robots, in particular, introduces non-linearities in the ball tracking
problem.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 18–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– Physical interaction between target and environment:The ball frequently bounces
off the borders of the field or gets kicked by other robots. Such interaction results
in highly non-linear motion of the ball.

– Physical interaction between observer and target: The observing robot grabs and
kicks the ball. In such situations, the motion of the ball is tightly connected to the
motion or action of the robot. This interaction is best modeled by a unified ball
tracking framework rather than handled as a special case, as is done typically.

– Inaccurate sensing and limited processing power: The AIBO robot is equipped
with a 176 × 144 CMOS camera placed in the robot’s “snout”. The low resolution
provides inaccurate distance measurements for the ball. Furthermore, the robot’s
limited processing power (400MHz MIPS) poses computational constraints on the
tracking problem and requires an efficient solution.

In this paper, we introduce an approach that addresses all these challenges in a unified
Bayesian framework. The technique uses Rao-Blackwellised particle filters (RBPF) [3]
to jointly estimate the robot location, the ball location, its velocity, and its interaction
with the environment. Our technique combines the efficiency of Kalman filters with the
representational power of particle filters. The key idea of this approach is to sample
the non-linear parts of the state estimation problem (robot motion and ball-environment
interaction). Conditioning on these samples allows us to apply efficient Kalman filtering
to track the ball. Experiments both in simulation and on the AIBO platforms show that
this approach is efficient and yields highly robust estimates of the ball’s location and
motion.

This paper is organized as follows. After discussing related work in the next section,
we will introduce the basics of Rao-Blackwellised particle filters and their application to
ball tracking in the RoboCup domain. Experimental results are presented in Section 4,
followed by conclusions.

2 Related Work

Tracking moving targets has received considerable attention in the robotics and target
tracking communities. Kalman filters and variants thereof have been shown to be well
suited for this task even when the target motion and the observations violate the linearity
assumptions underlying these filters [2]. Kalman filters estimate posteriors over the
state by their first and second moments only, which makes them extremely efficient and
therefore a commonly used ball tracking algorithm in RoboCup [10]. In the context
of maneuvering targets, multiple model Kalman filters have been shown to be superior
to the vanilla, single model filter. Approaches such as the Interacting Multiple Model
(IMM) and the Generalized Pseudo Bayesian (GPB) filter represents the target locations
using a bank of Kalman filters, each conditioned on different potential motion models for
the target. An exponential explosion of the number of Gaussian hypotheses is avoided
by merging the Gaussian estimates after each update of the filters [2]. While these
approaches are efficient, the model merging step assumes that the state conditioned on
each discrete motion model is unimodal. However, our target tracking problem depends
heavily on the uncertainty of the observer position in addition to the motion model.
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These two factors can interact to produce multimodal distributions conditioned on each
model, and an example will be provided in section 3.1.

Particle filters provide a viable alternative to Kalman filter based approaches [4].
These filters represent posteriors by samples, which allows them to optimally estimate
non-linear, non-Gaussian processes. Recently, particle filters have been applied success-
fully to people tracking using a mobile robot equipped with a laser range-finder [11, 9].
While the sample-based representation gives particle filters their robustness, it comes
at the cost of increased computational complexity, making them inefficient for complex
estimation problems.

As we will describe in Section 3.2, Rao-Blackwellised particle filters (RBPF) [3]
combine the representational benefits of particle filters with the efficiency and accuracy
of Kalman filters. This technique has been shown to outperform approaches such as
the IMM filter on various target tracking problems [5, 6]. Compared to our method,
existing applications of RBPFs consider less complex dynamic systems where only one
part of the state space is non-linear. Our approach, in contrast, estimates a system where
several components are highly non-linear (observer motion, target motion). Furthermore,
our technique goes beyond existing methods by incorporating information about the
environment into the estimation process. The use of map information for improved
target tracking has also been proposed by [9]. However, their tracking application is less
demanding and relies on a vanilla particle filter to estimate the joint state space of the
observer and the target. Our RBPFs are far more efficient since our approach rely on
Kalman filters to estimate the target location.

3 Rao-Blackwellised Particle Filters for Multi Model Tracking
with Physical Interaction

In this section, we will first describe the different interactions between the ball and the
environment. Then we will show how RBPFs can be used to estimate posteriors over
the robot and ball locations. Finally, we will present an approximation to this idea that
is efficient enough to run onboard the AIBO robots at a rate of 20 frames per second.

3.1 Ball-Environment Interactions

Fig. 1(a) describes the different interactions between the ball and the environment:

– None: The ball is either not moving or in an unobstructed, straight motion. In this
state, a linear Kalman filter can be used to track its location and velocity.

– Grabbed: The ball is between the robot’s legs or grabbed by them. The ball’s
position is thus tightly coupled with the location of the robot. This state is entered
when the ball is in the correct position relative to the robot. It typically exits into the
Kicked state.

– Kicked: The robot just kicked the ball. This interaction is only possible if the ball
was grabbed. The direction and velocity of the following ball motion depend on the
type of kick. There is also a small chance that the kick failed and the ball remains
in the Grabbed state.
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Fig. 1. (a) Finite state machine describing the transitions between different ball motion models.
All transitions are probabilistic, the probabilities are enclosed in parentheses. (b) Graphical model
for tracking a moving ball. The nodes in this graph represent the different parts of the dynamic
system process at consecutive points in time, and the edges represent dependencies between the
individual parts of the state space. Filled circles indicate observed nodes, where zl

k are landmark
and zb

k ball observations

– Bounced: The ball bounced off one of the field borders or one of the robots on the
field. In this case, the motion vector of the ball is assumed to be reflected by the
object with a considerable amount of orientation noise and velocity reduction.

– Deflected: The ball’s trajectory has suddenly changed, most likely kicked by
another robot. In this state, the velocity and motion direction of the ball are unknown
and have to be initialized by integrating a few observations.

The transition probabilities between states are parenthesized in the figure. From the
None state, we assume that there is a 0.1 probability the ball will be deflected at each
update. When the ball is somewhere close in front of the robot, the ball will enter the
Grabbed state with probability defined by a two-dimensional linear probability func-
tion. When the ball collides with the borders or other robots, it will always reflect and
move into the Bounced state. This transition is certain because each ball estimate is
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(a) (b)

Fig. 2. Effect of robot position on ball-environment interation. The two figures represent two
different estimates of the robot’s position, differing by less than 20 degrees and 20cm. They result
in very different predicted ball positions after collision with the border, with (a) in front of the
robot and (b) behind

conditioned on a sampled robot position, which can be assumed to be the true robot posi-
tion. This will be elaborated further in the next section. Finally, the None state transition
back to itself by default, hence it takes up the residual probability after computing the
previously mentioned transitions. For the states Kicked and Grabbed, the transitions
are associated with whether these actions succeed or not. Kicking the ball has a 0.9
success rate and Grabbing 0.8. Finally, the Bounced and Deflected states are used
to initiate changes in the Kalman filters. Once the changes are made, they transition
immediately to the normal updates in the None state.

While most of these interactions depend on the location of the ball relative to the robot,
the ball’s interactions with the environment (e.g. the field borders) strongly depend on the
ball location on the field, i.e. in global coordinates. In order to estimate global coordinates
from relative observations, we need to associate relative ball positions with the robot’s
location and orientation on the field. Hence, the problem of tracking a ball requires
the joint estimation of the ball location, the robot location, and the ball-environment
interaction. Figure 2 shows an example of their interdependence. The robot is tracking a
ball travelling towards the border. It is uncertain about its own location, and Figures 2(a)
and (b) are both possible locations. In the figures, the robot has the same estimates of
the relative position and velocity of the ball. However, their slight difference in positions
leads to very different predicted ball positions after collision with the border, with (a)
in front and (b) behind the robot. If we ignore the uncertainty in robot position, this
interaction cannot be modeled correctly. In the next section we will see how RBPF can
be used to perform this joint estimation.

3.2 Rao-Blackwellised Posterior Estimation

Let 〈mk, bk, rk〉 denote the state of the system at time k. Here, mk = {None,Grabbed,
Kicked, Bounced, Deflected} are the different types of interaction between the
robot and the environment. bk = 〈xb, yb, ẋb, ẏb〉 denotes the ball location and velocity
in global coordinates and rk = 〈xr, yr, θr〉 is the robot location and orientation on the
field. Furthermore, zk are observations of the ball and landmarks, provided in relative
bearing and distance.
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A graphical model description of the ball tracking problem is given in Fig. 1(b). The
graphical model describes how the joint posterior over 〈bk, mk, rk〉 can be computed
efficiently using independencies between parts of the state space. The nodes describe
different random variables and the arrows indicate dependencies between these variables.
The model shows that, just like in standard robot localization, the robot location rk only
depends on the previous location rk−1 and the robot motion control uk−1. Landmark
observations zl

k only depend on the current robot location rk. The location and velocity
of the ball, bk, typically depend on the previous ball state bk−1 and the current ball
motion model mk. The arc from mk to bk describes, for example, the change in ball
prediction if the ball was kicked or bounced off a field border. If mk = Grabbed, then
the ball location depends on the current robot location rk, as indicated by the arrow from
rk to bk. Relative ball observations zb

k only depend on the current ball and robot position.
Transitions of the ball motion model mk are probabilistic versions of those described
in Fig. 1(a).

Now that the dependencies between different parts of the state space are defined,
we can address the problem of filtering, which aims at computing the posterior over
〈bk, mk, rk〉 conditioned on all observations made so far. A full derivation of the RBPF
algorithm is beyond the scope of this paper; see [3] for a thorough discussion of the
basic RBPF and its properties. RBPFs represent posteriors by sets of weighted samples,
or particles:

Sk = {s
(i)
k , w

(i)
k | 1 ≤ i ≤ N}.

In our case, each particle s
(i)
k = 〈b(i)

k , m
(i)
1:k, r

(i)
1:k〉, where b

(i)
k are the mean and covariance

of the ball location and velocity and m
(i)
1:k and r

(i)
1:k are the histories of ball motion models

and robot locations, respectively. The key idea of RBPFs is to condition the ball estimate
b
(i)
k on a particle’s history of ball motion models m

(i)
1:k and robot locations r

(i)
1:k. This

conditioning turns the ball location and velocity into a linear system that can be estimated
efficiently using a Kalman filter.

To see how RBPFs recursively update posterior estimates, we factorize the posterior
as follows:

p(bk, m1:k, r1:k | z1:k, u1:k−1) = p(bk|m1:k, r1:k, z1:k, u1:k−1)
·p(m1:k|r1:k, z1:k, u1:k−1) p(r1:k|z1:k, u1:k−1)(1)

The task is to generate samples distributed according to (1) based on samples drawn from
the posterior at time k−1, represented by the previous sample set Sk−1. We generate the
different components of each particle s

(i)
k stepwise by simulating (1) from right to left.

In the first step, a sample s
(i)
k−1 = 〈b(i)

k−1, m
(i)
1:k−1, r

(i)
1:k−1〉 is drawn from Sk−1. Through

conditioning on this sample, we first expand the robot trajectory to r
(i)
1:k, then the ball

motion models to m
(i)
1:k conditioned on r

(i)
1:k, followed by an update of b

(i)
k conditioned

on both the robot trajectory and the motion model history. Let us start with expanding
the robot trajectory, which requires to draw a new robot position r

(i)
k according to

r
(i)
k ∼ p(rk|s(i)

k−1, z1:k, u1:k−1). (2)
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The trajectory r
(i)
1:k resulting from appending r

(i)
k to r

(i)
1:k−1 is then distributed according

to the rightmost term in (1). The distribution for r
(i)
k can be transformed as follows:

p(rk | s(i)
1:k−1, z1:k, u1:k−1) (3)

= p(rk|s(i)
k−1, zk, uk−1) (4)

∝ p(zk|rk, s
(i)
k−1, uk−1) p(rk|s(i)

k−1, uk−1) (5)

= p(zk|rk, r
(i)
k−1, m

(i)
k−1, b

(i)
k−1, uk−1) p(rk|r(i)

k−1, m
(i)
k−1, b

(i)
k−1, uk−1) (6)

= p(zk|rk, m
(i)
k−1, b

(i)
k−1, uk−1) p(rk|r(i)

k−1, uk−1) (7)

Here, (4) follows from the (Markov) property that rk is independent of older information
given the previous state. (5) follows by Bayes rule, and (7) from the independencies
represented in the graphical model given in Fig. 1(b). To generate particles according
to (7) we apply the standard particle filter update routine [4]. More specifically, we first
pick a sample s

(i)
k−1 from Sk−1, then we predict the next robot location r

(i)
k using the

particle’s r
(i)
k−1 along with the most recent control information uk−1 and the robot motion

model p(rk|r(i)
k−1, uk−1) (rightmost term in (7)). This gives the extended trajectory r

(i)
1:k.

The importance weight of this trajectory is given by the likelihood of the most recent
measurement: w

(i)
k ∝ p(zk|r(i)

k , m
(i)
k−1, b

(i)
k−1, uk−1). If zk is a landmark detection, then

this likelihood is given by p(zk|r(i)
k ), which corresponds exactly to the particle filter

update for robot localization. If, however, zk is a ball detection zb
k, then total probability

gives us

p( zk |r(i)
k , m

(i)
k−1, b

(i)
k−1, uk−1) (8)

=
∑

Mk

p(zk|r(i)
k , m

(i)
k−1, b

(i)
k−1, uk−1, Mk)p(Mk|r(i)

k , m
(i)
k−1, b

(i)
k−1, uk−1) (9)

=
∑

Mk

p(zk|r(i)
k , b

(i)
k−1, uk−1, Mk)p(Mk|r(i)

k , m
(i)
k−1, b

(i)
k−1, uk−1) (10)

where Mk ranges over all possible ball motion models. The second term in (10) can
be computed from the transition model, but p(zk|r(i)

k , b
(i)
k−1, uk−1, Mk) is the likelihood

obtained from a Kalman update, which we need to perform for each Mk (see below). In
the next section, we will describe how we avoid this complex operation.

At the end of these steps, the robot trajectory r
(i)
1:k of the particle is distributed ac-

cording to the rightmost term in (1). We can now use this trajectory to generate the ball
motion model part m

(i)
1:k of the particle using the second to last term in (1). Since we

already have m
(i)
1:k−1, we only need to sample

m
(i)
k ∼ p(mk|m(i)

1:k−1, r
(i)
1:k, b

(i)
k−1, z1:k, u1:k−1) (11)

∝ p(zk|mk, r
(i)
k , b

(i)
k−1, uk−1) p(mk|m(i)

k−1, r
(i)
k , b

(i)
k−1, uk−1). (12)

(12) follows from (11) by reasoning very similar to the one used to derive (7). The right-
most term in (12) describes the probability of the ball motion mode at time k given the
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previous mode, robot location, ball location and velocity, and the most recent control. As
described above, this mode transition is crucial to model the ball’s interaction with the
environment. To generate motion model samples using (12), we predict the mode tran-
sition using reasoning about the different ball-environment interactions (see Fig. 1(a)).
The importance weight of the sample s

(i)
k has then to be multiplied by the observation

likelihood p(zk|m(i)
k , r

(i)
k , b

(i)
k−1, uk−1), which is given by the innovation of a Kalman

update conditioned on m
(i)
k , r

(i)
k , b

(i)
k−1, and uk−1.

To finalize the computation of the posterior (1), we need to determine the leftmost
term of the factorization. As mentioned above, since we sampled the non-linear parts
r
(i)
1:k and m

(i)
1:k of the state space, the posterior

b
(i)
k ∼ p(bk|m(i)

1:k, r
(i)
1:k, z1:k, u1:k−1) (13)

can be computed analytically using a regular Kalman filter. The Kalman filter prediction
uses the motion model m

(i)
k along with the most recent control uk−1. The correction

step is then based on the robot location rk along with the most recent observation zk.
The Kalman correction step is not performed if zk is a landmark detection.

To summarize, we generate particles at time k by first drawing a particle s
(i)
k−1 =

〈b(i)
k−1, m

(i)
1:k−1, r

(i)
1:k−1〉 from the previous sample set. In the first step, we expand this

particle’s robot trajectory by generating a new robot location using (7), which gives
us r

(i)
1:k. Conditioning on r

(i)
1:k allows us to expand the history of ball motion models

by predicting the next motion model using (12). Finally, r
(i)
1:k and m

(i)
1:k render the ball

location and velocity a linear system and we can estimate b
(i)
k using regular Kalman

filter updating. The importance weight of the new particle s
(i)
k = 〈b(i)

k , m
(i)
1:k, r

(i)
1:k〉 is set

proportional to

w
(i)
k ∝ p(zk|r(i)

k , m
(i)
k−1, b

(i)
k−1, uk−1)p(zk|mk, r

(i)
k , b

(i)
k−1, uk−1). (14)

3.3 Efficient Implementation

We implemented the RBPF algorithm described above and it worked very well on data
collected by an AIBO robot. By computing the joint estimate over the robot location
and the ball, the approach can handle highly non-linear robot motion, predict when
the ball bounces into field borders, and eliminates inconsistent estimates (e.g., when
the ball is outside the field). Unfortunately, the approach requires on the order of 300–
500 particles, which is computationally too demanding for the AIBO robots, especially
since each particle has a Kalman filter attached to it. The main reason for this high
number of samples is that for each robot location, we need to estimate multiple ball
motion models. Furthermore, in RBPF the ball and robot estimates are coupled, with
the weights of each sample depending on the contributions from the ball and the robot
position. One consequence is that ball estimates can influence the robot’s localization,
since a sample can be removed by resampling if its ball estimate is not very accurate.
This influence can be useful in some situations, such as invalidating a sample when the
ball estimate is out-of-bounds, since we can infer that its robot position must also be
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(a) (b)

(c) (d)

Fig. 3. (a) Robot-centric view of predicted ball samples. The robot kicked the ball to its right using
its head, indicated by the small rectangle. If field borders are not considered, the ball samples travel
in the kicked direction (ball motion is illustrated by the length and orientation of the small lines).
(b) Particles representing robot’s estimate of its position at the beginning of the kick command.
(c) The robot has kicked the ball towards the border. The ball samples are attached to the robot
particles shown in (b) in order to estimate the relative locations of borders. The sampled borders
are shown as dashed lines. (d) Most ball samples transition into the Bounced state. Due to the
uncertainty in relative border location, ball samples bounce off the border at different times, with
different directions and velocities. The ball sample distribution predicts the true ball location
much better than without considering the borders (compare to (a)). Note that ball samples can also
bounce off the robot

erroneous. However, this artifact is undesirable in general; while the global position of
the ball is conditioned on the robot position, the ball does not really provide significant
information for localization. This problem is further accentuated by the fact that while
ball estimates need to be updated about 20 times per second, the robot location on the
field needs to be updated about only once per second. The frequent ball updates result in
importance weights that outweigh the contribution of (rather rare) landmark detections.
This results in the deletion of many robot location hypotheses even if the robot was not
seeing any landmarks.

Our efficient approximation to the full Rao-Blackwellised approach described in the
previous section is based on the observation that ball detections do not provide significant
information about the robot’s location on the field. The key idea is we partitioned the
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state space into robot and ball positions, which are updated separately. We recombine
them into Rao-blackwellised particles when needed. The set of samples Sk is now the
pair 〈Rk, Bk〉, where Rk is the set of robot position samples, and Bk is the set of ball
samples, each sample consists of the ball’s position and the model it is conditioned on.
At the beginning of each update, instead of sampling s

(i)
k−1 = 〈b(i)

k−1, m
(i)
1:k−1, r

(i)
1:k−1〉

from Sk−1, we sample robot positions r
(j)
1:k−1 from Rk−1 and ball model-position pairs

b
(i)
k−1, m

(i)
1:k−1 from Bk−1. With the decoupled state space, we can use M samples to

estimate the robot’s position and N samples to estimate the ball’s location. Usually, the
distribution of ball motion model is less complex than the robot position, so N < M . As
before, we extend the robot trajectory to r

(i)
k , but this time we can drop the dependency

of the robot position on the ball since r
(i)
k is not coupled with a ball position. Thus we

have the following approximation of equation (2)

r
(j)
k ∼ p(rk|s(j)

k−1, z1:k, u1:k−1) (15)

≈ p(rk|r(j)
1:k−1, z1:k, u1:k−1). (16)

Thus the estimation of the robot position becomes regular particle filter-based localiza-
tion [4], with ball observations having no influence on rk. The distribution of r

(j)
k is

simply

p(rk|r(j)
1:k−1, z1:k, u1:k−1) ∝ p(z1:k|rk, u1:k−1)p(rk|r(j)

1:k−1, u1:k−1) (17)

which has the exact form of a robot localization update. We obtain r
(j)
k by sampling from

the robot motion model p(rk|r(j)
1:k−1, u1:k−1) using the most recent control information

uk−1, as usual. This gives us an updated robot sample set Rk.
We now turn our attention to the ball estimates. Since they are no longer coupled

with robot positions, they are estimated in a pseudo-global coordinate system. Each
ball sample b

(i)
k has an associated observer position ρ

(i)
1:k which is initialized to the origin

ρ1 = (0, 0, 0).At each iteration, ρ(i)
k is computed from ρ

(i)
1:k−1 by sampling from the robot

motion model and uk−1. When we compute the ball’s interaction with the environment,
we need the ball estimates in global coordinates. We obtain this by sampling a robot
position r

(j)
k from Rk for each ball sample, and applying the offset b

(i)
k − ρ

(i)
k to r

(j)
k .

With this scheme, we approximate (12) as follows:

p(zk|mk, r
(i)
k , b

(i)
k−1, uk−1) ≈ p(zk|mk, ρ

(i)
k , b

(i)
k−1, uk−1) (18)

p(mk|m(i)
k−1, r

(i)
k , b

(i)
k−1, uk−1) ≈ p(mk|m(i)

k−1, r
(j)
k , b

(i)
k−1, uk−1) (19)

In (18) we compute the likelihood of the ball observation based on ρ
(i)
k rather than the

joint robot position r
(i)
k . This approximation is fairly faithful to the original RBPF since

the trajectory represented by ρ
(i)
1:k is generated from u1:k−1, similar to r

(i)
1:k. In (19) we

predict the motion model of the ball b
(i)
k using the global position obtained from the

sampled robot position r
(j)
k instead of the paired r

(i)
k in RBPF. While the variance of this

approximation is higher, the expected distribution resulting from interacting with the
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environment is the same as RBPF’s. Note that we can set j = i to avoid extra sampling
without loss of generality. In this case, r

(i)
k is interpreted as the i-th sample in Rk, not

the coupled robot position in RBPF.
Finally, the posterior for the ball positions can be computed by a Kalman filter update

using ρ
(i)
k instead of r

(i)
k in (13)

b
(i)
k ∼ p(bk|m(i)

1:k, ρ
(i)
k , z1:k, u1:k−1). (20)

The complete approximation algorithm is shown in Table 1. At each iteration, a different
relative offset is generated for each ball by sampling from the robot motion model
using uk. Then the ball samples are translated back to global coordinates by attaching
their relative ball estimates to the most recent particles of the robot localization. These
particles are selected by sampling N robot positions from the M in the set. Thus, the
ball and its motion model are estimated exactly as described before, with sampling from
the highly non-linear robot motion and the ball motion models. Furthermore, since ball
estimates are in global coordinates, the ball-environment interaction can be predicted as
before. The only difference is that information about the ball does not contribute to the
estimated robot location. However, our approximation drastically reduces the number
of robot and ball samples needed for good onboard results (we use 50 robot and 20 ball
particles, respectively). The key idea of this algorithm is summarized in Fig. 3. As can
be seen in Fig. 3(c) and (d), each ball particle 〈b(i)

k , m
(i)
k 〉 uses a different location for

the border extracted from the robot location particles r
(j)
k shown in (b). These borders

determine whether the ball motion model transitions into the Bounced state.

3.4 Tracking and Finding the Ball

Since our approach estimates the ball location using multiple Kalman filters, it is not
straightforward to determine the direction the robot should point its camera in order to
track the ball. Typically, if the robot sees the ball, the ball estimates are tightly focused
on one spot and the robot can track it by simply pointing the camera at the mean of the
ball samples with the most likely mode. However, if the robot doesn’t see the ball for a
period of time, the distribution of ball samples can get highly uncertain and multi-modal.
This can happen, for instance, after the ball is kicked out-of-sight by the robot or by other
robots.

To efficiently find the ball in such situations, we use a grid-based representation to
describe where the robot should be looking. The grid has two dimensions, the pan and
the tilt of the camera. Each ball sample is mapped to these camera parameters using
inverse kinematics, and is put into the corresponding grid cells. Each cell is weighted by
the sum of the importance weights of the ball samples inside the cell. To find the ball,
the robot moves its head to the camera position specified by the highest weighted cell. In
order to represent all possible ball locations, the pan range of the grid covers 360◦. Cells
with pan orientation exceeding the robot’s physical pan range indicate that the robot has
to rotate its body first.

An important aspect of our approach is that it enables the robot to make use of
negative information when looking for the ball: Ball samples that are not detected even
though they are in the visible range of the camera get low importance weights (visibility
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Table 1. The efficient implementation of the Rao-blackwellised particle filter algorithm for ball
tracking

1. Inputs:
Sk−1 = 〈Rk−1, Bk−1〉 representing belief Bel(sk−1), where

Rk−1 = {〈r(j)
k−1, w

(j)
k−1〉 | j = 1, . . . , N} represents robot positions,

Bk−1 = {〈b(i)
k−1, m

(i)
k−1, ρ

(i)
k−1, ω

(i)
k−1〉 | i = 1, . . . , M} represents ball positions

control measurement uk−1,
observation zk

2. Rk := ∅, Bk := ∅ // Initialize

3. for j := 1, . . . , N do // Generate N robot samples

4. Sample an index l from the discrete distribution given by
the weights in Rk−1 // Resampling

5. Sample r
(j)
k from p(rk | rk−1, uk−1) conditioned on r

(l)
k−1 and uk−1

6. w
(j)
k := p(zk|r(j)

k ) // Compute likelihood

7. Rk := Rk ∪ {〈r(j)
k , w

(j)
k 〉} // Insert sample into sample set

8. end do

9. Normalize the weights in Rk

10. for i := 1, . . . , M do // Update M ball samples

11. Sample an index l from the discrete distribution given by
the weights ωk−1 in Bk−1

12. Sample m
(i)
k from p(mk|m(l)

k−1, r
(i)
k , b

(l)
k−1, uk−1)

13. Sample ρ
(i)
k from p(rk | rk−1, uk−1) conditioned on ρ

(l)
k−1 and uk−1

14. b
(i)
k := Kalman update using b

(l)
k−1, m

(i)
k , zk and uk−1

15. ω
(i)
k := p(zk|mk, ρ

(i)
k , b

(i)
k−1, uk−1) // Compute importance weight

16. Bk := Bk ∪ {〈b(i)
k , m

(i)
k , ρ

(i)
k , ω

(i)
k 〉} // Insert sample into sample set

17. end do

18. Normalize the weights in Bk

19. return Sk = 〈Rk, Bk〉

considers occlusions by other robots). In the next update step of the Rao-Blackwellised
particle filter, these ball samples are very unlikely to be drawn from the weighted sample
set, thereby focusing the search to other areas. As a result, the robot scans the whole area
of potential ball locations, pointing the camera at the most promising areas first. When
none of the ball particles are detected, the ball is declared lost.
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4 Experiments

We evaluated the effectiveness of our tracking system in both simulated and real-world
environments. We first illustrate the basic properties of our algorithm by comparing it
with the traditional Kalman Filter. Then we evaluate how well the approach works on
the real robot.

4.1 Simulation Experiments

In the RoboCup domain, robots often cannot directly observe the ball, due to several
reasons such as looking at landmarks for localization, or the ball is occluded by another
robot. The goalkeeper robot in particular has to accurately predict the trajectory of the ball
in order to block it. Hence, accurate prediction over multiple camera frames is of utmost
importance. To systematically evaluate the prediction quality of our multiple model
approach, we simulated a robot placed at a fixed location on the soccer field, while the
ball is kicked randomly at different times. The simulator generates noisy observations
of the ball. The observation noise is proportional to the distance from the robot and
constant in the orientation, similar in magnitude to the information available to the real
robot. Prediction quality is measured using the RMS error at the predicted locations.

In this experiment, we measure the prediction quality for a given amount of time
in the future, which we call the prediction time. Map information is not used, and the
ball is estimated with 20 particles (used to sample ball motion models at each iteration).
The observation noise of the Kalman filters was set according to the simulated noise.
To determine the appropriate prediction noise, we generated straight ball trajectories
and used the prediction noise value that minimized the RMS error for these runs. This
prediction noise was used by our multiple model approach when the motion model was
none. The results for prediction times up to 2 seconds are shown in Fig. 4(a). In addition
to our RBPF approach (thick, solid line), we compare it with Kalman filters with different
prediction noise models. The thin, solid line shows the RMS error when using a single
Kalman filter with prediction noise of the straight line model (denoted KF ∗). However,
since the ball is not always in a straight line motion, the quality of the filter estimates
can be improved by inflating the prediction noise. We tried several noise inflation values
and the dotted line in Fig. 4(a) gives the results for the best such value (denoted KF ′).
Not surprisingly, our multiple model approach greatly improves the prediction quality.

The reason for this improved prediction performance is illustrated in Fig. 5. Our
approach, shown in Fig. 5(a), is able to accurately track the ball location even after a
kick, which is due to the fact that the particle filter accurately “guesses” the kick at the
correct location. The Kalman filter with the straight line motion model quickly diverges,
as shown by the dotted line in Fig. 5(b). The inflated prediction noise model (thick, solid
line) keeps track of the ball, but the trajectory obviously overfits the observation noise.
Further intuition can be gained from Fig. 5(c). It compares the orientation error of the
estimated ball velocity using our approach versus the inflated Kalman filter KF ∗(KF ′

shows a much worse performance; for clarity it is omitted from the graph). Clearly,
our approach recovers from large errors due to kicks much faster, and it converges to a
significantly lower error even during straight line motion.
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Fig. 4. (a) RMS error of the ball’s position for different prediction times. (b) Percentage of time
the robot loses track of the ball after a kick for different numbers of particles with and without
map information
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Fig. 5. Tracking of a ball trajectory with multiple kicks, the observer is located on the left. In
(a) and (b), the observations are indicated by stars and the true target trajectory is shown as a
thin line. (a) shows the estimated trajectory of our RBPF multiple-model approach. (b) shows the
estimates using an extended Kalman filter for two different prediction noise settings. The dotted
line represents the estimates when using prediction noise that assumes a linear ball trajectory, and
the thick, solid line is estimated using inflated prediction noise. (c) Orientation errors over a time
period including four kicks. Solid line represents RBPF, dashed line a Kalman filter with inflated
prediction noise

4.2 Real-World Experiments

In this section we describe an experiment carried out on the real robot. It demonstrates that
the use of map information brings significant improvements to the tracking performance.
In the experiment, an Aibo robot and a ball are placed on the soccer field at random
locations. The task of the robot is to track the ball and kick it as soon as it reaches it. The
kick is a sideway head kick as shown in Fig. 3(c). The robot is not able to see the ball
until it recovers from the kick motion. During the experiment, the robot stays localized
by scanning the markers on the field periodically.

The solid line in Fig. 4(b) shows the rate of successfully tracking the ball after a kick.
As can be seen, increasing the number of samples also increases the performance of the
approach. The poor performance for small sample sizes indicates that the distribution
of the ball is multi-modal, rendering the tracking task difficult for approaches such
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as the IMM [2]. Fig. 4(b) also demonstrates the importance of map information for
tracking. The dashed line gives the results when not conditioning the ball tracking on
the robot locations. Obviously, not considering the ball-environment interaction results
in lower performance. On a final note, using our approach with 20 samples significantly
reduces the time to find the ball, when compared to the commonly used random ball
search strategy. When using the default search sequence, the robot takes on average 2.7
seconds to find the ball, whereas the robot can locate the ball in 1.5 seconds on average
when using our approach described in Section 3.4.

5 Conclusion and Future Work

In this paper we introduced a novel approach to tracking moving targets. The approach
uses Rao-Blackwellised particle filters to sample the potential interactions between the
observer and the target and between the target and the environment. By additionally
sampling non-linear motion of the observer, estimating the target and its motion can be
performed efficiently using Kalman filters. Thus, our method combines the representa-
tional complexity of particle filters with the efficiency and accuracy of Kalman filters.
The approach goes beyond other applications of RBPFs in that it samples multiple parts
of the state space and integrates environment information into the state transition model.

The technique was implemented and evaluated using the task of tracking a ball with a
leggedAIBO robot in the RoboCup domain. This problem is extremely challenging since
the legged motion of the robot is highly non-linear and the ball frequently bounces off
obstacles in the environment. We demonstrate that our efficient implementation results
in far better performance than vanilla Kalman filters. Furthermore, we show that taking
the environment into account results in additional performance gains. We belief that
our approach has applications to tracking problems beyond the RoboCup domain. It
can be applied whenever the observer robot performs highly non-linear motion and the
environment provides information about the motion of the object being tracked.

In the future we will extend the algorithm to integrate ball information observed by
other robots, delivered via wireless communication. Such information can be transmitted
efficiently by clustering the ball samples according to the different discrete motion
states. The integration of transmitted ball estimates can then be done conditioned on the
different discrete ball states. Another important area of future research is the integration
of additional information provided by the vision system. Currently, we do not model the
location of other robots on the field and the ball transits into the deflected model at
random points in time. Furthermore, we estimate the relative location of the field borders
using only the robot’s location estimates. However, if the robot detects the ball and an
object in the same camera image, then this image provides more accurate information
about the relative location between the ball and an object.

Finally, we conjecture that further performance gains can be achieved using an un-
scented Kalman filter [12] to jointly track the position of the robot and the ball. Using the
Rao-Blackwellisation described in this paper, the discrete state of the ball would still be
sampled. However, each of these samples would be attached with an unscented filter over
both robot and ball locations (and velocity). By modeling more dimensions using efficient
Kalman filters we expect to be able to track the robot / ball system with far less samples.
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See http://www.cs.washington.edu/balltracking for further information
about our approach. [8, 7]
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Abstract. UCHILSIM is a robotic simulator specially developed for the 
RoboCup four-legged league. It reproduces with high accuracy the dynamics of 
AIBO motions and its interactions with the objects in the game field. Their 
graphic representations within the game field also possess a high level of detail. 
The main design goal of the simulator is to become a platform for learning 
complex robotic behaviors which can be directly transferred to a real robot 
environment. UCHILSIM is able to adapt its parameters automatically, by 
comparing robot controller behaviors in reality and in simulations. So far, the 
effectiveness of UCHILSIM has been tested in some robot learning experiments 
which we briefly discuss hereinafter.  We believe that the use of a highly 
realistic simulator might speed up the progress in the four legged league by 
allowing more people to participate in our challenge. 

1   Introduction 

A fully autonomous robot should be able to adapt itself to the changes in its 
operational environment, either by modifying its behaviors or by generating new 
ones. Learning and evolution are two ways of adaptation of living systems that are 
being widely explored in evolutionary robotics [5]. The basic idea is to allow robots 
to develop their behaviors by freely interacting with their environment. A fitness 
measure determines the degree in which some specific task has been accomplished 
during behavior execution. This measure is usually determined by the designer. One 
of the main factors to consider within this approach is the amount of experience that 
the robot is able to acquire from the environment.  

The process of learning through experience is a time consuming task that requires, 
for real robots, testing a large amount of behaviors by means of real interactions. An 
alternative consists on simulating the interaction between the robot and the 
environment. Unfortunately, since simulation is usually not accurate, the acquired 
behaviors are not directly transferable to reality; this problem is usually referred to as 
the reality gap. There is a large list of experiments in the literature where simulators 
are used for generating simple robotic behaviors [5][6]. However, there are few 
examples of the generation of complex robotic behaviors in a simulation with 
successful transfers to reality.  
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Simulation can be achieved at different levels, for example: one can simulate the 
high-level processes of robot behaviors by simplifying the sensor and actuator 
responses. A more complete representation is obtained when considering the low-
level interactions among sensors, actuators and environment. Nevertheless, this 
usually entails complex models of dynamics and sensor related physical processes. 
We believe that a fundamental requirement for generating low-level behaviors from 
simulations is to consider a complete representation which includes low-level 
physical interactions. Thus, high-level behaviors can be obtained from lower-level 
behaviors in a subsumption fashion.  

Nowadays, generating representative simulators of the dynamics of the interactions 
of robots might not be an impossible task. Once achieved it allows for the easy 
generation of a variety of complex behaviors which otherwise would take a very 
extensive design period. However, we believe that generating a realistic simulator is 
not just a matter of modeling and design. In order to be fully realistic, the simulator 
must be adapted through real robot behavior execution as proposed in [12]. 

The RoboCup four-legged league offers a great challenge and opportunity for 
exploring low-level behavior acquisition. In this context we have decided to 
investigate how the use of a very realistic simulator might help the development of 
new behaviors. Although this league simulation warrants a good degree of attention, 
we identify a lack of accurate dynamic simulators. Aiming at solving this gap we 
present UCHILSIM, an accurate simulator in both the dynamic as well as the graphic 
aspects. The main design goal of the simulator is to become a platform for learning 
complex robotic behaviors by testing in a virtual environment the same controllers 
that operate in the real robot environment. UCHILSIM is able to learn its own 
parameters automatically, by comparing the robot controller behavior fitness values in 
reality and in simulations. We believe that the extensive use of this kind of tool might 
accelerate the generation of complex robotic behaviors within the RoboCup domain. 

The remainder of this paper is ordered as follows. In section 2 some related work is 
presented. The UCHILSIM simulator is described in section 3. In section 4 some real 
learning experiments with AIBO robots using UCHILSIM are shown. Finally, in 
section 5 the conclusions and projections of this work are presented. 

2   Related Work 

So far three simulators have been reported for the RoboCup four-legged league, these 
are the ASURA team simulator [3], the ARAIBO team simulator [1], and the German 
Team Robot Simulator [7]. All these simulators consider a graphic representation of 
AIBO robots and soccer environment, but only the German Team Simulator considers 
as well the dynamics of objects at an elementary level of representation. Table 1 
summarizes the main characteristics of these simulators.    We consider that none of 
them represent with great accuracy both the graphic and the dynamic aspects of the 
environment. In this context there is a lot of work to be done in order to generate a 
simulator that accurately mimics the interaction of a robot in a real environment. We 
believe that it is possible to generate accurate simulators at a level in which it is 
feasible to learn complex behaviors with the successful transfer of these behaviors to 
reality.  
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Table 1. Main characteristics of simulators that have been reported for the RoboCup four 
legged league 

Name of Simulator Presence of 
Dynamics 

Level of 
Graphics 

Functionalities 

ASURA Simulator No dynamics. Good graphic 
representations 

Allows capturing 
AIBO image. 

ARAIBO Simulator No dynamics. AIBO camera 
characteristics 
well treated. 

Allows capturing 
AIBO image. 

German Team 
Simulator 

Present at an 
elementary level. 

Elemental 
graphic 
representations. 

Large set of 
functionalities, e.g. 

interfacing with 
monitor, calibration 

tools, etc. 

3   UCHILSIM 

UCHILSIM is a robotic simulator designed for the RoboCup four-legged league. It is 
built on top of two processing engines: one in charge of reproducing the dynamics of 
articulated rigid bodies and the other in charge of generating accurate graphic 
representations of the objects and the soccer setting. The simulator also includes a 
variety of interfacing functions which allow the core system to be connected with all 
the UChile1 controlling modules and sub-systems, as well as to some learning 
mechanisms.  The simulator includes a complete graphic user interface. Figure 1 
shows a screenshot of the use of UCHILSIM. 

The main design goal of UCHILSIM is to allow robots to acquire behaviors learnt 
in a representative virtual environment. The long-term goal of the simulator is to 
allow the generation of complex behaviors for RoboCup team players by efficiently 
combining the acquisition of knowledge in reality as well as simulations [12]. 

Most of the rigid body dynamics in UCHILSIM are modeled and computed using 
the Open Dynamics Engine (ODE) library [9], which is an industrial quality library 
for simulating articulated rigid body dynamics in virtual environments. ODE is fast, 
flexible and robust; it allows the definition of a variety of advanced joints and contact 
points under friction.  ODE solves equations of motion by means of a Lagrange 
multiplier velocity model. It uses a Coulomb contact and friction model which is 
solved by means of a Dantzig LCP solver method. In UCHILSIM special attention 
has been provided for the modeling of servo motors and ball. 

The graphic representation of the objects in UCHILSIM is obtained by using the 
Open Graphic Library (OpenGL) [10]. The CAD model of the AIBO robots was 
generated starting from standard data provided by Sony [11]. The changes made to 
this model were the incorporation of player’s red and blue jackets, the renewal of the 
robot colors, and the modifications in the original model in order to achieve greater 
accuracy.  

The following is a description of the UCHILSIM main components, such as the 
basic architecture of the system, the dynamic and graphic engines, the user interface, 
the learning capabilities of the system and the object loader. 
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Fig. 1. Illustration of the UCHILSIM software and its user interface. It is possible to observe 
the display of various viewing options 

3.1   Basic Architecture 

Figure 2 illustrates the basic architecture of UCHILSIM. It is possible to observe how 
the core functions of the simulator are interfaced with a variety of applications. In the 
core of the simulator the dynamic engine closely cooperates with the graphic engine 
to generate  a representation of  each object. By means of a learning  interface, a set of  

 

Fig. 2. Illustration of the UCHILSIM architecture. It is possible to observe how the overall 
system is organized as a set of interfaces around a core subsystem which contains the dynamic 
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parameters is interchanged with a learning algorithm which runs independently of the 
simulator. These parameters are as a rule for either: defining the simulator variables 
or the robot controller variables which are being adapted during the learning process.  
The user interface allows changing several variables of the simulation, such as the 
way objects are being rendered as well as the external manipulation of objects within 
the game field. An application interface allows running the overall UChile1 package 
[8] on the simulation. We are currently working on an Open-r application interface 
which will allow the compilation of any open-r code under our simulator. We believe 
that such kind of tool will be quite relevant for the development of the league since it 
will allow, for example, to realistically simulate a game against any team in the 
league. Another recently incorporated component is the VRML Object Loader which 
allows to quickly incorporate new robot models into the simulated environment by 
following a fast and reliable procedure.  

3.2   Dynamic Engine 

In UCHILSIM all the AIBO body elements and the soccer field objects are modeled 
as articulated rigid bodies such as: parallelepipeds and spheres, which are connected 
to each other using different types of joints. A joint is a dynamic constraint enforced 
between two bodies, in order that they can only hold certain positions and orientations 
in relation to each other. We use universal joint models for defining the relationship 
among the AIBO torso and its thighs, i.e. rotation is constrained to just two degrees of 
freedom. Simple hinge joints are used for defining the relation among thighs and taps, 
i.e. constraining rotation to only one degree of freedom. Fixed joint models are used 
for defining the relation among the taps and hoofs; in this case one direction of 
deformation is allowed, and as a result the model accurately represents the rotation of 
the hoofs. In addition small spheres are attached to the base of each leg by means of 
fixed joints intended to mimic the effect of the leg tops.  

The mass distribution of each rigid body is specified in the form of inertia tensors. 
For this implementation we assume a uniform distribution of mass for each rigid body. 
Mass estimation was carried out for each rigid body using a weight measuring device.  

Collision detection is performed either with a simple model of spheres and 
parallelepipeds or by using a simplified version of the graphic grid which is attached 
to each rigid body. The latter approach is slightly time consuming although more 
accurate. We have obtained good results in all our experiments by using just the 
parallelepiped-sphere model. Figure 3 illustrate a diagram of the geometries which are 
alternatively attached to each rigid body for performing collision detection, it also 
shows the placement of the servomotors which are included in our model. They apply 
torque over joints according to the output of a PID controller which receives angular 
references given by the actuation module of the UChile1 software package [8].  

On each simulation step the equation dynamics are integrated and a new state is 
computed for each rigid body (velocities, accelerations, angular speeds, etc). Then 
collision detection is carried out, and the resulting forces are applied to the 
corresponding bodies transmitting the effect of collisions along the entire body. Thus, 
the friction parameters deserve to be given special attention since they are used for 
computing the reaction forces between the robot limbs and the carpet. These 
parameters are under automatic adaptation on each performed experiment.  
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Fig. 3. Collision detection models which are alternatively used in UCHILSIM. The figure on 
the left corresponds to the graphic grid model used for collision detection. The figure on the 
right corresponds to the model generated with a set of parallelepipeds and spheres. By using 
this model we are able to perform accurate dynamic experiments while keeping the simulation 
at real time speed. The figure also shows the position of the servomotors which are included in 
the robot model 

3.3   Graphic Engine 

The dynamic engine computes the corresponding positions and rotation matrixes of 
each body in the simulation space at the end of each simulation step. Then, for each 
rigid body, the corresponding graphic object is rendered. This is carried out by 
efficiently calling the corresponding graphic data. The graphic engine is also in 
charge of producing the image acquired from the AIBO’s cameras. This is quite 
relevant for producing experiments with vision based systems. Using this system we 
will specifically intend to produce an extension of the work presented in [14]. We 
haven’t concentrated our efforts on producing extremely realistic images yet, but we 
estimate that this process will be simple. We will incorporate some of the 
transformations which were proposed in [1] such as: the camera distortion and CMOS 
filters. Using a CAD modeler software we gave the AIBO models blue and red 
jackets, which were originally provided by Sony, we also constructed the 
corresponding soccer scenario. The process of importing the graphic data into C++ 
code was quite time consuming before using the object loader. Currently the graphic 
data is directly obtained from the object loader module. 

3.4   User Interface 

The user interface of the simulator currently provides the following set of functions: 

1. Loading of arbitrary AIBO models in modified VRML format.  
2. Placement, at any moment, of different objects within the simulation, such as: 

robots, balls and other objects. 
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3. Arbitrary movement of objects while in motion, this is particularly useful while 
interactively generating games with the robots. 

4. On line Modification of several parameters of the UChile1 controller. 
5. Modification of several rendering options and viewing conditions, such as: wire 

frame representation, bounding box representation, point representation of 
objects, etc. 

6. Management of the images captured by the AIBO’s camera. These images can 
be exported into files or automatically transmitted to some learning software. 

7. Loading and saving of a variety of configurations which define the game 
conditions. 

8. Efficient management of several windows on the screen. 

3.5   Learning Interface 

UCHILSIM is powered with a fast and efficient method for updating its parameters 
during running time. It is designed to communicate with other programs by means of 
a TCP/IP network. We have considered this, given that the simulator needs to adapt 
itself in order to perform experiments with the Back to Reality approach that will be 
discussed ahead.   

 3.6   UChile1 and Open-r API 

The entire UChile1 software package, which allows a team of fully autonomous 
AIBO robots to play soccer, can be compiled for UCHILSIM. We had to carry out 
several modifications on our code in order to make this possible. However, the 
simulator is a great tool given that, besides its learning capabilities, it is very useful 
for debugging any piece of code of our system.  We are currently working towards 
generating an Open-r API for the simulator; the idea is to be capable of compiling any 
Open-r code for UCHILSIM. We believe that there are several applications for such 
kind of tool, for example, it might speed up the progress of the league by allowing 
people around the world to develop and test software without the need of having a 
real AIBO. Thus, incoming research groups might collaborate with the league by 
testing their code in a simulated environment. For those who already have a real 
AIBO it might be interesting to test their systems during long evaluation periods, 
letting teams play against each other during days. This will allow the accurate 
analysis of the differences among teams and of course the possibility of learning from 
these experiences.  

3.7   Object Loader 

The VRML language allows defining objects into a tree like structure of nodes, each 
one containing graphic as well as structural information of body elements, such as: 
mass, articulation points, etc. Although graphic data of AIBO models available to the 
public does not currently contain dynamic information, we have modified them by 
incorporating mass and motor data into the VRML files.  On earlier versions of our 
simulator the robot models were hard wired into the simulator and the process of 
incorporating new models was quite time consuming. On the other hand updating a 
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VRML file is considerably less time consuming.  Using this technique we have added 
the ERS-220 and the new ERS-7 AIBO robot models into our simulator. 

4   Using UCHILSIM for Learning Behaviors with Back to Reality 

UCHILSIM is a platform intended for learning complex low level behaviors. The 
capabilities of UCHILSIM will be illustrated on hands of two different real 
experiments.  We will first briefly describe Back to Reality. The Back to Reality 
paradigm combines into a single framework: learning from reality and learning from 
simulations. The main idea is that the robot and its simulator co-evolve in an 
integrated fashion as it can be seen in the block diagram presented on figure 4. The 
robot learns by alternating real experiences and virtual (in simulator) ones. The 
evolution of the simulator continuously narrows the differences among simulation and 
reality (reality–gap). The simulator learns from the implementation of the robots 
behavior in the real environment, and by comparing the performance of the robot in 
reality and in the simulator.  

The internal parameters of the simulator are adapted using performance variation 
measures. When the robot learns in reality, the robot controller is structurally coupled 
to the environment, whereas when it learns in simulation the robot controller is 
structurally coupled to its simulator. Thus, the simulation parameters are continuously 
tuned narrowing the reality-gap along the behavior adaptation process.  

The Back to Reality approach consists of the online execution of three sequential 
learning processes: L1 is the learning of the robot controller in the simulated 
environment. L2 is the  learning of the robot  controller in the real  environment. L3  is 

Fig. 4. Back to Reality building blocks 
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the learning of the simulator parameters. In this process the gap among simulation and 
reality is narrowed by minimizing, after each run of L3, the difference between the 
obtained fitness in reality and in simulation 

During L1 and L2 the robot controller adaptation depends on the behavior B’ 
observed in the simulated environment, and on the behavior B observed in the real 
environment, respectively. During L3 the simulated environment is the result of the 
previous simulated environment and the real environment, as well as the real behavior 
and the simulated behavior. For implementing L1 and L2 any kind of learning 
algorithm can be used. Although we think that considering the evaluation time 
limitations of the experiments in reality, a reinforced learning algorithm is more 
suitable for implementing L2. Taking into account the flexibility of simulations, we 
think a good alternative for implementing L1 are genetic algorithms. Regarding L3, 
we should consider the fact that the simulator has a large amount of parameters that 
probably are not explicitly related with aspects of the desired behavior. If this is the 
case, then L3 could be implemented using genetic algorithms. Otherwise, reinforced 
learning could be an alternative. All these issues are addressed in [12]. 

4.1   Learning to Walk 

Since we have a team competing in RoboCup we are particularly motivated on 
improving the gait speed of our team. One can notice that there is a strong correlation 
between the speed of a robot-player and the success of a robot soccer team. We 
considerably improved the gaits of our system by learning with UCHILSIM and the 
Back to Reality approach. As a behavior fitness measure we used the robot speed 
measured in centimeters per second during evaluation trials of 20 seconds. The first 
stage of our experiment consisted on using genetic search for widely exploring a gait 
controller solution space. In this stage we use UCHILSIM as environment and a hand 
tuned solution as a starting point (although our approach is well suited for a scratch 
starting point). The second stage consisted on evaluating in the real environment a set 
of successful behaviors, and measuring their corresponding fitness. These fitness 
measures are then used for optimizing the simulator parameters. The idea is that the 
simulator (UCHILSIM) be continuously updated. A genetic algorithm searches 
through the space of simulator parameters and minimizes the difference between 
fitness values obtained in simulation and their values obtained in reality. The third 
stage, which is simultaneously executed, consists on learning in reality using policy-
gradient reinforcement learning. The idea is to take the solution that is obtained with 
genetic search under UCHILSIM, and then to perform smooth transitions around the 
solution by estimating the gradient, using the reinforcement method in the real 
environment. The best solution resulting from reinforcement learning is then 
transferred back to UCHILSIM where genetic search is again carried out. Then, the 
final stage consists on testing in reality the resulting solution by going back to reality. 
This process can be repeated indefinitely. 

4.1.1   Robot Controller Parameters 
The following set of 20 parameters define the AIBO’s gait in our experiments (for a 
detailed explanation see [12]): the locus shape (3 parameters: length, shape factor and 
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lift factor.); the front locus shape modifier (3 parameters: lift height, air height and 
descending height); the rear locus shape modifier (3 parameters: lift height, air height 
and descending height); the front locus operation point (3 parameters: x, y and z); the 
rear locus operation point (3 parameters: x, y and z); locus skew multiplier in the x-y 
plane (for turning); the speed of the feet while in the ground; the fraction of time each 
foot spends on the air; the time spent on the lift stage (its equal to the descending 
time); the number of points in the air stage of which the inverse kinematics is 
calculated. 

4.1.2   UCHILSIM Parameters 
The robot simulator is defined by a set of 12 parameters, which determine the 
simulator and robot dynamics. These parameters include the ODE values used for 
solving the dynamic equations and the PID constants used for modeling the leg 
servos. There are 4 parameters for the mass distribution in the robot: head mass, neck 
mass, body mass and leg mass; 4 parameters of the dynamic model: friction constant, 
gravity constant, force dependent slip in friction direction 1 and force dependent slip 
in friction direction 2; and finally 4 parameters for the joint leg model: proportional, 
integral and differential constants of the PID controller and maximum joint torque. 

4.1.3   Experiments Description 
The procedure consists on learning the 20 robot controller parameters in the simulator 
and in reality, as well as learning the 12 simulator parameters. Genetic algorithms 
were used for the evolution of the simulator parameters and for the evolution of the 
robot controller parameters in UCHILSIM. Specifically, a conventional genetic 
algorithm employing fitness-proportionate selection with linear scaling, no-elitism 
scheme, two-points crossover with Pc=0.7 and mutation with Pm=0.005 per bit was 
employed. Given the set of parameters obtained from the simulator, we continued 
their adaptation in reality using the Policy Gradient Reinforcement Learning method 
[4]. The experimental conditions are fully described in [12]. 

First, walking experiments were carried out in UCHILSIM. The fitness evolution 
of these individuals is shown on figure 5. From these experiments we extracted a set 
of the 10 best individuals; they averaged a speed of 18 cm/s. The best individual of 
this group performed 20 cm/s in reality. The fitness value of each one of these 
individuals was compared with the resulting fitness that they exhibit in simulation. 
And the norm of the resulting fitness differences was used as a fitness function to be 
minimized by genetic search trough the space of simulator parameters. We obtained a 
minimum fitness of 2 cm/s as discrepancies occurred between the simulation and 
reality exhibited by these individuals. The best individual was then taken as a starting 
point for a policy gradient learning process performed in reality. With this method we 
achieved a speed of 23.5 cm/s. The resulting best individual obtained with 
reinforcement learning was then taken back to the now evolved adapted simulator 
where a genetic search took place starting with the population generated with 
permutations of this best individual. Finally some of the best individuals resulting 
from the genetic adaptation were tested on reality.  Among these trials we found an 
individual that averaged a speed of 24.7 cm/s in reality. It should be noticed that 
improvements where done on our own controlling system, and that therefore, the 
resulting speed is not directly comparable to those obtained by others. Besides the gait 
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locus used by a controller the efficiency on the computations also matter, the low 
level refinements on motor control, the inverse kinematics models being used, etc. 

 
 
 
 
 
 

 
 
 
 
 

 

 

Fig. 5. Left: evolution of fitness for individuals tested with the UCHILSIM simulator in the 
first stage. Before adapting the simulator the individuals receive larger fitness in simulation 
than in reality. Right: Adaptation of the simulator, it is possible to observe how the minimization 
of the average differences of fitness obtained in reality versus simulations takes place 

4.2   Learning to Kick the Ball 

Since this experiment is presented in [13] we will not offer many details here, 
however we can say that UCHILSIM was used for learning to kick the ball with 
AIBO robots using the Back to Reality approach, and that the resulting ball-kick 
behaviors were quite interesting, performing similarly as the best ball-kicks currently 
being used in the league.  The behaviors which were obtained in the simulator were 
directly transferable into reality at the end of the adaptation process. Another 
important aspect to observe is that these behaviors were obtained from scratch.  

5   Conclusions and Projections 

UCHILSIM is a robotic simulator specially developed for the RoboCup four legged 
league. It reproduces the dynamics of AIBO motions and its interactions with objects 
in the game field with a great level of realism. The simulator also has a great amount 
of detail in the graphic representation of game field objects. The main design goal of 
the simulator is to become a platform for learning complex robotic behaviors by 
allowing testing of the same controllers that should operate in the real robot 
environment within a virtual environment. So far the effectiveness of UCHILSIM has 
been tested in two robotic behavior learning experiments which we have briefly 
described.  

Currently each simulation step takes about 8ms with one AIBO robot being 
simulated on a Pentium IV 2.5 GHz processor and 512Mb of RAM. Using this 
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computing power we are able to simulate up to two robots at a realistic level. Several 
computers can be used for running simulations with more than two robots, however 
we have not implemented this option yet. We are currently working on improving our 
system; we expect to increase the current frame fate.   

The following are some short term projections of UCHILSIM: (1) Consolidate the 
Open-r Universal UCHILSIM API. (2) Perform experiments where our localization 
methods will be tested using simulation and reality. (3) Perform experiments on the 
visual calibration of the simulator virtual cameras with basis on the Back to Reality 
approach. And (4) perform experiments combining real robots with virtual ones in a 
single soccer game. 

A sample version of UCHILSIM is available at http://www.robocup.cl 
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Abstract. RoboCup has hosted a coach competition for several years
creating a challenging testbed for research in advice-giving agents. A
coach agent is expected to advise an unknown coachable team. In
RoboCup 2003, the coachable agents could process the coach’s advice
but did not include a protocol for communication among them. In this
paper we present CommLang, a standard for agent communication which
will be used by the coachable agents in the simulation league at RoboCup
2004. The communication standard supports representation of multiple
message types which can be flexibly combined in a single utterance. We
then describe the application of CommLang in our coachable agents and
present empirical results showing the communication’s effect on world
model completeness and accuracy. Communication in our agents im-
proved the fraction of time which our agents are confident of player and
ball locations and simultaneously improved the overall accuracy of that
information.

1 Introduction

In a multi-agent domain in which agents cooperate with each other to achieve
a goal, communication between those agents can greatly aid them. Without
communication, agents must rely on observation-based judgments of their col-
laborator’s intentions [1, 2]. Communication enables agents to more explicitly
coordinate planning decisions and execute more intelligent group behaviors.

In domains where agents have only partial knowledge of their environment,
communication is equally important for sharing state information with other
agents. In most robotic applications, agents have only a limited view of the world.
However, by communicating with a team, they can achieve a much broader and
more accurate view of the world.

Communication is an important aspect of many multi-agent systems, es-
pecially those involving teamwork. Recently, several formal models have been
proposed to capture the decisions which agents face in communicating [3, 4].

In RoboCup simulation soccer, teams of eleven agents compete against an
opposing team. A coach agent with global world information may advise the team
members. The soccer players are permitted to communicate through auditory
messages, but are limited to ten character messages. In order to maximize the
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utility of communication, particularly with messages limited to a short length,
we needed an architecture that could flexibly represent a number of different
types of information, and at the same time be easy to implement so that it
could be adopted as a standard.

Soccer simulation already has a language for communicating between the
coach and the players, named CLang, but no standardized language for inter-
agent communication has previously existed. While past work has developed gen-
eral purpose agent communication languages like KQML [5] and FIPA-ACL [6,
7], these languages are not directly applicable here because of the extremely
limited bandwidth between the players.

Other soccer simulation teams have used fixed communication schemes in
which they always send the same information — such as ball position and player
position. While this is beneficial, we believe that communication can be bet-
ter utilized.

In this paper we will present CommLang, a communication language that
we developed that has been adopted as the standard for coachable agents in
the 2004 RoboCup competition. We will also describe the algorithms we used
to implement CommLang in our coachable team, and show empirical evidence
that communication improved the accuracy of the world model in our agents.

2 The CommLang Communication Standard

We developed the CommLang communication standard to provide a means of
communicating between coachable agents. However, the protocol is also useful
for other simulation agents. It defines representations for different types of in-
formation to be transmitted over a limited bandwidth communication channel.
The standard specifies how to encode information into character strings for use
in the soccer server’s character-based communication messages.

CommLang addresses only the composition and encoding of communication
messages. We do not specify which specific types of information should be sent,
nor how often messages should be sent. We also do not specify how the received
information should be used, except that there should be some reasonable utiliza-
tion of the information. The messages are useful because they contain meaning
about what the sending agent’s beliefs are.

The soccer simulation server is configured to allow messages of ten characters
(out of a set of 73) to be sent each game cycle. Players receive one audio message
per cycle as long as a teammate within hearing range (50 meters) uttered a mes-
sage. We encode communication data into a character representation in order to
achieve full use of the 73 character range. After messages are received by a player,
they must be decoded to extract the numeric data from the character string.

2.1 Message Types

CommLang defines a set of message types which each represent a specific type
of information. A single communication message can be composed of multiple
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Table 1. Message types used to encode information

Message Type Syntax Cost (characters)
Our Position [0, X, Y] 3
Ball Position [1, X, Y, #cycles] 4
Ball Velocity [2, dX, dY, #cycles] 4
We have ball [3, player#] 2
Opponent has ball [4, player#] 2
Passing to player# [5, player#] 2
Passing to coordinate [6, X, Y] 3
Want pass [7] 1
Opponent(player#) Position [8+player#-1, X, Y, #cycles] 4
Teammate(player#) Position [19+player#-1, X, Y, #cycles] 4

Table 2. Data types used in composing messages. Each data type uses one character
of a message

Data Type Description Range Precision
X x coordinate of a position [-53, 53) 1.45
Y y coordinate of a position [-34, 34) 0.93
dX x component of a velocity [-2.7, 2.7) 0.074
dY y component of a velocity [-2.7, 2.7) 0.074
#cycles number of cycles since data last observed [0, 72) 1
player# a player number [0, 11] 1
msg type ID the message ID [0, 29] 1

message types. The available message types and their syntax are listed in Table 1.
All message types begin with a message type ID which allows us to identify the
type of message and the number of arguments that will follow.

Each message type is made up of discrete units of data referred to as data
types. In the interest of simplicity and ease of implementation, each unit of
information (data type) uses one character of the message string. The data types
are shown in Table 2. Each data type has a precision that is determined by the
data range that is represented by the 73 characters. For the data types with
floating point ranges, the precision is equal to the maximum loss of accuracy
that can occur from encoding the data.

This design is flexible in that auditory messages sent to the server may be
variable lengths — they can be composed of any number of message types, as
long as they fit within the ten character limit.

Note that the teammate and opponent position message types do not have a
single message type ID. Rather, the player number of the player whose position
we are communicating is encoded in the message type ID. This allows us to
reduce the length of the teammate and opponent message types by including the
player number in the message ID number rather than as a separate argument.

Since the message type IDs do not yet use the full 73 character range, it
would be possible to modify some of the other message types to encode the
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char validchars[] = ′′0123456789abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSUV WXY Z(). + − ∗ /? <> ′′;
NUMCHARS = 73

char getChar( int i ):
Returns validchars[NUMCHARS-1] if i ≥ NUMCHARS
Returns validchars[0] if i < 0
Returns validchars[i] otherwise

int getIndex( char c ):
Returns the index of character c in the validchars array.

Fig. 1. Character conversion functions. The validchars array contains the characters
that are permitted in soccer server say messages

player number in the ID. However, we chose not to do this because it would
quickly use up the ID range, which may be needed in the future if new message
types are added to the standard.

The player number data type ranges from 1 to 11 to indicate a player number.
However, in the “We have ball” and “Opponent has ball” message types, a zero
may be sent as the player number to indicate that we know which team has the
ball, but do not know the player number.

Player and ball positions that are sent in messages should be the position
that the player predicts the object is at in the current cycle. The #cycles data
type should be equal to the number of cycles ago that the player received data
about the object.

2.2 Character Conversions

The task of converting numeric information such as a field position to a character
that can be accepted by the soccer server is handled by a character array and
lookup functions. A specification for these functions is shown in Fig. 1. These
functions are used to assist with encoding and decoding, as described in the next
two sections.

2.3 Encoding Messages

We encode communication messages by converting numeric information into
character encodings according to the equations in Table 3. The encoded strings
of each message type being used are then concatenated into one string and sent
to the soccer server as a say message.

The arithmetic in the encoding functions is done using standard floating point
operations, and the final integer result is the floor of the float value.



50 J. Davin, P. Riley, and M. Veloso

Table 3. Data Type encoding functions

Data type value Encoded character value
X getChar( (X+53)/106 * NUMCHARS )
Y getChar( (Y+34)/68 * NUMCHARS )
dX getChar( (dX+2.7)/5.4 * NUMCHARS )
dY getChar( (dY+2.7)/5.4 * NUMCHARS )
#cycles getChar( #cycles )
player# getChar( player# )
msg type ID getChar( msg type ID )

Table 4. Data Type decoding functions

Data type of character Decoded numeric data
X ( getIndex( X )/NUMCHARS * 106) - 53
Y ( getIndex( Y )/NUMCHARS * 68) - 34
dX ( getIndex( dX )/NUMCHARS * 5.4) - 2.7
dY ( getIndex( dY )/NUMCHARS * 5.4) - 2.7
#cycles getIndex( #cycles )
player# getIndex( player# )
msg type ID getIndex( msg type ID )

2.4 Decoding Messages

When a coachable agent receives a message from a teammate, it decodes the
message by using the message type IDs to identify which message types are
included, and then decodes the data types according to the definitions in Table 4.

Is there a player within
hear range that is upfield
of us?

Do we know where

is close to ball (<15)
&& within hear range

bowner is && bowner

Can we find a player
within hear range that
is closest to ball?

attentionto(ball owner)

NO YES

attentionto(random)

YESNO

YESNO

attentionto(furthest_upfield_player)

NO YES

Am I ball owner?

attentionto(player_closest_to_ball)attentionto(random)

Fig. 2. The decision process used to decide which teammate to listen to. “Atten-
tionto(random)” indicates that we allow the server to randomly choose a message
for us
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The message must be sequentially processed to extract each message type based
on its message type ID.

Since our numeric data was encoded in a character representation, the de-
coded data may be slightly different from the original data due to the limited
precision of each data type (see Fig. 2).

2.5 CommLang in RoboCup 2004

To assist other teams in using CommLang, we have released our encoding and
decoding library at: http://www-2.cs.cmu.edu/˜robosoccer/simulator/. The li-
brary is easily extensible — if new types of messages are added to the standard,
a new version of the library can be released that is backwards compatible with
previous versions so that teams’ existing code will still operate.

The RoboCup 2004 simulation league rules require that coachable agents con-
form to the communication standard as described in this paper. Since simulation
games will take place with teams composed of a mix of coachable agents from
different research teams, it is necessary for all agents to use the same standard
in order to understand each other. It is our belief that use of CommLang will
improve cooperation between coachable agents and lead to better performance
in the competition.

3 Implementation of Agent Communication

We have implemented coachable agent communication in the CMU Wyverns
coachable team which was used in RoboCup 2003. The version of our agents used
with our communication implementation also includes a number of improvements
that were made after the competition. We had two primary goals in mind while
adding communication to our agents:

1. To maximize the utility of agent communication by supporting all of the mes-
sage types and by increasing the likelihood that communicated information
would be useful to teammates.

2. To create a flexible architecture for experimenting with different strategies
of communication.

3.1 Sending Message Frequency

In our implementation, every player broadcasts a say message each cycle. We
chose this approach because it insures that every player receives a message every
cycle. Simulation soccer teams have sometimes used coordinated strategies of
having designated players speak each cycle. Our approach has the advantage
of allowing us to listen to any player each cycle and attempt to select the most
useful player to listen to. The trade-off is that we may not listen to a player for an
extended period of time even though it might have something important to say.

Another reason for using this message sending strategy is that the simulation
soccer coachable agents are mixed in with agents from other developers to make
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up a coachable soccer team. Since the CommLang standard does not make any
stipulations about message frequency, our agents can not make any assumptions
about the sending strategy of teammates.

3.2 Receiving Messages

We use the soccer server “attentionto” command to focus our attention on a
teammate of our choosing. This is the player that we will receive say messages
from if it is within range. This control gives us the ability to establish preferences
towards listening to a certain player. For example, it is often preferable to listen
to the ball owner.

The determination of which player to listen to is handled by a decision tree,
which is shown in Fig. 2.

3.3 Selecting Message Composition

The most complex part of our implementation is the process for deciding what
message types to include in the messages that the player sends. We typically
have room to fit three or four message types within the ten character message
size limit. The strategy we use to choose those three or four message types is
an important factor in determining how useful the message is. For example, if
a teammate needs to know where the ball is, but we generally send our player
position instead, our messages will have little value.

Our implementation uses a randomized scheme to select the message com-
position. Each message type is assigned a weight which influences the likelihood
of using it in the final message. These weights are intended to reflect the overall
utility of the message type. Message types that we think are highly useful in
most situations are assigned higher values while less important message types

Table 5. The predicate functions and weights for each message type, as currently
configured in our agents

Predicates Weight
OurPos none 0.5
BallPos Confident of ball position 0.5
BallVel Confident of ball velocity 0.3
WeHaveBall Confident of ball info AND We own ball

currently
0.2

OppHasBall Confident of ball info AND Opponent team owns
ball

0.2

PassToPlayer I executed a pass action within the last 5 cycles 1.1
PassToCoord I executed a pass action within the last 5 cycles 0.8
WantPass I’m not ball owner AND I’m close to opponent

goal AND I have a good goal shot
1.0

OppPos(pnum) Confident of position of opponent player #pnum 0.4
TeammatePos(pnum) Confident of position of teammate player #pnum 0.4
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M := Set of all message types
C := empty message
∀ m ∈ M , m.p = getWeight(m)
remove mi ∈ M if predicate(mi) = false Or mi.p = 0.0
foreach m ∈ M , from largest m.p to smallest

If( m.p ≥ 1.0 )
insert m in C
remove m from M

Normalize such that {m.p | m ∈ M} is a probability distribution
while ( M 
= ∅ )

Choose mi from distribution defined by mi.p
If( mi.size + C.size ≤ MAX MESSAGE SIZE )

insert mi in C
remove mi from M
Renormalize probability distribution in {m.p | m ∈ M}

return C

Fig. 3. Algorithm for choosing message composition

receive lower values. We also define predicates to filter out any message types
that are not applicable at the current time. For example, PassToPlayer is only
applicable when we have the ball and are passing to a teammate. Table 5 lists
the predicates and weights for each message type.

The weights are generally within the range 0.0 to 1.0, but may also go over
1.0. Values over 1.0 serve to guarantee that we use the message type, as long as
there is sufficient space. Weights of 0.0 indicate that the message type will never
be used.

The main component of the selection algorithm is shown in Fig. 3. We first
automatically select any message types that have a weight of 1.0 or greater.
Then, the main loop chooses the next message type to include based on the
probability distribution over the weights of the remaining message types.

This probabilistic selection method allows us to define preferences towards
using particular message types while at the same time insuring that we do not
use the same message composition every time.

In addition to the weighting strategy that is in use now, for testing we have
also implemented a uniform probability distribution and a distribution for se-
lecting messages from a fixed subset of message types (specifically, it can be used
to send only “Our Pos” and “Ball Pos” types).

3.4 Processing Communicated Information

When we receive messages, we process the information using our decoding library
routines and then integrate the information into the world model. Data in the
world model is replaced with communicated information only if the information
is more recent than the knowledge we already have. Therefore, we implicitly
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trust our teammates’ communication information to be accurate and we store
it in the same location as our own sensor information. We use the world model
from the 2002 UvA Trilearn team [8], which is the team that was used as the
original base for our coachable agents.

Three of the message types — PassToPlayer, PassToCoord, and WantPass
— are messages that primarily communicate information about a teammate’s
intentions rather than perceptions of the world’s state. Therefore, we respond
to these message types by executing new actions as appropriate. If a PassTo-
Player message indicates a teammate is passing to us, we immediately attempt
to intercept the ball. Similarly, if a PassToCoord message indicates a teammate
is passing to a position close to us, we assume the pass is intended for us and
attempt to intercept. If a teammate indicates WantPass, we attempt to pass to
that player if we possess the ball or obtain possession within the next 5 cycles.
These actions can take precedence over coach advice.

4 Empirical Evaluation

After implementing communication in the Wyverns coachable agents, we ran
tests of the agents to assess the impact of communication on their world model.
Two sets of ten games were run, with each game lasting for 3000 cycles. In the
experimental set, communication was used, and in the other set communication
was not used.

In both sets, the opponent team consisted of the Wyverns coachable agents
as publicly released after RoboCup 2003. The other team, which contained the
communication support, was an improved version of the Wyverns players with
a number of bug fixes and skill improvements.

Both teams were advised by the CMU Owl coach [9]. Note that the improved
Wyverns won most of the games, with 26 total goals, versus 4 goals for the
original Wyverns. Therefore the experimental players were often in offensive
positions, but they also were sometimes forced into defensive formations.

Since the team’s formation can affect the frequency that we see other players,
we will note that our offensive players were numbers 2, 7, and 8, our midfielders
were 3, 5, and 6, the defensive players were 4, 9, 10, and 11, and player 1 is
always the goalie.

4.1 Improvements in Player Confidence

The players’ confidence in the ball and player locations was recorded during the
games. As currently configured, players are confident in a teammate or opponent
location when they have seen the player (or updated the player’s position based
on communicated data) within the last 12 cycles. Players are confident of the
ball’s location when they have seen or updated it within the last 6 cycles.

Figure 4 shows the mean percentage of time that the players were confi-
dent of the location of the ball and teammates. The communication group had
higher confidence rates for all the objects, with most of the increases statisti-
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Fig. 4. Confidence frequencies for
the ball and teammates. Error bars
indicate 95% confidence intervals

Fig. 5. Confidence frequencies for the
opponent players

cally significant. Similar results were seen for our perceptions of the opponent
players (Fig. 5).

Although this improvement was expected, it is still a useful confirmation of
one of communication’s benefits. Confidence frequencies play a role in many of
an agent’s behaviors - for example, our players can not pass to a teammate unless
they are confident in its location. Therefore, increases in confidence frequencies
can directly influence agent behavior.

4.2 Improvements in Positional Error

The other statistic compiled from the games was the positional error of players in
our world model. The positional error values are the difference between where a
player thinks a teammate or opponent is, and where that player actually is. The
actual positions were obtained using the soccer server’s full state mode. Errors
were only counted during cycles when the player was confident in the location
of the relevant teammate or opponent.

Figure 6 shows the players’ mean world model errors for each of their team-
mates, as well as the ball. The 95% confidence intervals could not be displayed
on the figure, but were small enough for the results to be statistically significant.

For most player positions, communicating players had lower mean error than
non-communicating players. This was especially noticeable with the estimates
of ball position, and the position of player 1 (the goalie).

Since position errors were only collected when the player was confident in the
location of the teammate, more error data was sampled in the communication
set than the non-communication set because communication increases the fre-
quency at which players are confident of teammate locations. As seen in Fig. 6,
the error for communicating players actually increased on a small number of the
player-player comparisons. Since communicating players are confident of team-
mate locations more often, this may cause more error to accumulate in some
cases. For example, if an offensive player is out of visible range of the goalie, but
receives the goalie’s position via communication, the player will still be confi-
dent of the goalie’s location ten cycles later, but the estimated position could be
significantly different from the actual position.
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Fig. 6. Mean world model error (in meters) of ball and teammate positions. The num-
bers along the x axis indicate our players. Each column of bars above represents the
positional errors in that player’s world model. The players’ errors for themselves (the
diagonal on the graph) are displayed as zero because self position errors were not
recorded (communication does not affect those values). The charts for our perceptions
of the teammates listed on the y axis are scaled to a max error value of 20 (meters),
and the row for the ball is scaled to a max of 3

In addition, communication can also change the behavior of the agents in
subtle ways. For example, if players know the locations of their teammates more
often (due to communication), they may decide to scan the field less often.
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Fig. 7. Mean world model error of opponent positions. The column for our goalie’s
world model (player 1 on x axis) was omitted because the errors were beyond the scale
of the graph — our goalie has high error for the opponents since it usually can not
see them. The rows for opponents 2-11 are scaled to a maximum of 4, and the row for
opponent 1 is scaled to 18

Therefore, changes in the accuracy of player world models are not necessarily
only a direct result of communication — additional factors may include changes
to scanning frequency, and other differences.

Communicating players had lower error values for their estimated position
of the ball. Their mean ball error was 22.6% lower than non-communicating
players. As seen previously in Fig. 4, communicating players were also confident
of the ball location 3.3% more often than non-communicating players.
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For the agents’ estimation of opponent positions (Fig. 7), most of the changes
were less significant. This could indicate that our agents were able to get better
information about the opponents simply through visual sensors.

However, our players 4, 9, 10, and 11, which are defensive players, all improved
their estimation of most of the opponent positions (see columns 4, 9, 10, 11 in
the figure). Since our defensive players rarely get good visual information about
the opponents since they are far away most of the time, communication helps
them a great deal in this regard.

The empirical results with player confidences and positional errors are im-
portant because they show that communication improves not only the frequency
with which a player is confident of ball and player locations, but also the accu-
racy of the player’s position estimate. This improved accuracy and confidence
has implications in many areas. For instance, ball positions are used in calculat-
ing interception trajectories, ball handling strategies, and in determining which
advice from the coach is applicable.

In summary, coachable agent communication as implemented in the Wyverns
agents increases the frequency with which players are confident of the ball and
other players. It also decreases the error in the players’ estimation of where the
ball, teammates, and opponents are.

5 Conclusion and Future Work

The CommLang standard for RoboCup agent communication described in this
paper is a flexible and easily extendable language for communicating between
agents. It allows a variety of information to be exchanged, expanding the po-
tential for inter-agent cooperation. All coachable agents will need to use this
standard and we encourage other soccer simulation teams to do so also. Use of
this standard by simulation teams would improve agent interoperability, facili-
tating interesting mixed-team pickup games.

Our implementation of coachable agent communication in the Wyverns agents
is a versatile architecture that provides control over the composition of messages,
the source of received messages, and the incorporation of received information
into our world model. It is designed to construct communication messages that
maximize the usefulness of a limited bandwidth channel of communication.

In past studies of previous versions of the simulated soccer environment [10],
communication had an overwhelmingly positive effect. However, at that time, the
communication bandwidth was over 50 times the bandwidth allowed currently
(512 characters compared to 10 characters). The players in general did not need
to reason about what information to include in each communication.

We have presented an algorithm for determining message composition and
shown that our initial parameters lead to improvements in world model complete-
ness and accuracy. We have not yet explored what settings (e.g. weights of the
message types) yield the largest improvements and this is an interesting avenue for
future work. Further, reasoning about the tradeoffs involved in limited bandwidth
communication could lead to improvements in some performance measures.
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In the future we may wish to consider adding new message types to the
communication standard. One general type of message which is not currently in
the standard is the information request form (such as exists in KQML [5]). These
messages would allow agents to request from their teammates state information
such as the ball location.

Another area meriting consideration is the option to maintain information
about communication from earlier in the game. We could consider using earlier
communication to learn who to listen to — if one of our teammates often sends
more useful information than other agents, we could focus on that agent more
frequently.

Through our empirical evaluation, we found that communication improved
the world model knowledge of our coachable agents. We believe there is signif-
icant research potential in this area to determine how communication between
agents can be used to the greatest advantage.
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Abstract. The Segway Human Transport (HT) is a one person dynamically 
self-balancing transportation vehicle. The Segway Robot Mobility Platform 
(RMP) is a modification of the HT capable of being commanded by a computer 
for autonomous operation. With these platforms, we propose a new domain for 
human-robot coordination through a competitive game: Segway Soccer. The 
players include robots (RMPs) and humans (riding HTs).  The rules of the game 
are a combination of soccer and Ultimate Frisbee rules. In this paper, we 
provide three contributions. First, we describe our proposed Segway Soccer 
domain. Second, we examine the capabilities and limitations of the Segway and 
the mechanical systems necessary to create a robot Segway Soccer Player. 
Third, we provide a detailed analysis of several ball manipulation/kicking 
systems and the implementation results of the CM-RMP pneumatic ball 
manipulation system. 

1   Introduction 

Considerable research has been conducted involving human-robot interaction [8], and 
multi-robot teams [9, 10, 11].  With the inception of RoboCup robot soccer [7], multi-
agent team coordination within an adversarial environment has been studied 
extensively. But, the dual topic of human-robot coordination in an adversarial 
environment has yet to be investigated.  This research involves the intelligent 
coordination of mixed teams of humans and robots competing in adversarial tasks 
against one another.  The results of this research will further the technology necessary 
to allow both humans and robots to productively work together in complex 
environments requiring real time responses. 

In order to further investigate human-robot interaction in team tasks, we have 
developed a new game called Segway soccer.  The rules of the game are a 
combination of soccer and Ultimate Frisbee with an emphasis on fostering human-
robot interaction.  In order to investigate different perception and cognitive abilities, 
the humans and the robots need be placed on an equal physical level by utilizing the 
Segway Human Transporter (HT) and the Segway Robot Mobility Platform (RMP).   
Several mechanical systems are needed to equip the RMP with the physical abilities 
necessary to allow a game.  We present the Segway and the domain of Segway Soccer 
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in Section 2.  We explain the modifications necessary to create a Robot Segway 
Soccer Player in Section 3 along with the mathematical models necessary to choose 
among the different ball manipulation systems in Section 4.  The implementation 
details and experimental results of the CM-RMP Robot Soccer Player are in Section 
5, and our conclusions and future plans in Section 6. 

2   Segway Soccer Platform and Game 

The Segway™, developed by Dean Kamen, is a two-wheeled dynamically balanced 
mobility platform. The Segway has onboard sensors and computer controllers that 
continually and independently command each wheel in order to maintain balance.  
The human rider controls the velocity of the Segway by leaning forward, shifting the 
center of mass, and causing the Segway to drive forward in order to rebalance.   

The RMP has provided a robust robotic agent on which to create human-scale 
robots. The Segway RMP is a ‘roboticized’ Segway HT consisting of three main 
modifications.  First, a CAN Bus interface is exposed to enable two way, high speed 
electronic communication with the platform.  Second, the Segway’s control software 
is modified to enable a computer to send direct velocity commands to the platform.  
The third change involves attaching a large mass of about 23kg at a height of 50cm 
from the robot wheel base.  This serves the purpose of raising the robot’s center of 
gravity which slows down the RMP’s falling rate in order to allow the control loop to 
operate effectively.  

Using the Segway platform, we have developed a new game called Segway Soccer, 
which consists of teams of humans and robots competing in a game where the rules 
are a combination of soccer and Ultimate Frisbee1.  The objective of the game is to 
score the most goals by kicking an orange size 5 soccer ball into a goal which is 2.5m 
wide.  One key contribution from ultimate Frisbee is that once a player is declared to 
have possession of the ball by a referee, the player cannot dribble.  Instead, the player 
has a 1m radius in which to reposition and pass to a teammate.  This rule is in place 
for safety reasons, so that robots and humans will not contest each other for 
possession.  Furthermore, to ensure robots and humans will collectively be involved, a 
mixed team cannot officially score unless both a robot and a human interact with the 
ball on the way to the goal. 

Placing humans, robots, and robot competitors on an equal physical level using the 
Segway platform allows their different perception and cognitive abilities to be tested.  

                                                           
1 Ultimate Players Association, [http://www.upa.org] 

   

Fig. 1. Segway Soccer field    Fig. 2. Segway RMP 
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The dynamic balancing, speed, and size of the Segway allows this human-robot 
interaction at a human scale. The Segways can travel at 3.5m/s and have a footprint of 
48cm by 64cm. Our Segway RMP also has its camera mounted 1.5m above the 
ground, providing a human height perspective. 

3   Turning the Segway RMP into a Soccer Player 

This new domain of human-robot interaction raises the requirements of robot 
mechanical systems to a more sophisticated level.  The challenge becomes designing 
adequate hardware that will allow a robot to safely and robustly operate in an outdoor 
environment along with humans in a competitive soccer game. 

In meeting this challenge, we have developed 4 key goals. First, the soccer player 
must be autonomous by perceiving the world, making decisions, and acting without 
human intervention.  Second, the player must be able to interact with human players 
by recognizing their presence and communicating.  Third, the player must be able to 
manipulate a ball well enough to be competitive with humans.   Lastly, safety must be 
considered in every aspect to prevent injury to humans and damage to equipment. 

With these goals in mind, we have to consider the many challenges that accompany 
designing and implementing a complete robotic system.  Cost effectiveness, 
processing power, perception, weight distribution, and resistance to shock are all 
important considerations.  The unique motion of the Segway also introduces problems 
not seen with other platforms. 

The Segway moves forward by tilting over and driving the wheels in order to 
rebalance.  This motion can lead to the ball becoming stuck underneath the body and 
wheels of the Segway.  This causes the wheels to lose contact or traction with the 
ground making the Segway unable to sufficiently maintain balance. Any cons- 
equential fall could potentially damage equipment. As a solution, guards, consisting 
of modified rubber mud flaps, were placed in front of the wheels and computer 
control software was implemented to prevent the RMP from interacting with the ball 
unless it knows the manipulation system can kick. 

Another challenge introduced with Segway Soccer is that there is no unique 
playing surface; it can be played on grass, Astroturf, or cement.  Changes in grass 
height, ground softness, and surface texture alter the dynamics necessary to 
manipulate the ball.  Unlike other robotic soccer platforms, the Segway also tips up to 
+/- 20 degrees with respect to the vertical; thus, any attached kicking plate and system 
will also tip.  This requires the manipulation system to be robust enough to 
manipulate the ball under changing conditions. 

With a basic infrastructure in place, we added two laptop computers to interpret the 
world and control the RMP. One laptop is used to provide the RMP with the 
capability to process data from a pan/tilt CCD camera and another laptop to quickly 
decide what action to take and send commands to control the actions of the RMP. 
Speakers were added to allow the robot to speak to its teammate to help control the 
flow of the game. 

Finally, hardware must be able to protect the components of the Segway from 
damage during a fall. The laptop computers and ball manipulation system components 
are mounted as close as possible to the bottom of the Segway reducing their falling 
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distance and the shock they will absorb. The laptops are also securely fastened with 
straps preventing them from being ejected from the confines of the RMP body. Steel 
safety stands were added to reduce the total distance the Segway will fall once it is no 
longer capable of dynamically balancing. The stands mount onto the side of the RMP 
and only allow it to fall over 30 degrees from the vertical. 

4   Ball Manipulation Systems 

One of the main challenges to using a Segway RMP to play soccer lies in designing a 
ball manipulation system that allows a Segway platform to kick a ball to the scale of 
an outdoor human game.  The need for passing in the game and the inability of the 
robot to safely propel the ball by running into it necessitates the development of a 
kicking mechanism.  Although kickers of all forms have been developed in RoboCup, 
there have been no formalized comparisons of different mechanisms.  We present an 
analysis of the common kicking mechanisms as well as a detailed implementation and 
evaluation of a pneumatic kicker as a step towards developing a scientific based 
method for selecting kicking mechanisms. 

4.1   Kicking System Design Considerations 

A ball manipulation system can be described as a mechanical manipulator used to 
accelerate a ball to a desired velocity in a desired trajectory.  This can be achieved in 
many different ways with various actuators.  The most common systems come from 
the realm of robot soccer as seen in RoboCup [7] competitions.  These include 
pneumatic, spring, solenoid, rack and pinion, and rotating plate systems.  A careful 
analysis of the following factors is needed to determine which kicking system best fits 
a given platform and environment: 

• Speed-How fast should the ball be kicked? 
• Accuracy- What distribution is acceptable? Should it only kick straight? 
• Kick capacity- How many kicks are possible or needed in a game? 
• Response time-How long will it take for a signal to result in a kick? 
• Recovery time- How long before a second kick is possible? 
• Safety- Is the system likely to injure a human player or bystander? 
• Complexity- What is the build time? What parts are required? 
• Weight-Can the robot carry the payload?  
• Size- Will the system fit on the robot and perform adequately? 
• Price- Is it worth the extra money? 
• Power-Can the robot carry the power supply? How long will the supply last? 
• Reliability/Maintenance-How likely will parts break under normal competitive 

play?  How expensive and complex is the maintenance? 
• Transportability- Can the system be transported in an airplane?  Are spare parts 

readily available?2 

                                                           
2 The latter is especially critical given the international nature of RoboCup competition. 
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With these considerations in mind, the actuating system must be chosen.  For each 
option, we present the basic system components, the mathematical models necessary 
to properly specify an appropriate actuator, and an example comparing each option to 
the pneumatic system we implemented and describe in section (5). 

4.2   Spring Loaded Mechanisms 

Spring kicking mechanisms use an extension or compression spring(s) to store and 
then release energy to propel the ball.  As such, a mechanism is needed to tension the 
spring(s) and a trigger to release the stored energy. Such mechanisms must be robust, 
and are non-trivial to design. Apart from the obvious complexity, spring strength is 
coupled to kicking power, but a more powerful spring is more difficult to retract and 
hold. This relationship leads to potential problems during a soccer game where the time 
to reload a powerful spring can take several seconds if a cheaper less powerful motor is 
used. Springs do provide the best power density out of the given the options [4, 5]. 

 

Fig. 3. Spring Kicking Mechanism Schematic 

For a spring with a spring constant of k, a kick length of D, and a kicking mass of 
m, the force equation and resulting equations of motion for the spring mechanism are: 

1−
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.

== xDx . (1) 

( )tDtx m
kcos)( =  . (2) 

For the Segway, the pneumatic kicking system model predicts the ball will be 
kicked at a 4.3 m/s max velocity.  Using the above equations, one can determine the 
spring constant, k, necessary to achieve a similar speed with a similar stroke length to 
the pneumatic model (0.1524m).  Assuming a kicking mass of 0.85kg, a spring 
constant of 676 N/m would be necessary.  This would require a force of at least 103N 
in order to load and hold the spring at 0.1524m for a kick.  Depending on motor size 
and consequentially cost, the spring would take one to several seconds to reload for 
another kick.  Complexity, reload time, and cost are the liming factors for the spring 
kicker design. 

4.3   Rotating Plate Mechanisms 

Rotating plate kickers consist of two or more flat surfaces, bars, or other contacts 
arranged in a balanced paddle boat configuration. [1] The shaft of the paddle wheel is 
connected to a DC motor.  The angular velocity of the paddle wheel determines the 
end velocity of the ball, although there is great variability due to the potential 
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variation in the contact point.  Pulse Width Modulation can be used to vary the speed 
of the wheel and thus vary the power of the kick.  Rotating plate mechanisms require 
a significant amount of space to mount the paddle wheel and the drive motor.  
Furthermore, for larger robots, rotating plates become extremely dangerous to human 
operators.  A rotating plate mechanism scaled to the size of a Segway would have to 
be approximately 18cm by 38cm.  The plates would be rotating fast enough and with 
enough power to cause injury to humans who happen to fall off of their HT into a 
kicking device.  As a result, we do not consider a rotating plate mechanism in depth.  

          

Fig. 4.  Rotating Plate Kicker Schematic and Physical Example 

4.4   Rack and Pinion Systems 

Rack and pinion systems are driven by DC motors and thus the ball velocity is 
dependent on the output power of the motor.  For a rack and pinion motor system with 

a back emf of ek , voltage of V, forward torque per amp of K, terminal resistance of 

R, pinion radius of r, gear ratio of N, and total kicking components mass of m, the 
following are the equations of motion: 

 

Fig. 5. Rack and Pinion Kicking System Schematic 
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A rack and pinion system with a powerful motor is comparable to the other options 
but the price and design requirements are more significant.  Using an 80W Maxon 
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motor [12], a 0.015m pinion radius, 1:1 gear ratio, and a total kicking mass of 1.3 kg, 
the rack and pinion system can accelerate the ball to a theoretical velocity of 6.7 m/s 
in 0.1524 m (6in).  With a motor efficiency around 75% and the friction forces acting 
against the sliding rack, the actual velocity will be closer to 3.5 m/s.   

The Segway does not have enough space to implement a single rack and pinion 
system.  Two rack and pinions would be needed since one rack and pinion could not 
be placed in the middle of the Segway due to the handle bar mounting.  This would 
require two motors or a much larger single motor to actuate both rack and pinions.  
This requirement makes this system unfeasible for use on a Segway platform.  The 
two high power motors would also be costly [3]. 

4.5   Solenoid Systems 

A solenoid kicker consists of a solenoid that creates a magnetic field around a shaft 
that is propelled by the field and accelerated away from the solenoid.  The shaft is 
returned by a built in return spring.  Consider a solenoid kicking system with a current 
of I, ampere turns of N, plunger radius of r , a return spring constant of k, and a total 
kicking mass of m.  The differential equation of motion is given in equation (5).  
Since this equation can only be solved by numerical means, we approximate the result 
here for analysis purposes by treating the solenoid force as being constant for the 
duration.  The results are given by equations (6) and (7). 

( ) −= − kxx
rNImx

2

02
11 πμ , 0)0(0)0( == xx . (5) 

( )kxx −= avg
-1 F m ,      0)0(0)0( == xx  . 

 
(6) 

( )( )ttx m
k

k
Favg cos1)( −=  . (7) 

Most commonly available solenoids produce approximately 400N of force and 
generally have small stroke lengths on the order of 0.0254m (1in), which limit its 
ability to effectively contact a ball.  For the solenoid shown in figure (7) [13], 

          

Fig. 6. Solenoid Kicker Schematic                        Fig. 7. Solenoid Force v. Stroke and 
Approximate Force 
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assuming a return spring constant k of 99 N/m, and a kicking mass of 1.5 kg, a ball 
would be kicked at 4.1 m/s over a 0.0508m stroke length (2in).  With the effects of 
friction and motor efficiency the actual speed would be closer to 3 m/s.  This is 
comparable to the pneumatic system but the smaller stroke length limits is ability to 
effectively manipulate a ball during a game.  The high voltage requirement may also 
raise safety issues. 

4.6   Pneumatic Systems 

Pneumatic piston systems usually consist of one or two actuating cylinders, an air 
reservoir, solenoid valves to control the air flow, a source of compressed gas in the 
form of compressed air or liquid carbon dioxide ( 2CO ), and a regulator to maintain a 

specified pressure. The decision between 2CO  and compressed air depends on the 

availability of 2CO .  Air compressors normally only operate up to 150 psi while 

2CO tanks fill to several thousand psi.  This higher pressure allows the cylinders to be 

fired with a higher output force resulting in a stronger kick.  The higher pressure also 
significantly increases the kick capacity of the system.  The major drawback of 2CO is 

that it is not easily transportable or available in foreign locations.  Additionally, its 
rapid expansion during each kick results in thermal issues such as the formation of 
condensation near electronic parts.  As a result, a compressed air approach is often 
used instead. 

 

Fig. 8. Pneumatic Kicker Schematic 

The pneumatic cylinder pistons connect to a kicking plate that contacts the ball.  
The plate can vary in material and shape dependent upon application.  The one or 
more pistons can be fired at the same time or in a synchronized order to achieve a 
directional kick.  A pneumatic system offers a wide range of options in its 
configuration and employment.  For a pneumatic system with power factor, f, 
combined kicking mass, m, return spring constant, k, and operating at a pressure, P, 
the equations of motion are: 

( )kxfPmx −= −1 ,   0)0(0)0( == xx  . (8) 
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For a Segway, a suitable cylinder would be approximately 0.254m (10in) long, 
0.01905m in diameter and produce 274N for force at 140 psi.  The pistons are the 
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only moving parts and the air tank consumes the most space.  The price of a 
pneumatic system is also fairly cheap. A functional system can be bought for less than 
$150.  The air used to power the cylinders is naturally accessible and can be refilled 
quickly during a soccer game with an onboard air compressor.  The system has a low 
chance of malfunctioning and becoming inoperable during a game because the only 
moving parts are the cylinder shafts. [2, 8] 

5   Implementation and Results 

With the considerations presented, we chose to use a pneumatic approach due to its 
relative simplicity, low cost, and transportability. Figure (9) shows the resulting 
arrangement 

 

Fig. 9. Schematic diagram of the implemented CM-RMP pneumatic kicking system 

Two 0.01905m bore, dual acting pneumatic cylinders were chosen as the main 
actuating components.  This size cylinder provides adequate power with a sturdy shaft 
that can sustain unexpected stress.  Dual acting cylinders do not have a return spring 
to reset the cylinder shafts back to their original position.  This allowed us to 
implement a return mechanism with just enough force to reset the kicking plate 
without significantly affecting the output force.  We used 4 x No.64 (3.5in x 1/4in) 
rubber bands to return the kicking plate.  Two cylinders also allow for directional 
kicking. 

5.1   Air Reservoir Options 

The air reservoir can be designed in two different ways.  The reservoir can be large 
enough to hold enough kicks for the entire game or an onboard air compressor can 
refill a smaller reservoir.  If the robot has enough room to house a larger tank, not 
having an air compressor allows the overall system to be simpler. We used a 1 gallon 
tank, which provides a sufficient number of kicks as seen in figure (10).  We have an 
onboard compressor that turns on after 15 kicks and shuts off when the tank pressure 
reaches 150 psi. The compressor is controlled by a microcontroller that also monitors 
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a mechanical pressure switch that opens at 150 psi.  As a result, the operation of the 
compressor is completely automated.  

  

Fig. 10. Number of Kicks v. Reservoir Pressure 

5.2   Velocity Test Results 

The cylinders accelerate the ball to a max velocity of approximately 3.5 m/s, which is 
sufficient for a two on two game of Segway soccer.  The velocity can increase to 4.5 
m/s if the Segway RMP is moving at the ball when it kicks it.  The theoretically 
predicted top speed for a stationary kick is approximately 4.3 m/s.  The loss in 
velocity is due to the efficiency of the pneumatic  cylinders, an  imperfect impact  with  

 

 

 

 

5.3 Accuracy 

The kick is sufficiently accurate as seen by the distribution in figure (13).  The mean 
is 122 mm and the standard deviation is 175 mm.  The mean error can be mostly 
accounted for by experimental error in lining up the kick.  In practice, this mean and 
variance will be modified by the robots ability to position itself next to the ball. 

the ball, and ground friction. An experiment was setup using one of the cylinders, a 
small kicking plate, and a golf ball.  The velocity of the golf ball was measured on a 
cement floor.  This experiment was designed to significantly lower the effects of 
impact and friction losses.  Through these tests, it was determined that the pneumatic 
cylinder alone had an efficiency of 75%.  These losses are due to several factors 
including cylinder friction, exiting air resistance, and flow rate limitations.  Impact 

                           
 

Fig. 11. Experimental and Theoretical                 Fig. 12. Pressure v. Kick Motion Velocity 
     Pressure v. Kick Velocity     
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losses and ground friction account for an additional 2% loss.  The theoretical and 
experimental kick speed versus cylinder pressure plot is shown in figure (11).  
Furthermore experiments were conducted measuring the speed of the ball when the 
Segway RMP played back a kick motion in which it swung its base forward and 
simultaneously kicked.  These results are seen in figure (12).  

5.3   Accuracy 

The kick is sufficiently accurate as seen by the distribution in figure (13). The mean is 
122 mm and the standard deviation is 175 mm.  The mean error can be mostly 
accounted for by experimental error in lining up the kick.  In practice, this mean and 
variance will be modified by the robots ability to position itself next to the ball. 

 

Fig. 13. Histogram of Stationary Kicking on a Cement Surface 

6   Conclusions and Future Work 

We have presented a new domain, Segway Soccer, in which to investigate human-robot 
interaction within adversarial environments.  Within this domain we have identified the 
challenges behind placing humans and robots on the same physical level utilizing the 
Segway platform.  We have also established a scientific basis on which to choose a ball 
manipulation/kicking system for any size robot soccer player and have outlined the 
other mechanical systems necessary to make a Segway RMP physically capable of 
playing Segway Soccer along with humans.  With our analysis, we have accurately 
implemented a pneumatic ball manipulation system, which robustly kicks the ball fast 
enough and with enough accuracy to make passing and goal scoring possible. 

Our future work will focus on further developing the concept of Segway Soccer 
and on additional mechanisms to increase the soccer playing abilities of the Segway, 
such as recovering the Segway from a fallen state. 
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Abstract. We describe a new method for detecting features on a marked
RoboCup field. We implemented the framework for robots with omnidi-
rectional vision, but the method can be easily adapted to other systems.
The focus is on the recognition of the center circle and four different cor-
ners occurring in the penalty area. Our constructive approach differs from
previous methods, in that we aim to detect a whole palette of different
features, hierarchically ordered and possibly containing each other. High-
level features, such as the center circle or the corners, are constructed
from low-level features such as arcs and lines. The feature detection pro-
cess starts with low-level features and iteratively constructs higher fea-
tures. In RoboCup the method is valuable for robot self-localization; in
other fields of application the method is useful for object recognition
using shape information.

1 Introduction

Robot self-localization is an important problem in the RoboCup domain. Many
systems rely on Monte Carlo Localization [19] identifying landmarks such as the
colored goals or posts. There have been attempts to detect field line features and
to use them for robot self-localization.

In [18] straight lines are detected, however no other features, in particular no
curved features are extracted. In [9] straight lines and circles are recognized using
the Hough transform [10], but no other features like the corner circle sectors or
the rectangle of the penalty area are detected. Although the Hough transform is
robust and conceptually elegant, it is inefficient, since for each type of feature a
separate parameter space has to be maintained. The search for local maxima in
parameter space can be optimized by combining the method with Monte Carlo
Localization, however it is still computationally expensive [9].

In this paper, we aim at efficient and robust feature recognition which allows
the unique localization of the robot, up to the symmetry of the playing field.
We refer to such features as high-level features in the following. We concentrate
on five different high-level features: The center circle and four different corners
which occur at the penalty area, as shown in Fig. 1.

This paper contains two contributions. First, we propose methods which allow
the robust and efficient detection of the features mentioned above. Second, and

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 72–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Constructive Feature Detection Approach for Robotic Vision 73

right outer corner

left outer corner

left inner corner

right inner corner
center circle

Fig. 1. The center circle and four different corners are recognized by the system. Al-
though the shapes of the different corners are identical, the system is able to identify
the position of a detected corner within the penalty area. Within one side of the playing
field, each of the corners represents a unique feature

more important, we propose a framework which can be extended to recognize
other feature types without doing all the work from scratch.

Feature detection has been addressed in numerous papers: The simplest ap-
proach for feature detection is to directly derive parameters of the feature from
the data. For instance, for three points (not all collinear) one can easily derive the
parameters of the circle containing the points. However, one has to be sure that the
points belong to a circle. If one point is wrong, a false circle will be constructed.

The next class of methods is based on least-squares fitting. Instead of deriv-
ing the parameters with the minimum number of required points, more points
are used and the total error is minimized. There exist fitting methods for lines
(i.e see appendix of [13]), circles[17] and ellipses[8], or more generally for conic
sections[7]. However it has to be know a priori which points belong to the feature.
Outliers affect the result seriously.

Therefore, attempts to develop robust detection methods have been made.
The probably most robust are Hough transform[10] based methods. There exist
numerous variants for the detection of lines, circles, ellipses and general polygonal
shapes. Each input item (i.e a point) votes for all possible parameters of the
desired feature and the votes are accumulated on a grid. The parameters with
the most votes determine the feature.

The counterpart of Hough transform methods, are techniques that probe pa-
rameter space. Instead of beginning with the input data and deriving the param-
eters in a bottom-up fashion, parameter space is searched top-down way[16, 3].

Other approaches, rely on the initial presence or generation of hypothesis.
RANSAC[6], and clustering algorithms such as fuzzy shell clustering (FCS) [5, 4]
fall into this category. The advantage of an initial hypothesis is that outliers can
be detected easily by rejecting input points which are too distant.
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A completely different approach is the UpWrite[1, 14] which iteratively builds
small line fragments from points, and higher features like circles and ellipses from
line fragments. In [15] the method was compared with the Hough transform and
comparable robustness was reported. A similar approach was reported in [11]
where ellipses are constructed from arcs, the arcs from line fragments and the
line fragments from points.

These ideas have influenced our approach. We follow the principle of con-
structing higher geometric features, such as circles and corners from smaller
components such as lines and arcs. Typically, different types of higher features
are composed of the same kind of lower features. This hierarchical organization
in which higher features share common components makes the overall recogni-
tion process more efficient than approaches which try to detect the individual
features separately.

2 Extracting the Field Lines from the Images

We use our region tracking algorithm proposed in [20] to extract the field lines
from the images. We determine the boundary of all green regions in the images
and we search for green-white-green transitions, perpendicular to the bound-
ary curves. Figure 2 illustrates this process for the omnidirectional images we
use. After having extracted the lines they are represented by the pair (P, C)
where P = p0, ..., pn−1 is a set of n points with cartesian x,y-coordinates and
C = c0, ..., cl−1 supplies connectivity information that partitions P into l point
sequences. Here each ci = (si, ei) is a tuple of indices determining the start and
end point in P that belong to the corresponding point sequence. That is, point
sequence i consists of the points psi

, ..., pei
. By manipulating the connectivity

information C, point sequences can be split or merged.

(a) (b)

Fig. 2. (a) A local line detector is applied along the boundaries of the tracked regions.
(b) The resulting line contours consist of a set of lines, where each line is represented
by a sequence of points which are marked by small circles
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Fig. 3. Four examples of extracted line contours. Some long sequences of points corre-
spond precisely to the shape of the field lines. But there are also outliers, missing lines,
and small line fragments due to occlusion and detection errors

The line contours as illustrated in figure 2 b) are distorted due to the mirror in
the omnidirectional vision system. In the following we assume that the distortion
has been compensated. However, even without removing the distortion correctly,
we are still able to detect most of the features. Fig.3 can provide an impression
of the initial data. In many cases, there are long point sequences that correspond
precisely to the shape of the field lines. However, there are also outliers, missing
lines, and small line fragments due to occlusion and detection errors.

3 The Feature Construction Process

In this section, we describe how features are detected in line contours. The overall
detection process is performed in several steps which iteratively construct higher
features from the components of prior steps. The input for the first step are the
line contours extracted from the images.
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3.1 Splitting the Lines

Field lines consist of curved and straight lines. We want to classify the perceived
line contours into these two categories. However, the initial contours often con-
sist of concatenated curved and straight segments. To classify them separately
we have to split the lines at the junctions. Junctions coincide with points of local
maximum curvature. We retrieve them by first calculating a curvature measure
for each point and then finding the local maxima. Although there exist sophis-
ticated methods to calculate curvature (see for instance [2]), we have adopted a
very simple approach for the sake of efficiency. For each point we consider two
more points, one before and one after the current point. With these three points
we compute two approximative tangent vectors, one reaching from the left to
the midpoint and one from the midpoint to the right point. Finally, we define
the curvature at the midpoint to be the angle by which the first vector has to
be rotated to fall on the second. In order to be resilient against local noise in
the curvature, we choose the enclosing points some distance from the midpoint.
Since all the points are approximately equally spaced, we can afford to use an
index distance instead of a precise geometric distance. That is, for a point p[i] at
index i we choose the enclosing points to be p[i − w] and p[i + w] (w = 4 in our
implementation). At the beginning and end of each line, we continually decrease
w in order to be able to calculate the curvature. For the first and last point, the
curvature is not defined.

To detect local maxima of the curvature measure, we have adopted the fol-
lowing approach: While traversing the curvature values we detect intervals of
values which exceed a given threshold and within each interval, we determine
the index with the maximal value. To avoid extrema too close together, a new
interval is opened only if it is at least at some given distance from the previous
interval. Figure 4 shows the locations found for split points for various lines.
Splitting can be performed efficiently by modifying the connectivity information
in C (see section 2).

Fig. 4. Some examples that demonstrate the location of the split points
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3.2 Classification

After the point sequences have been split, we classify each split sequence either
straight or curved, applying the following test criterion: Similarly as for the cur-
vature measure, we determine the angle between two vectors, but this time those
defined by the first, the mid and the last point of the current point sequence.
If the absolute value of the angle exceeds a threshold tφ (tφ = 0.4 radians in
our application), then the point sequence is declared to be curved, otherwise
straight. Independently of the actual choice of tφ wrong classifications can oc-
cur. However, the overall detection process can cope with a limited number of
erroneous classifications.

3.3 Constructing Arcs and Straight Lines

For each straight point sequence a line is constructed taking the respective start
and end point. Similarly, a circular arc is constructed for each curved point
sequence: The start point, the midpoint and the end point define two segments
whose perpendicular bisectors intersect at the center of the circular arc. In order
to verify, whether the points really form an arc, we calculate the mean deviation
of the points from the arc’s radius and discard the arc if the distance is above
the threshold trad = 0.03. In order to allow larger arcs to have a larger deviation,
we divide the mean deviation by the radius before testing against the threshold.

3.4 Grouping Arcs and Detecting the Center Circle

Circular arcs which emerge from the same circle have centers which are close
together. In order to group them, we search for clusters of the center points of
the arcs. We apply the following cluster algorithm: Initially we have no clusters.
The first cluster center is set at the center of the first arc. Then, we traverse
the remaining arcs, and calculate the respective distance of their centers to the
cluster centers. We choose the closest existing cluster and verify the distance. If
it exceeds half of the actual arc’s radius, we start a new cluster at the respective
position. Otherwise, we adapt the cluster center to represent the weighted mean
position of all assigned arc’s centers. Here, the weights are the lengths of the arcs,
which we approximate by the number of points of the point sequence from which
the arc was constructed. We proceed in this way for all arcs and we obtain a set
of clusters from which we choose the one with the greatest weight which reflects
the number of assigned points. We demand, that at least 20 points have to be
assigned and that the radius should be approximately one meter (the radius of
the center circle). If these conditions are met, we generate a hypothesis for the
center circle which will be refined as described next.

3.5 Refining the Center Circle

The center circle was constructed from the arcs and the arcs where constructed
from point sequences which were classified as curved. However, it happens often
that point sequences which are part of the center circle are short and almost
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straight. Typically, they are classified as straight and no arcs are constructed
from them. We want to include this data for the precise detection of the center
circle. Thus, we traverse all straight point sequences and verify if they could
be part of the initial hypothesis for the center circle. We verify the distance of
the actual point sequence to the circle and whether the orientation of the point
sequence fits the tangent direction of the circle, at the corresponding location.
We allow some tolerance, since the initial hypothesis is not perfect. In this way
we obtain a set of points, the points of the arcs and the points of misclassified
straight lines which belong to the circle. Next, we refine the initial hypothesis of
the circle using Landau’s method [12], a simple iterative technique which adjusts
the center and the radius to the set of points. Typically, only few iterations (1-4)
are required. Figure 5 illustrates this step. Later, we will search for the center
line which passes through the circle in order to determine the corresponding
orientation.

(a) (b)

Fig. 5. The position and radius of the initial circle is refined. Points which are consid-
ered to originate from the circle are shaded. Initially (a), only the points of curved point
sequences are considered to be part of the circle. Thus, the initial circle is not optimal.
In (b) additional points have been determined by identifying point sequences which
are close to the initial circle. The initial circle is iteratively adjusted to the points by
Landau’s method [12]. Only few iterations are required (two iterations in this example)

3.6 Determining the Principal Directions

Straight field lines of the playing field are either parallel or perpendicular. We
want to determine the corresponding two orientations in the extracted con-
tours. We will refer to them as principal directions. We will determine them
with the straight lines constructed previously. Typically, spurious straight lines
are present and we apply a clustering algorithm to cope with the outliers. For
each line i, we calculate its orientation φi, normalizing the orientation to lay
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(a) (b)

Fig. 6. The original line contours are painted gray. In (a) the straight lines are drawn
by black arrows and the principal axis’ found are shown. Discarded straight lines are
drawn in gray. Theresults of grouping the lines into collinear sets are shown in (b).
The dashed thin lines reflect the groups. Each group is simplified by a single line. The
order of the groups is shown by numbers

within [0, ..., π]. Each line votes for the angles φi and φi + π/2. Here, we ap-
ply the same clustering method as for the center circle, but this time working
on one-dimensional values. We open a new cluster if the angular difference to
the best cluster exceeds 0.3 radians. Otherwise, the cluster center is adjusted,
with the weights being the lengths of the contributing lines. Finally, the cluster
with the greatest weight determines the first principal direction ψ0. The second
principal direction ψ1 equals the first, rotated by 90 degree. In the following
sections we will consider two lines through the origin having the direction ψ0
and ψ1, respectively. We will refer to these lines as the principal axis a0 and a1.
Figure 6a) shows an example.

3.7 Discarding Unreliable and Grouping Collinear Lines

Having determined the main axis’ a0 and a1 we consider three types of lines.
Those which are perpendicular to a0, those which are perpendicular to a1, and
those whose orientation differs from both ψ0 and ψ1 by more than 0.3 radians.
We consider the latter lines unreliable and discard them. The following step is
performed for both a0 and a1 together with the respective perpendicular lines.
Therefore, we will write a instead of a0 and a1 in the following.

Let L = {l0, l1, ..., ln} denote the set of lines li which are perpendicular to
a. Furthermore, let mi be the mid point of line li. We consider the orthogonal
projections of all mi onto the axis a. Lines which are collinear will yield close
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projection points. Since a passes through the origin, each projection point of mi

can be represented by a single value ti which is the distance of the projected
point to the origin. Collinear lines will have the same values ti. However, since
the lines are not precisely collinear, the ti will differ slightly. Thus, to find groups
of collinear lines which are perpendicular to a we search for clusters of the ti.
Again, we apply the same clustering algorithm described for the circle detection
and the determination of the principal directions. A new cluster is opened if
the distance to an existing cluster is greater than 20 centimeters. Each cluster,
stores the lines which were assigned to it. Thus, each cluster represents a group
of collinear lines which are perpendicular to the respective main direction. The
lines within each group are replaced by a single line which encompasses the full
range of the original lines. Finally, we sort the groups by their one-dimensional
cluster centers tj . Note, that the difference tj − tk of two groups of parallel lines
is just the distance between the lines. By sorting for tj , we obtain a topological
order of the groups of collinear lines which will be very useful for the detection of
the penalty area and the corresponding corners. Figure 6b) illustrates the results
of this processing step.

3.8 Detecting the Corners of the Penalty Area

The rectangle marking the goal area and the rectangle marking the penalty area
produce three lines parallel to the baseline. The lines are spaced at a distance of
50 and 100 centimeters. Having grouped and sorted the sets of collinear lines, we
can easily detect such a structure. Here, we allow a tolerance of 20 centimeters
when verifying the distances. Note, that the structure emerges at the start or
end of the sequence of sorted collinear line groups, since the lines are the outmost
existing lines. Having detected such a structure, the direction towards the goal
is now known. Thus, we can distinguish between the left and right side of the
lines. In order to find the respective corners, we simply verify whether we find
perpendicular lines whose endpoints are close to the given lines. Some additional
constraints have been necessary in order to avoid spurious detections. First, if
we find three parallel lines that have the given structure in their distances, we
calculate the overall length of the structure, in the direction of the lines. This
length should not exceed the length of the penalty area, which is 5 meters. We
allow a tolerance of 50 centimeters. A second constraint is that no lines which
are perpendicular to the three lines are beyond the goal line.

4 Experimental Results

This section describes our experimental results. Feature detection is influenced
by many factors: By the preprocessing step which extracts the field lines, by
line occlusions, by the region tracking algorithm, by the geometrical distortion
calibration and on the lighting conditions.

We tried to focus on the main situations. In order to test the influence of
different environments we examined two different playing fields. The first with
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Fig. 7. The path shows a robot moving on the field along a predefined figure. As can
be seen, the maximum deviation is lower than 20 cm for a robot driving 0.8 m/s

a green carpet and artificial lighting, the second with a reflecting linoleum floor,
with natural light shining from one side through an array of windows. However,
since the reflections on the floor where almost white in the images, we reduced
the influence of natural light by adding artificial light from above and using
venetian blinds. However, we did not shut the blinds completely.

On both playing fields, we let the robot automatically move on a trajectory
forming an eight (see figure 7). Localization was achieved using odometry and
the recognized features, which yield unique robot poses, up to the symmetry of
the playing field. On both fields, the robot did not loose its position. After 10-20
minutes we stopped the experiment. Moreover, when the robot was manually
transferred to an unknown position, the robot immediately found its correct
position after perceiving a feature. The maximum positional error while driving
was about 20 cm.

While the robot moved, we logged all the extracted line contours in a file
and later, we manually verified the feature recognition for all frames. On both
fields not a single false positive was detected. However, there are situations when
features are not recognized.

The corners of the penalty area cannot be detected, if an obstacle is occluding
the corner. That is, the system does not infer the intersection point of two
perpendicular lines, but rather demands that the endpoints of two lines are close
together. Here, some improvements might be possible, however one must take
care, not to infer corners which do not exist. However, all four corners will be
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rarely occluded at the same time. With our robot, which has a very low mirror
and thus, has a limited range of sight, the robot can typically not detect the
corners in a distance greater than 3 meters. However, during attack and defense
when the robots are near the penalty area, at least one of the corners can be
seen most of the time.

The recognition of the center circle is possible up to a distance of approxi-
mately 3 meters, using our robots. We have some astonishing situations, where
the center circle is still detected, although large parts are occluded by obstacles.
This is possible, because a single fragment of a curved line can yield a hypoth-
esis for the circle, which is then verified. However, if not a single curved line is
found, the center circle is not detected. This typically occurs, when the center
circle is distant to the robot, and when the correction of the optical distortion
becomes imprecise. Then the splitting procedure tends to split noisy curved
lines into many small straight fragments. At this point, further improvements
are certainly possible. However, the important point is, that no false positives
are detected. Also, note that it is not necessary to detect the features in every
frame. Although the current system is able to run the recognition on every frame
with 15 fps, this not necessary. It suffices, to perform the recognition, say every
10th frame, since the features yield very strong position clues.

5 Conclusion

We have proposed a method for detecting the center circle and four different
types of corners in the neighborhood of the penalty area. Each of these features
allows to localize the robot, up to the symmetry of the playing field. The method
is robust and efficient and we have tested it thoroughly. Also, we have presented
a general framework for feature construction. It should be possible to easily ex-
tend the approach to detect other features, such as the corner circle sectors of the
playing field, for instance. Detected arcs, groups of straight lines, and the main
directions are already available and it should be possible to construct different
features from them. We hope that the palette of features will be extended con-
tinually by other researchers. Also, the individual algorithm can be improved or
extended. In our approach we have used the region tracking algorithm described
in [20]. However, maybe more efficient methods can be found that extract chains
of points, representing the field lines. Here again, adaptivity to the illumination
is the primary difficulty.
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Abstract. We propose to use a robust method for appearance-based
matching that has been shown to be insensitive to illumination and oc-
clusion for robot self-localization. The drawback of this method is that
it relies on panoramic images taken in one certain orientation, restricts
the heading of the robot throughout navigation or needs additional sen-
sors for orientation, e.g. a compass. To avoid these problems we propose
a combination of the appearance-based method with odometry data.
We demonstrate the robustness of the proposed self-localization against
changes in illumination by experimental results obtained in the RoboCup
Middle-Size scenario.

1 Introduction

Mobile robot localization is the problem of determining a robot’s pose (i.e. its
location and orientation) from sensor data such as odometry, proximity sensors
or vision. Self localization is a key problem in autonomous robotics, it has even
been referred to as ”the most fundamental problem to providing a mobile robot
with autonomous capabilities” [1].

Good results have been achieved by using combinations of metric maps of
the environment, sensor models, i.e. that model the expected response from the
environment, and probabilistic sensor fusion [2, 3]. These approaches show very
accurate localization. But generation and storage of the maps and the models
are very time and memory consuming. Especially, if the environment gets large.

In contrast, evidence has been provided that topological localization, which
recognizes certain spots in the environment, is sufficient to navigate a mobile
robot through an environment. This also appears more naturally, if one thinks
how humans navigate through a building or a city.

Appearance-based approaches use images to recognize known spots in the
environment. This is done by comparing the current image with a set of refer-
ence images, previously captured at some reference locations. The approaches
differ in the type of the camera used, the representation of the reference images
and the calculation of the similarity of different images. Ishiguro et.al. [4] use
panoramic cylinder images obtained from an omnidirectional camera and row by
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row Fourier transformation as a compact representation. The similarity of im-
ages is determined by calculating the sum of the absolute difference of the most
significant Fourier coefficients. Menegatti and colleagues [5] extend the method
by Monte Carlo Localization to solve the problem of perceptual aliasing. That
means the response of the current image to several reference images. In [6] topo-
logical localization is applied to the RoboCup Middle-Size. A standard camera
and an eigenspace based representation are used. The reference images are trans-
formed to eigenimages by Principal Component Analysis and represented by the
coefficients in the corresponding eigenspace. The calculation of the similarity of
images is done by a k-nearest neighbor algorithm within the eigenspace.

As changes in illumination dramatically effect the appearance of locations
in the environment [7], the mentioned methods are sensitive to such changes
in illumination. Currently, we have well restricted lighting conditions in the
RoboCup Middle-Size, which are a compromise to the vision algorithm applied to
robotic soccer today. Due to the decision to introduce a certain amount of natural
illumination to the RoboCup Size-Middle and the vision that our robots someday
will leave the field and work in more realistic environments, the importance of
illumination insensitive algorithms is undoubted.

To cope with such changes in illumination in [8] another representation and
calculation of similarity were proposed. An illumination insensitive eigenspace
representation and a randomized voting algorithm are used. The illumination
insensitive eigenspace approach was originally developed for robust object recog-
nition under varying lighting conditions [9]. The approach exploits the property
that the eigenspace representation also holds after linearly filtering the current
image and the eigenimages. This filtering is the key to the illumination insensitiv-
ity. Additionally, a voting algorithm based on a randomly drawn subset of pixels
of the images makes the approach insensitive to highlights, noise and occlusions.
The drawback of this method is that it assumes that the reference images and the
current image are captured at one certain orientation of the robot. To meet this
assumption either the heading of the robot is restricted to that orientation or
an additional sensor for orientation, e.g. a compass, is needed. Both are rigorous
limitations for the practical use on mobile robots.

In a recent publication [10] a rotation invariant representation of eigenimages
was presented. But this representation is not robust, computationally expensive
and still sensitive to changes in illumination.

There are also other representations of panoramic images, that are invariant
to rotation [11]. But again they are neither robust nor illumination insensitive.

In this work, we propose the combination of the robust illumination insen-
sitive eigenspace approach and sensor fusion with odometry data as a solution
to the limitations mentioned above. The basic idea is to use odometry to keep
track of the orientation of the robot, to use the predicted orientation to rotate
the current image back to the reference orientation and correct the orientation
delivered by the odometry by the response of the eigenspace framework.

In the next section we will outline the self-localization based on illumination
insensitive eigenspaces. In Section 3 we introduce our extensions and their the-
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oretical foundations. In Section 4 we present preliminary results obtained from
experiments in the RoboCup Middle-Size scenario. Finally, in Section 5 some
conclusions are drawn and future research perspectives explained.

2 Illumination Insensitive Self-Localization Using
Eigenspace

In appearance-based localization the robot is provided with a set of views of the
environment taken at several locations in the environment. These locations are
called reference locations because the robot will refer to them to locate itself in
the environment. The corresponding images are called reference images. When
the robot moves, it can compare the current view with reference images captured
during a training phase. When the robot finds which of the reference image is
more similar to the current view it can infer its position in the environment. The
problem of finding the position in the environment is reduced to the problem
of finding the best match of the current image among the reference images. A
higher localization accuracy can be achieved by interpolation between reference
points within the eigenspace, while keeping the number of reference images con-
stant. In the remainder of this section we outline the appearance-based approach
presented in [8] and its solution for illumination insensitivity.

2.1 Eigenspace Based Recognition

An eigenspace based representation is used for a compact storage of the refer-
ence images and a robust calculation of the similarity of images. To build the
eigenspace, we first represent the images from the training set as image vectors,
from which the mean image is subtracted, xi; i = 0...N −1, which form an image
matrix X = [x0 x1 ... xN−1], X ∈ Rn×N ; where n is the number of pixels in the
image and N is the number of images. These training images serve as input for
the Principal Components Analysis (PCA) algorithm, which results in a set of
p eigenimages ei, i = 1, ..., p, that span a low-dimensional eigenspace. Eigenim-
ages are selected on the basis of the variance that they represent in the training
set. Every original image xi can be transformed and represented with a set of
coefficients qij = xiej , j = 1, ..., p, which represent a point in the eigenspace.
That way, every image is approximated as x̃i =

∑p
j=1 qijej . Figure 1 depicts

the first four eigenimages for a RoboCup Middle-Size field.
The standard approach to localization is to find the coefficient vector q of

the momentary input image y by projecting it onto the eigenspace using the dot
product qi = 〈y, ei〉, so that q = [q1, ..., qp]T is the point in the eigenspace.

If we want the image y to be recognized as its most similar counterpart in the
training set (or in a representation constructed by means of interpolation, see
[12]), the corresponding coefficients have to lie close together in the eigenspace.
However, in the case when the input image is distorted, either due to occlu-
sion, noise or variation in lighting, the coefficient we get by projecting onto the
eigenspace can be arbitrarily erroneous [9].
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(a) 1st Eigenimage (b) 2nd Eigenimage

(c) 3th Eigenimage (d) 4th Eigenimage

Fig. 1. Eigenspace representation of reference images (Experiments on a RoboCup
Middle-Size field)

However, it has been shown, that one can also calculate the coefficient vector
q by solving a system of k linear equations on k ≥ p points r = (r1, ...rk)

yri
=

p∑

j=1

qjejri
1 ≤ i ≤ k (1)

using a robust equation solver and multiple hypotheses [13].

In [14] it has been shown how this method can be used to allow robust
localization in presence of occlusions. However it does not solve the problem of
illumination.

2.2 Illumination Insensitivity

The method presented in [15] takes the computations of parameters one step
further. Since Eq. (1) is linear, it also holds that (f ∗ x)(r) =

∑p
i=1 qi(f ∗ ei)(r),

where f denotes a filter kernel. This means that if we convolve both sides of the
equation with a filter kernel, the equality still holds. Therefore, we can calculate
the coefficients qi also from the filtered eigenimages if we filter the input image.

By using a set of t linear filters F we can construct a system of equations

(fs ∗ x)(r) =
p∑

i=1

qi(fs ∗ ei)(r) s = 1, ..., t. (2)

It is now possible to calculate the coefficients q either by using k points, or using
t filter responses at that single point, or a combination of these two.
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It is well known from the literature that gradient-based filters are insensitive
to illumination variations. By taking a filter bank of gradient filters in several ori-
entations, we can therefore augment the descriptive power of the representation
and achieve illumination invariance in the recognition phase.

Illumination invariant localization of a mobile robot can therefore be per-
formed as follows: once the eigenspace is built, we filter the eigenimages by a
bank of filters. Then, for localization, the momentary input image y from the
panoramic camera has to be filtered with the same filters; only after that we
retrieve its coefficient vector q using the robust equation solver. The calculated
coefficients are used to infer the momentary location of the robot.

2.3 Robust Voting

In order to robustly recover the coefficients in the presence of noise and oc-
clusions a robust voting algorithm is used. The voting consists of the following
steps: Multiple hypotheses are generated by robustly solving the sets of equations
obtained from a random selection of pixel subsets. Then the nearest neighbor
of each hypothesis in the eigenspace (coefficient vector of the closest point on
the parametric manifold) is determined. This selected coefficient vector gets a
vote. For voting we use a voting function v(d) → [0, 1] which gives votes that
are inversely proportional to the distance d of the hypothesis from its nearest
neighbor. Based on the distribution of the votes we decide whether the coeffi-
cients should be accepted (e.g. coefficients with accumulated votes above a given
threshold). We use the following voting function:

v(dij , σ) = e
−dij

2

2σ2 , (3)

where

dij = arccos
aT

i a
(t)
j

‖ai‖‖a
(t)
j ‖

(4)

is the angle between the estimated coefficient vector ai and the nearest coef-
ficient vector in the eigenspace a

(t)
j . We use the angle instead the Euclidean

distance between the coefficients as criteria, because coefficient vectors with the
same direction but different lengths represent the same image but in different
brightness. The parameter σ determines the width of the voting function.

3 Keeping Track of the Orientation

The approach presented in Section 2 has been shown to be robust against changes
in illumination, noise and occlusion. The drawback of that approach is that it
relies on reference and current images captured in one certain orientation or that
the orientation is known trough an additional sensor, e.g. a compass. The reason
for that limitation is that the eigenspace-based representation is not invariant to
rotation. Therefore, only images taken in the same orientation as the reference
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images can be recognized in a robust way. Instead of capturing images at one
orientation one could take images at several orientations (e.g. all 10◦), but this
approach has several drawbacks: First, the number of images and therefore the
training time is significantly increased. Second, and more important due to the
larger set of images which need to be represented, the number of eigenimages
needs to be increased, which on the one hand increases the running time and
more importantly as experiments have demonstrated decreases the robustness
of the whole approach.

In order to overcome this limitation we use a combination of the robust
eigenspace-based approach and sensor fusion with odometry data. The basic
idea is to use a Kalman filter to keep track of the orientation of the robot. The
odometry data are fused into the filter and provide a prediction of the orientation
Θ of the robot. This prediction is used to rotate the current image back into the
orientation the reference images were captured. This rotated image is used for
the localization step. But, instead of using only one rotated image we repeat the
localization step with a set of images rotated by angles drawn from the predictive
distribution. That image which gets the highest response from the recognition
process determines the new position of the robot. Its corresponding rotation is
used to correct the Kalman filter.

3.1 Sensor Fusion

Sensor fusion of odometry data and data from other sensors (e.g., vision, prox-
imity sensors) with Kalman filters is a commonly applied method. So we skip a
deeper discussion of this topic. An overview on Kalman filters could be found in
[16]. But it should be mentioned that we use the fusion method presented in [17].
The method is an extension of the standard Kalman filter. It uses a bank of
Kalman filters working on the same state vector to deal with asynchronous mea-
surements. This is a common problem in real robot systems, as also in our system.

3.2 The Extended Localization

In [18] and [19] it has been shown that the distance between the coefficient of a
rotated image and the coefficient of its reference image smoothly increase with
the absolute rotation angle, while still keeping the shortest distance to its ref-
erence coefficient in the eigenspace, assuming moderate rotation. This property
is used in the development of an extension to the approach presented in Section
2 which preserves the illumination insensitivity and overcomes the limitations
cased by rotated images.

The extended localization algorithm can be outlined as follows: In a first step
N omnidirectional reference images are captured around the environment in one
certain reference orientation, i.e. ΘR = 0. The reference images are unwrapped
creating panoramic cylinders (see Figure 2). Panoramic cylinders have the ad-
vantage that rotating the original omnidirectional image is only a row wise shift
on the panoramic cylinder. Using the algorithm of section 2 the set of panoramic
cylinders is transfered into the filtered eigenspace representation.
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Fig. 2. An omnidirectional image (left) and its panoramic cylinder (right)

The localization cycle consists of the following steps: We assume that the
initial orientation is known. Odometry data are fused into a Kalman filter at
the time they are available. The Kalman filter provides a prediction for the true
orientation of the robot and its uncertainty about this orientation Θt at time
t, KF (t) → 〈Θ̂t, σ̂t〉, where 〈Θ̂t, σ̂t〉 determines a normal distribution for the
true orientation Θt of the robot. When a new omnidirectional image is cap-
tured at time t the image is transfered into its panoramic cylinder and a set of
orientation hypotheses Σt = [Θt,1, ..., Θt,M ] are randomly drawn from the dis-
tribution 〈Θ̂t, σ̂t〉. With high probability Σt contains the true orientation Θt of
the robot.

Instead of performing the recognition step only once for the captured im-
age, the recognition step is repeated M times on the captured image shifted
by −Θt,i, i = 1, ..., M . This generates M votes for all N reference images:
vij ; i = 1, ..., M ; j = 1, ..., N . The shifted images are equivalent to images
captured around the reference orientation ΘR. The property mentioned at the
beginning of this section guarantees that the shifted image i with the rotation
closest to the true orientation of the robot Θt, i = argminj(|Θt,j − Θt|), will
collect the highest votes vij for its corresponding reference image j. The cor-
responding reference position of the reference image j is reported as the new
determined location of the robot. The corresponding orientation Θi of the cap-
tured image is used as a measurement update for the Kalman filter.

4 Experimental Results

We evaluated the extended Localization by carrying out several real and simu-
lated experiments in the RoboCup Middle-Size scenario. The experiments were
conducted using robots of our RoboCup Middle-Size team [20]. Our Middle-Size
test-field served as the test environment. The test-field is a rule-compliant field
except of its size (5m x 6m). It is situated under a glass roof in an open hall.
Therefore, the field is directly effected by changes of illumination during the
day. The change of the appearance of a location on the field is illustrated in
Figure 3.
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Fig. 3. The appearance of the same location at noon (left), in the afternoon (center)
and in the evening (right)

4.1 Real Experiments

The real experiments were carried out in three runs. In a first step the field was
divided into a grid with 1 m resolution. The points on the grid served as reference
locations on the field. This lead to a total number of 42 locations. At noon for
all reference locations a reference image in the reference orientation ΘR = 0 was
captured. All reference images were transformed into a panoramic cylinder with
a resolution of 360 x 145 pixels. Using the method described in Section 2 the
reference images were transformed into the filtered eigenspace representation.
For representation only 15 of the 42 available eigenimages are enough. Due to
performance reasons we used a bank of 3 gradient filters with a 3x3 filter kernel
instead of the recommended steerable filters.

Within the experiments we used M = 5 image orientations randomly drawn
from the prediction of the Kalman filter 〈Θ̂t, σ̂t〉 and tested 50 hypotheses with
1000 randomly selected pixel for each rotated image. The σ for the voting algo-
rithm was set to 0.3. The measurement noise of the odometry data was deter-
mined during ground truth measurements [21]. The level of measurement noise
for the angle measurement was optimized by hand and was kept constant during
the experiments.

Three test runs were conducted at noon (immediately after the reference im-
ages were captured), in the afternoon and in the evening. Prior to each run the
illumination on the field was measured to document the changes in illumination
during the runs and its unsteadiness across the field. The illumination was mea-
sured on the 42 reference locations and the minimum, the maximum, the mean
and the standard deviation was calculated. The results are shown in Table 1.

Table 1. Change of illumination between the test runs

Run Min/Lux Max/Lux Mean/Lux Std.Dev/Lux
Reference/Noon 335 1288 690.9 248.8
Afternoon 219 857 498.6 157.9
Evening 111 320 203.7 63.1
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Table 2. Results of the Localization under different illumination

Test Run Trials Reference Positions Reference Positions Correct Tracks Lost
passed recognized Recognitions/%

Noon 10 225 225 100 0
Afternoon 10 231 220 95 0
Evening 10 193 161 83 2

Note that the parameters of the camera remained unchanged during capturing
the reference images and all runs and no artificial illumination was used.

The test runs were conducted as follows: For each run (noon, afternoon and
evening) the robot was randomly placed ten times on a reference location with
a random but known orientation. The robot then randomly moved around for a
while. Each time the robot passed a reference location (robot entered a cycle of
30 cm diameter around the reference location) it was recorded if the reference
location was correctly recognized. The results shown in Table 2 document clearly
the performance of the extended localization under different illumination.

In the noon and afternoon runs the robot correctly recognized nearly all
reference locations and never lost track of the orientation. The latter is crucial
for continuing correct recognition of reference locations. In the evening run the
recognition ratio decreased and the robot twice lost track of the orientation due
to the very bad illumination (see Figure 3). The lost track was caused by wrong
votings on the shifted images and their corresponding rotation, which prevented
an adequate correction of the odometry data. Note that we used the Matlab to
C++ compiler to convert the Matlab-prototype into a C++ module, executable
on the robot. That lead to a frame-rate of only 0.8 Hz. We suppose that a
speedup of the implementation will decrease the number of lost tracks, due to
the faster correction of erroneous odometry data.

4.2 Offline Experiments

To verify the smooth decreasing of votes for rotated images and the robustness
of the method against noise and occlusion we conducted two offline experiments.
First we offline calculated the votes for the rotated version of an image captured
near a reference location. Figure 4 shows the votes for an image captured in
the reference orientation ΘR near reference location 20. It clearly shows the
smooth decreasing of the votes for reference location 20 with increasing absolute
rotation angle. For an absolute angle approximately below 10◦ a clear voting for
the reference image 20 is provided. This is an encouraging result, as predictions
of the orientation with a higher error do not occur very frequently.

In the second offline experiment we evaluated the robustness of the method
against noise. Therefore, we used the images and orientations recorded in the
real run at noon. We did the same experiment as in the real run except that we
introduced a certain amount of noise into the recorded images. This is done by
randomly replacing a certain percentage of the pixels in the image by random
pixels. Figure 5 depicts an image before and after introducing 50% random pixels.
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Fig. 4. Collected votes for an image take near reference position 20 in respect to shifts
of the image

(a) (b)

Fig. 5. Original image (a) and the same image after introducing 50% random pixels (b)

Fig. 6. Recognition rate of reference locations in respect to the amount of introduced
random pixels
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(a) (b)

Fig. 7. Original image (a) and the same image after introducing 70% occlusion (b)
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Fig. 8. Recognition rate of reference locations in respect to the amount of introduced
occlusion (1000 sampled pixel and 50 hypotheses)

The results are shown in Figure 6. It shows clearly the robustness of the
method against noise. Note, due to performance reasons we used a very small
number of hypotheses (50) and selected pixels (1000) during the previous exper-
iments. Anyway, the recognition rate remained satisfyingly high until an amount
of approximately 25% of random pixels. When we increase the number of hy-
potheses or the number of selected pixels the robustness against noise increases
significantly. But of course also the computational costs raises.

In the third offline experiment we evaluated the robustness of the method
against occlusion. The third experiment was the same as the prior experiment
except that we introduced a certain amount of occlusion instead of noise. This
was done by inserting black bars with different width into the images. We used
1000 sampled pixels and tested 50 hypotheses. Figure 7 depicts an image before
and after introducing 70% occlusion.

The results are shown in Figure 8. It shows clearly the robustness of the
method against occlusion. Up to 70 % of occlusion the method is robust against
occlusion and all positions were recognized correctly.
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5 Conclusion and Future Work

In this work we propose an extension of the appearance-based self-localization
presented in [8] which overcomes the limitations of that method. The limitations
are restrictions of the heading of the robot to a reference orientation or the need
of an additional sensor for orientation. The extension is based on a combina-
tion of the illumination insensitive localization and sensor fusion with odometry
data. A prediction for orientation is used for a robust recognition process and
its rotation sensitive feedback is used to correct the odometry data. Preliminary
experiments within the RoboCup Middle-Size scenario show that the proposed
extended localization is robust against changes of illumination, noise and occlu-
sions while it overcomes the limitations mentioned above. However, a speedup of
the implementation is necessary to reliably keep track of the orientation under
very bad illumination.

Furthermore, we believe that a combination of the illumination insensitive
localization with particle filter methods will further improve the method. Es-
pecially, because the robot is unable to recover from dramatic errors in the
orientation and it has to know its initial orientation.

Currently, we are working on the application of our extended localization in
larger environments, e.g. office buildings. As the recording of reference images
and its location by hand is time consuming in large environments, we perform
research on map-building and SLAM in combination with the illumination in-
sensitive localization.
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Abstract. In this paper, we present a new approach for omnidirectional
vision-based self-localization in the RoboCup Middle-Size League. The
omnidirectional vision sensor is used as a range finder (like a laser or a
sonar) sensitive to colors transitions instead of nearest obstacles. This
makes it possible to have a more reach information about the environ-
ment, because it is possible to discriminate between different objects
painted in different colors. We implemented a Monte-Carlo localization
system slightly adapted to this new type of range sensor. The system
runs in real time on a low-cost pc. Experiments demonstrated the robust-
ness of the approach. Event if the system was implemented and tested
in the RoboCup Middle-Size field, the system could be used in other
environments.

1 Introduction

Localization is the fundamental problem of estimating the pose of the robot
inside the environment. Several techniques based on the Monte-Carlo localization
(MCL) approach was developed. Two kinds of sensors have been used: range
finder devices (i.e. lasers and sonars) and vision sensors (i.e. perspective and
omnidirectional cameras). The range finders are used to perform scans of the
fix obstacles around the robot and the localization is calculates matching those
scans with a metric map of the environment [1, 12]. The vision sensors are used
to recognize characteristic landmarks subsequently matched within a map [3, 10]
or to find the reference image most similar to the image currently grabbed by
the robot (without a map) [14, 8, 9]. In our approach we use an omnidirectional
vision system as sensor to emulate and enhance the behaviour of range-finder
devices. In this work MCL (Monte-Carlo localization) was implemented based on
the approach proposed in [1, 12]. We adapted that approach to take into account
the new information given by this sensor. Experiments are made in a typical
RoboCup environment (a 8x4 m soccer field), characterized by the lack of fix
obstacles that could act as reference for a range finder sensor (as it was with the
walls surrounding the field until RoboCup 2001). In this situation it is extremely
hard to perform robust localization using conventional range finder devices.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 97–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Omnidirectional Vision as an Enhanced Range Finder

RoboCup is a strongly color coded environment: every object has an unique
color associated to it. Usually, the image is color segmented before any image
processing. In our system only the pixels along the rays depicted in Fig.1 are
segmented into the 8 RoboCup colors 1 plus a further class that include all colors
not included in the former classes (called unknown color). A look-up table is built
to obtain a real time color segmentation. The image processing software scan the
image for what we called chromatic transitions of interest. We are interested in
green-white, green-blue and green-yellow transitions. These transitions are related
to the structure of the RoboCup fields. In fact, lines are white, goals and corner
posts are blue or yellow and the play-ground is a green carpet. To detect a colour
transition is more robust with respect to colour calibration than to identify the
colour of every single pixel, as reported in [11].

Fig. 1. The scanning algorithm at work: green-white chromatic transitions are high-
lighted with red crosses, green-yellow transitions with blue crosses, black pixels repre-
sent the sample points used for the scan that is performed in a discrete set of distances.
No blue-green transitions are detected: robot is far away from the blue goal. Notice the
crosses in the outer part of the mirror: this part is used for low distance measures

1 In RoboCup environment the ball is red, the lines are white, one goal is blue and
the other is yellow, the robots are black, the robots’ marker are cyan and magenta.
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We measure the distance of the nearest chromatic transitions of interest along
60 rays as shown in Fig.1. This enable our “range finder” to scan a 360 degree
field of view. Our omnidirectional vision sensor is composed by a camera pointed
to a multi-part mirror with a custom profile [6]. The inner part of the mirror is
used to measure objects farther than 1 m away for the robot, while the outer
part is used to measure objects closer than 1 m from the robot. We first scan
for color transition close to the robot body in the outer mirror part, and then
we scan the inner part of the image up to some maximum distance.

The distances to the nearest color transition are stored in three vectors (in
the following called ”scans”), one for each color transition. During the radial
scan, we can distinguish three situations:(1) A chromatic transition of interest
is found. The real distance of that point is stored in the corresponding vector;
(2) there are no transitions of interest, a characteristic value called INFINITY is
stored in the vector that mean no transition can be founded along this ray; (3) a
not expected transition is found: a FAKE RAY value is stored in the vector. This
means something is occluding the vision sensor. All rays with FAKE RAY value
are discarded in the matching process (we called this ray discrimination). The
performances of the system under occlusion are described in [7]. The scanning
is not performed in a continuous way along the ray but sampling the image on
a discrete subsets of image pixels corresponding to a sampling step of 4 cm in
the real world.

3 Monte-Carlo Localization

The Monte-Carlo localization (MCL) is a well-known probabilistic method, in
which the current location of the robot is modelled as a posterior distribution
(Eq.1) conditioned on the sensor data and represented by a set of weighted
particles. Each particle is an hypothesis of the robot pose, and it is weighted
according to the posteriors. The posterior probability distribution of the robot
pose is called also the robot belief. The belief about the robot position is updated
every time the robot makes a new measurement (i.e. it grabs a new image or a
new odometry measure is available). It can be described by:

Bel(lt) = αp(ot|lt)
∫

p(lt|lt−1, at−1)Bel(lt−1)dlt−1 (1)

where lt = (xt, yt, θt) is the robot pose at time t and at and ot are respectively
the sensor and the odometry readings at the time t. To calculate Eq. 1, it is nec-
essary the knowledge of two conditional densities, called motion model (Sec. 3.1)
and sensor model (Sec. 3.2). The motion model expresses the probability the
robot moved to a certain position given the odometry measures (kinematics).
The sensor model describes the probability of having a sensor measurement in
a certain pose. The motion model and the sensor model depend respectively
on the particular robot platform and on the particular sensor. The localization
method is performed in 3 steps: (1) All particles are moved according to the
motion model of the last kinematics measure; (2) The weights of the particles
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are determined according to the sensor model for the current sensor reading;
(3) A re-sampling step is performed: high probability particles are replicated,
low probability ones are discarded. The process repeats from the beginning. For
more details please refer to [1, 12].

3.1 Motion Model

The motion model p(lt|lt−1, at−1) is a probabilistic representation of the robot
kinematics, which describes a posterior density over possible successive robot
poses. We implemented the MCL system on an holonomic robot, called Barney.
The peculiarity of this robot is that it can move in any direction without the need
of a previous rotation. Movement between two poses lt−1 = (xt−1, yt−1, θt−1) and
lt = (xt, yt, θt) can so be described with (αu, T, θf ), where αu is the difference
of heading between the two poses, T is the translation and θf is the motion
direction. Updating the robot position according only to the kinematics does
not take into account errors given by odometry inaccuracy and possible collisions
of the robot with other obstacles. Therefore, a random noise term is added to
the values given by the last odometry reading. Noise is modelled with Gaussian
zero centered random variables (Δα, ΔT, Δrr, ΔrT). They depend on both the
amount of translation and of rotation. So, the motion model can be written as:

α′
u = αu + Δα(αu);

T ′ = T + ΔT(T );
θ′ = θ + Δrr(θ) + ΔrT(T ).

3.2 Sensor Model

The sensor model p(ot|lt) describes the likelihood to obtain a certain sensor
reading given a robot pose. As introduced in Sec. 3, the sensor model is used to
compute the weights of the particles. For each particle j, located in the pose ljt ,
the associated weight is proportional to p(ot|ljt ) (i.e. to the likelihood of obtaining
the sensor reading ot when the robot has pose ljt ). To calculate p(ot|ljt ), we
need to know the ”expected scan” o(lt). The expected scan is the scan an ideal
noise-free sensor would measure in that pose, if in the environment there are no
obstacles. Given l the robot pose, the expected scan o(l) for some color transition
is composed by a set of expected distances, one for each αi, that are the angles
relative to the robot of an individual sensor ray (Fig. 3): o(l) = {g(l, i)|0 ≤ i <
N RAY S}. We can compute the expected distances g(l, i) for an ideal noise-free
sensor using ray tracing technique considering both metric maps in Fig. 2. The
likelihood p(ot|lt) can be calculated as p(ot|lt) = p(ot|o(lt)). In other words, the
probability p(ot|o(lt)) models the noise in the scan by the expected scan [1, 12].

When using a sonar or a laser, like in [1, 12], the expected scan is computed
from a metric map of the environment. The expected scan is obtained simulating
the reflections of the sonar or laser beams against the walls and the fix obstacles.
In the RoboCup Middle-Size field, a similar approach was used, very effectively,
by the CS Freiburgh Team [13], until RoboCup 2001. However, when in 2002
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(a) (b)

Fig. 2. The metric maps used for expected distances computation: in (a) are repre-
sented the fix obstacles, in (b) are represented all the chromatic transitions of interest
of the environment

the walls surrounding the field were removed, the reliability of this approach
was impaired by the lack of fix features detectable by a range-finder sensor. In
Fig. 2(a), are presented the fix obstacles that a range-finder sensor could detect.
In the Middle-Size field with the 2003 layout, the only detectable objects are
the two goals and the four corner-posts. With the new sensor we propose, we
can detect not only the fix objects in the field shown in Fig. 2(a), but also all
color transitions existing in Fig. 2(b). This enable us to detect much more fix
features performing a more reliable ”scan matching”. The map in Fig. 2(b)shows
the chromatic characteristics of the environment. We use this map to compute
the expected scan finding with a ray-tracing approach the nearest chromatic
transition of interest for every pose, as depicted in Fig. 3. Moreover, we use
the information about the fix obstacles extracted from the map of Fig. 2(a) to
improve the scanning process, e.g. if we find a yellow pixel, this is a goal or a
corner-post, so it is not worth looking farther for a white line and so we stop the
scanning process along this ray.

Another difference with respect to the usual range-finders is that we do not
have just one scan of the environment. We have three scans for every pose of
the robot: one for every chromatic transition of interest (green-white, green-blue
and green-yellow, see Sec. 2). Moreover, we can filter out some rays when a fake
transition is detected (i.e. a chromatic transition that we are not looking for,
see Sec. 2). In Fig. 3, two examples in which are compared the expected scans
(top) and the real sensor scans (bottom) is presented. In the middle is the image
grabbed by the robot. On the left is depicted the scan looking for the green-white
chromatic transition of interest, on the right the scan looking for the green-yellow
chromatic transition of interest. Due to the image noise, it might happen that a
color transition is not detected or is detected at the wrong distance or is falsely
detected (as shown in Fig. 3). So, we need to create a model of the sensor’s noise.

Sensor Noise. To compute p(o|o(l)), the first step is to model the sensor noise.
We implemented a three steps process. First, we modelled the probability a single
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(a) Expected scan (a) Expected scan

(b) Real image (b) Real image

(c) Measured scan (c) Measured scan

Fig. 3. Two examples of expected and measured scans. The one on the left for the
green-white transition, the other on the right for the green-yellow transition. Given a
pose, in (a) is represented the expected scan for an ideal noise-free sensor in a free
environment. In (b) is shown the frame grabbed by the robot in that pose, in (c) is
represented the corresponding measured scan

ray of the scan correctly detects the chromatic transition of interest. Second,
we take into account all rays and we calculate a single probability value that
the measured scan match the expected scan to the corresponding chromatic
transitions of interest. Third, the three probability values of the three measured
scans are combined to obtain a single value.
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Let us describe these steps in more details. The scan performed by the sensor
is composed by a set of distances, one for each αi: o = {oi|0 ≤ i < N RAY S}.
To compute p(oi|l), i.e. the probability to obtain for a single ray a distance oi

given the pose l, we can consider directly the single expected distance g(l, i),
so we can write p(oi|l) = p(oi|g(l, i)). To calculate p(oi|l), we collected a large
number of omnidirectional images in different known poses in the field (in total
about 2.000 images). Then, with the scan algorithm we measure the distance
of the chromatic transitions of interest (As an example, the probability density
of the measured distance p(oi|l) for the green-white color transition is plotted
in Fig. 4(a)). We described the measured probability density with the mixture
of three probability density of Eq. 2. The numerical values of the parameters
in Eq. 2 are calculated with a modified EM algorithm iteratively run on the
2000 images [2]. The resulting mixture, for the green-white transition, is plotted
in Fig. 4(b). The three terms in Eq. 2 are respectively: an Erlang probability
density, a Gaussian probability density and a discrete density. The Erlang vari-
able models wrong readings in the scan caused by image noise and non-perfect
color segmentation. The index n depends on the profile of the omnidirectional
mirror used in the sensor. The Gaussian density models the density around the
maximum likelihood region, i.e. the region around the true value of the expected
distance. The discrete density represents the probability of obtaining an INFIN-
ITY value for the distance, as described in Sec. 2.

p(oi|l) = ζe(
βnon−1

i e−βoi1(oi)
(n − 1)!

) + ζg
1√
2πσ

e
−(oi−g(l,αi))

2

2σ2 + ζdδ(oi − ∞) (2)

where ζe, ζg, ζd are the mixture coefficients, with ζe + ζg + ζd = 1. We computed
a different mixture for every different chromatic transition.

Once the p(oi|l) is computed, it is possible to compute the probability of
the whole scan given a pose l multiplying all the p(oi|l), Eq. 3. To cope with
unexpected measures due to occlusion of the scans by the moving objects in the
environment (i.e. the other robots and the ball), we filtered out all rays which
distance oi equal the FAKE RAY value (φ in the formulas). This is the process
called ray discrimination, see Sec. 2 (we discussed more in detail this topic in
[7]). The detection of occluding obstacles along the rays of a scan is very frequent
in the densely crowded environment of the Middle-Size RoboCup field. This rays
discrimination allow us to avoid to use other techniques, e.g. distance filters [5],
that can affect negatively the computational performance of the system.

p(o|l) =
∏

{i|oi �=φ}
p(oi|l) =

∏

{i|oi �=φ}
p(oi|g(l, i)) (3)

3.3 Weights Calculation

Returning to Monte Carlo Localization, we are now able to compute, the weight
w(j) associated to each particles j. We first calculate the quantity w̄(j) = p(o|lj)
using (3). Subsequently, all w̄(j) are normalized such that

∑
j w̃(j) = 1
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(a) (b)

Fig. 4. In (a) the distribution of the measured distances for an expected known dis-
tance. There is a peak for the expected distance. The measures before the expected
one are due to image noise. The high number of maximum distance measures means no
chromatic transition was detected. In (b) the density p(o|l) that represent our sensor
model computed using EM-algorithm, mathematically described by Eq. 2

w̃ =
w̄(j)

∑
j w̄(j) (4)

Our system scans the acquired image for the three chromatic transitions of inter-
est. This ensures three scans for every frame, so three weight values are associated
to every particles. To obtain a single weight value, we compute the product of
the three weights (Eq. 5), and re-normalize all weights with (4) again.

w(j) =
N∏

k=1

w̃
(j)
k (5)

In Fig. 5, we give a pictorial visualization of the weights calculated by the
three different scans of the three chromatic transition of interest. The real pose
of the robot is marked with the arrow. Higher weight values are depicted as
darker points, lower weight values are depicted as lighter points. In Fig. 5 (a),
are represented the weight contributions calculated by the scan looking for the
green-white transition. One can notice that, due to the symmetry of the white
lines in the field two symmetric positions resulted to have high likelihood. In
Fig. 5 (b), are depicted the weight contributions calculated by the scan looking
for the green-blue transition. One can notice that all positions far away from the
blue goal have a high likelihood, because no green-blue transition was found in
the image scan. In Fig. 5 (c), are represented the weight contributions calculated
by the scan looking for the green-yellow transition. One can notice there is an
approximate symmetry around at the yellow goal. All these contributions are
combined with Eq.5 to calculate the overall weights and depicted in Fig. 5 (d).
Here, the weights with higher values are clustered only around the actual position
of the robot.
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(a) green-white (b) green-blue

(c) green-yellow (d) overall

Fig. 5. Probability distributions p(ot|lt) for all possible positions l = (x, y, θ) of the
robot in the field given the scans of a single image. Darker points corresponds to
high likelihood. The arrow represents the actual robot pose. In (a) is represented the
probability given the scan for transition white, in (b) for transition blue, in (c) for
transition yellow, in (d) the three are combined

In order to improve the performance of the system, the distances in the
environment are quantized in a grid of 5x5 cm cells, in a way similar to [5]. The
expected distances for all poses and the probabilities p(oi|g(l, i)) for all g(l, i)
can be pre-computed and stored in six (two for each chromatic transition) look-
up tables. In this way the probability p(oi|l) can be quickly computed with two
look-up operations, this enables our system to work in real-time at 10 Hz.

4 Experiments

We evaluated our approach on an holonomic custom-built platform, in a 8x4 m
soccer field. The robot was equipped with the omnidirectional sensor described
in Sec. 2. We tested the system on five different paths (an example path is shown
Fig. 6). For each path we collected a sequence of omnidirectional images with the
ground truth positions where those images were grabbed and with the odometry
readings between two consecutive positions. In order to take into account the
odometry errors, robot movements were performed by remote robot control. We
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(a) (b)

(c) (d)

Fig. 6. A sequence of global localization using 1000 particles: the gray circle represents
actual robot pose, the red line represents ground-truth path, the black line represents
the estimated path of the robot, the black points represent the particles. In (a) particles
are uniformly distributed (no knowledge is available on robot position), in (b), after
moving 2 meters away and grabbing 4 images and getting 4 odometry readings, the
particles are condensed around three possible poses. In (c), after 4 meters, 6 images
and 6 odometry readings, uncertainty is solved and particles are condensed around the
actual pose of the robot. In (d) after 14 steps: the position of the robot is well tracked.
The particles distributed in the environment are the particles scattered to solve the
kidnapped robot problem

tested our algorithms using different amount of samples calculating the mean
localisation error for the three fundamental localization problems: (1) global lo-
calization (the robot must be localized without any a priori knowledge on the
actual position of the robot, i.e. Fig. 6 (a)(b)), (2) position tracking (a well local-
ized robot must maintain the localization, i.e. Fig. 6 (c)(d)) and (3) kidnapped
robot. The kidnapped robot is the problem in which a well-localized robot is
moved to some other pose without any odometry information: this problem can
frequently occur in an high populated environment like RoboCup, where often
robots push each other attempting to win the ball.

In Fig. 7(a) is shown the error for a global localization sequence using 100,
500, 1000, 10000 samples in the same reference path. The reactivity and the
accuracy of the localisation system increase with the number of samples, but
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(a) (b)

Fig. 7. The plots compares the performance of the system varying the number of the
samples used in MCL. In (a) global localization errors for a fixed path with different
amount of samples, in (b) re-localization after kidnapped robot problem with different
rate of uniformly distributed particles. Notice that with 20% the re-localization is faster
but the average position tracking error is higher

a large number of samples like 10000 increases dramatically the computational
load. A number of 1000 particles is perfectly compatible with real-time require-
ments and assures a robust and accurate localisation. In Fig. 7(b) is shown
the error for a kidnapped robot episode using 1000 samples and different rate
of samples uniformly distributed in the environment [4]. With a higher rate of
samples scattered in the environment the re-localization is faster (there are more
possibility that the samples are distributed close to the robot position), but the
average error is higher due to the lower number of sample clustered closed to
the robot pose during position tracking.

Finally, we tested our approach in the conventional situation of the posi-
tions tracking: in Fig. 8 is shown the average and the maximum error for all
our reference paths using different amount of samples. Like in the global posi-

Fig. 8. Statistical evaluation of our system in the position tracking problem for all
our reference paths. Accuracy (average error end maximum error) is represented for
different amount of samples (50,100,500,1000,5000,10000)
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tion problem, with 1000 samples is possible to achieve good accuracy and an
acceptable maximum error.

5 Conclusions

This paper presents a novel approach for vision-based Monte Carlo localization.
Experiments in the Middle-Size RoboCup domain were presented. An omni-
directional vision sensor mounted on a holonomic robot platform was used in
an innovative way to find the distance from the robot of the nearest chromatic
transitions of interest. This approach mimics and enhances the way conventional
range-finder sensors, like lasers and sonars, find the distance of the nearest ob-
jects. The proposed sensor enables to extract more features from the environment
thanks to the capability to distinguish different chromatic transitions of interest.
The well-known Monte Carlo localization technique was adapted to the charac-
teristics of the sensor. The EM algorithm was used to extract the parameters
of the sensor model from experimental data. We presented experiments in a
actual Middle-Size RoboCup field to prove the robustness and the accuracy of
our technique. We are porting the system to other environment than RoboCup.
Depending on the environment, different chromatic transitions of interest can
be identified. The system is designed to automatically recalculate the expected
scans given the metric and chromatic maps of the new environment.
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Abstract. In the RoboCup four-legged league, robots mainly rely on
artificial coloured landmarks for localisation. As it was done in other
leagues, artificial landmarks will soon be removed as part of the RoboCup
push toward playing in more natural environments. Unfortunately, the
robots in this league have very unreliable odometry due to poor modeling
of legged locomotion and to undetected collisions. This makes the use of
robust sensor-based localization a necessity. We present an extension of
our previous technique for fuzzy self-localization based on artificial land-
marks, by including observations of features that occur naturally in the
soccer field. In this paper, we focus on the use of corners between the
field lines. We show experimental results obtained using these features
together with the two nets. Eventually, our approach should allow us to
migrate from landmarks-only to line-only localisation.

Keywords: Autonomous robots, fuzzy logic, image processing, localiza-
tion, state estimation.

1 Introduction

The current soccer field in the Four-Legged Robot League has a size of ap-
proximately 4, 5m · 3m, and the only allowed robot is the Sony AIBO [10]. The
exteroceptive sensor of the robot is a camera, which can detect objects on the
field. Objects are color coded: there are four uniquely colored beacons, two goal
nets of different color, the ball is orange, and the robots wear colored uniforms.

However, in a real soccer field there are not characteristic colored cues. The
rules of RoboCup are gradually changed year after year in order to push progress
toward the final goal. Removal of the artificial colored beacons will be the next
step in this direction. Accordingly, some preliminary development has been done
by some teams in this league to allow the robot to self-localize without using the
artificial beacons.

For instance, the German Team uses a sub-sampling technique to detect pixels
that belong to the field lines. These pixels are used in a Monte-Carlo localisation
(MCL) schema [4]. MCL is a probabilistic method, in which the current location

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 110–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of the robot is modeled as the density of a set of particles. Each particle can
be seen as the hypothesis of the robot being located at that position. Using
only a small number of samples, it increases the stability of the localization by
maintaining separate probabilities for different edge types for each sample. These
probabilities are only adapted slowly.

This paper describes the process of self-localization using the field lines as
a source of features. In fact, what it is used are the corners produced by the
intersection of the field lines, instead of the classical approach of using the line
segments. Then, these corners are treated as natural landmarks in a technique
based on [5], which uses fuzzy logic to account for errors and imprecision in
visual recognition of landmarks and nets, and for the uncertainty in the estimate
of robot’s displacement. This technique allows for large odometric errors and
inaccurate observations with excellent results. However, it should be noted that
the idea of corner-based localisation presented here could also be incorporated
into other localisation approaches, like MCL.

2 Perception

The AIBO robots [10] use a CCD camera as the main exteroceptive sensor.
The perception process is in charge of extracting convenient features of the
environment from the images provided by the camera. As the robot will localize
relying on the extracted features, both the amount of features detected and their
quality will clearly affect the process. Currently the robots rely only on coloured
landmarks for localization, and thus the perception process is based on color
segmentation for detecting the different landmarks. Soon artificial landmarks
will be removed, as it was done in other leagues. For this reason, our short term
goal is to augment the current landmark based localization with information
obtained from the field lines, and our long term goal is to rely only on the field
lines for localisation.

Because of the League rules all the processing must be done on board and
for practical reasons it has to be performed in real time, which prevents us from
using time consuming algorithms. A typical approach for detecting straight lines
in digital images is the Hough Transform and its numerous variants. The vari-
ous variants have been developed to try to overcome the major drawbacks of the
standard method, namely, its high time complexity and large memory require-
ments. Common to all these methods is that either they may yield erroneous
solutions or they have a high computational load.

Instead of using the field lines as references for the self-localization, we de-
cided to use the corners produced by the intersection of the field lines (which
are white). The two main reasons for using corners is that they can be labeled
(depending on the type of intersection) and they can be tracked more appropri-
ately given the small field of view of the camera. In addition, detecting corners
can be more computationally efficient than detecting lines. There are several
approaches, as reported in the literature, for detecting corners. They can be
broadly divided into two groups:
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(a) (b)

Fig. 1. Brightness gradient-based detector. (a) From raw channel. (b) From smoothed
channel. The detected corners are indicated by a white small square

– Extracting edges and then searching for the corners. An edge extraction
algorithm is pipelined with a curvature calculator. The points with maximum
curvature (partial derivative over the image points) are selected as corners.

– Working directly on a gray-level image. A matrix of “cornerness” of the
points is computed (product of gradient magnitude and the rate of change
of gradient direction), and then points with a value over a given threshold
are selected as corners.

We have evaluated two algorithms that work on gray-level images and detect
corners depending on the brightness of the pixels, either by minimizing regions
of similar brightness (SUSAN) [8] or by measuring the variance of the directions
of the gradient of brightness [9]. These two methods produce corners, without
taking into account the color of the regions. As we are interested in detecting
field lines corners, the detected corners are filtered depending on whether they
come from a white line segment or not.

The gradient based method [9] is more parametric, produces more candidate
points and requires similar processing capabilities than SUSAN [8], and thus it
is the one that we have selected to implement corner detection in our robots.

Because of the type of camera used [10], there are many problems associated
to resolution and noise. The gradient based method detects false corners in
straight lines due to pixelation. Also, false corners are detected over the field due
to the high level of noise. These effects are shown in Fig. 1 (a). To cope with the
noise problem, the image is filtered with a smoothing algorithm. Fig. 1(̇b) shows
the reduction in noise level, and how it eliminates false detections produced by
this noise (both for straight lines and the field).

The detected corners are then filtered so that we keep only the relevant ones,
those produced by the white lines over the field. For applying this color filter,
we first segment the raw image. Fig. 2 (b) shows the results obtained using a
threshold technique for a sample image. We can observe that this technique
is not robust enough for labeling the pixels surrounding the required features.
Thus, we have integrated thresholding with a region-based method, namely the
Seed Region Growing (SRG), by using the pixels classified by the a conservative
thresholding as seeds from which we grow color regions. (See [11] for details.)
The resulting regions for our image are shown in Fig. 2 (c). Finally, we apply a
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(a) (b) (c) (d)

Fig. 2. Feature detection. (a) RGB image. (b) Segmented image by thresholding.
(c) Segmented image by seeded region growing. (d) Gradient-based detected corners
(white) and color-based filtered corners (black). The two detected corner-features are
classified as a C and a T, respectively

color filter for all corners obtained with the gradient-based method. We show in
Fig. 2 (d) the corners obtained with the gradient-based method (white) and the
corners that comply with the color conditions (black).

Once we have obtained the desired corner pixels, these are labeled by looking
at the amount of field pixels (carpet-color) and line or band pixels (white) in
a small window around the corner pixel. Corners are labeled according to the
following categories.

Open Corner. A corner pixel surrounded by many carpet pixels, and by a
number of white pixels above a threshold.

Closed Corner. A corner pixel surrounded by many white pixels, and by a
number of carpet pixels above a threshold.

Net Closed Corner. A corner surrounded by many white pixels, and by a
number of carpet and net (blue or yellow) pixels above a threshold.

Note that in order to classify a corner pixel, we only need to explore the
pixels in its neighborhood. From these labeled corners, the following features are
extracted.

Type C. An Open corner nearby of a closed corner. This feature can be
detected in the goal keeper area of field.

Type T-field. Two closed corner. Produced by the intersection of the walls
and the inner field lines.

Type T-net. A closed corner nearby of a net closed corner. Produced by
the intersection of goal field lines and the net.

In Fig. 2 (d), four detected corner pixels have been combined into two corner-
features, respectively classified as a C and a T-field.

The resulting corner-features, together with the landmarks and the nets, are
used for localizing a robot in the field. In the rest of this paper, we show how
to represent the uncertainty associated to these features, and how to use these
features in our fuzzy localization technique in order to obtain an estimate of the
robot position.
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3 Uncertainty Representation

3.1 Fuzzy Locations

Location information may be affected by different types of uncertainty, includ-
ing vagueness, imprecision, ambiguity, unreliability, and random noise. An uncer-
tainty representation formalism to represent locational information, then, should
be able to represent all of these types of uncertainty and to account for the dif-
ferences between them. Fuzzy logic techniques are attractive in this respect [6].
We can represent information about the location of an object by a fuzzy subset
μ of the set X of all possible positions [12, 13]. For instance, X can be a 6-D
space encoding the (x, y, z) position coordinates of an object and its (θ, φ, η)
orientation angles. For any x ∈ X, we read the value of μ(x) as the degree of
possibility that the object is located at x given the available information.

Fig. 3 shows an example of a fuzzy location, taken in one dimension for
graphical clarity. This can be read as “the object is believed to be approximately
at θ, but this belief might be wrong”. Note that the unreliability in belief is
represented by a uniform bias b in the distribution, indicating that the object
might be located at any other location. Total ignorance in particular can be
represented by the fuzzy location μ(x) = 1 for all x ∈ X.

3.2 Representing the Robot’s Pose

Following [5], we represent fuzzy locations in a discretized format in a position
grid: a tessellation of the space in which each cell is associated with a number
in [0, 1] representing the degree of possibility that the object is in that cell. In
our case, we use a 3D grid to represent the robot’s belief about its own pose,
that is, its (x, y) position plus its orientation θ. A similar approach, based on
probabilities instead of fuzzy sets, was proposed in [3].

This 3D representation has the problem of having a high computation com-
plexity, both in time and space. To reduce complexity, we adopt the approach
proposed by [5]. Instead of representing all possible orientations in the grid, we
use a 2D grid to represent the (x, y) position, and associate each cell with a
trapezoidal fuzzy set μx,y = (θ,Δ, α, h, b) that represents the uncertainty in the
robot’s orientation. Fig. 3 shows this fuzzy set. The θ parameter is the center, Δ

Fig. 3. Fuzzy set representation of an angle measurement θ
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is the width of the core, α is the slope, h is the height and b is the bias. The latter
parameter is used to encode the unreliability of our belief as mentioned before.

For any given cell (x, y), μx,y can be seen as a compact representation of a
possibility distribution over the cells {(x, y, θ) | θ ∈ [−π, π]} of a full 3D grid.
The reduction in complexity is about two orders of magnitude with respect to a
full 3D representation (assuming a angular resolution of one degree). The price
to pay is the inability to handle multiple orientation hypotheses on the same
(x, y) position — but we can still represent multiple hypotheses about different
positions. In our domain, this restriction is acceptable.

3.3 Representing the Observations

An important aspect of our approach is the way to represent the uncertainty
of observations. Suppose that the robot observes a given feature at time t. The
observed range and bearing to the feature is represented by a vector −→r . Knowing
the position of the feature in the map, this observation induces in the robot a
belief about its own position in the environment. This belief will be affected by
uncertainty, since there is uncertainty in the observation.

In our domain, we consider three main facets of uncertainty. First, impreci-
sion in the measurement, i.e., the dispersion of the estimated values inside an
interval that includes the true value. Imprecision cannot be avoided since we
start from discretized data (the camera image) with limited resolution. Second,
unreliability, that is, the possibility of outliers. False measurements can originate
from a false identification of the feature, or from a mislabelling. Third, ambi-
guity, that is, the inability to assign a unique identity to the observed feature
since features (e.g., corners) are not unique. Ambiguity in observation leads to
a multi-modal distribution for the robot’s position.

All these facets of uncertainty can be represented using fuzzy locations. For
every type of feature, we represent the belief induced a time t by an observation
−→r by a possibility distribution St(x, y, θ|−→r ) that gives, for any pose (x, y, θ), the
degree of possibility that the robot is at (x, y, θ) given the observation −→r . This
distribution constitutes our sensor model for that specific feature.

The shape of the St(x, y, θ|−→r ) distribution depends on the type of feature.
In the case of net observations, this distribution is a circle of radius |−→r | in
the (x, y) plane, blurred according to the amount of uncertainty in the range
estimate. Fig. 4 and 5 show an example of this case. In the figure, darker cells
indicate higher levels of possibility. We only show the (x, y) projection of the
possibility distributions for graphical clarity.

Note that the circle has a roughly trapezoidal section. The top of trapezoid
(core) identifies those values which are fully possible. Any one of these values
could equally be the real one given the inherent imprecision of the observation.
The base of the trapezoid (support) identifies the area where we could still
possibly have meaningful values, i.e., values outside this area are impossible
given the observation. In order to account for unreliability, then, we include
a small uniform bias, representing the degree of possibility that the robot is
“somewhere else” with respect to the measurement.
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(a) (b)

Fig. 4. Belief induced by the observation of a blue net (a) and a yellow net (b). The
triangle marks the center of gravity of the grid map, indicating the most likely robot
localization

(a) (b)

Fig. 5. Belief induced by the observation of a feature of type C (a) and T (b). Due to
symmetry of the field, the center of gravity is close to the middle of the field

The St(x, y, θ|−→r ) distribution induced by a corner-feature observation is the
union of several circles, each centered around a feature in the map, since our
simple feature detector does not give us a unique ID for corners. Fig. 5 shows
an example of this. It should be noted that the ability to handle ambiguity in
a simple way is a distinct advantage of our representation. This means that we
do not need to deal separately with the data association problem, but this is
automatically incorporated in the fusion process (see below). Data association
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is one of the unsolved problems in most current self-localization techniques, and
one of the most current reasons for failures.

4 Fuzzy Self-Localization

Our approach to feature-based self-localization extends the one proposed by
Buschka et al in [5], who relied on unique artificial landmarks. Buschka’s ap-
proach combines ideas from the Markov localization approach proposed by Bur-
gard in [3] with ideas from the fuzzy landmark-based approach technique pro-
posed by Saffiotti and Wesley in [7].

The robot’s belief about its own pose is represented by a distribution Gt on
a 2 1

2D possibility grid as described in the previous section. This representation
allows us to represent, and track, multiple possible positions where the robot
might be. When the robot is first placed on the field, G0 is set to 1 everywhere
to represent total ignorance. This belief is then updated according to the typical
predict-observe-update cycle of recursive state estimators as follows.

Predict. When the robot moves, the belief state Gt−1 is updated to Gt using a
model of the robot’s motion. This model performs a translation and rotation
of the Gt−1 distribution according to the amount of motion, followed by a uni-
form blurring to account for uncertainty in the estimate of the actual motion.

Observe. The observation of a feature at time t is converted to a possibility
distribution St on the 2 1

2 grid using the sensor model discussed above. For
each pose (x, y, θ), this distribution measures the possibility of the robot
being at that pose given the observation.

Update. The possibility distribution St generated by each observation at time
t is used to update the belief state Gt by performing a fuzzy intersection
with the current distribution in the grid at time t. The resulting distribution
is then normalized.

If the robot needs to know the most likely position estimate at time t, it does
so by computing the center of gravity of the distribution Gt. A reliability value for
this estimate is also computed, based on the area of the region of Gt with highest
possibility and on the minimum bias in the grid cells. This reliability value is
used, for instance, to decide to engage in an active re-localization behavior.

In practice, the predict phase is performed using tools from fuzzy image
processing, like fuzzy mathematical morphology, to translate, rotate and blur
the possibility distribution in the grid [1, 2]. The intuition behind this is to see
the fuzzy position grid as a gray-scale image.

For the update phase, we update the position grid by performing pointwise
intersection of the current state Gt with the observation possibility distribution
St(·|r) at each cell (x, y) of the position grid. For each cell, this intersection
is performed by intersecting the trapezoid in that cell with the corresponding
trapezoid generated for that cell by the observation. This process is repeated for
all available observations. Intersection between trapezoids, however, is not nec-
essarily a trapezoid. For this reason, in our implementation we actually compute
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the outer trapezoidal envelope of the intersection. This is a conservative approx-
imation, in that it may over-estimate the uncertainty but it does not incur the
risk of ruling out true possibilities.

There are several choices for the intersection operator used in the update
phase, depending on the independence assumptions that we can make about the
items being combined. In our case, since the observations are independent, we
use the product operator which reinforces the effect of consonant observations.

Our self-localization technique has nice computational properties. Updating,
translating, blurring, and computing the center of gravity (CoG) of the fuzzy
grid are all linear in the number of cells. In the RoboCup domain we use a
grid of size 36 × 54, corresponding to a resolution of 10 cm (angular resolution
is unlimited since the angle is not discretized). All computations can be done
in real time using the limited computational resources available on-board the
AIBO robot.

(a) (b) (c)

Fig. 6. Feature detection in different states. First the opponent net is detected (upper
row), and then two C-type corners (middle and bottom rows). (a) Raw image. (b)
Segmented image. (c) Gradient-based detected corners (white) and color-based filtered
corners (black)
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5 Experimental Results

To show how the self-localisation process works, we present an example gener-
ated from the goal keeper position. Let’s suppose that the robot starts in its
own area, more or less facing the opposite net (yellow). At this moment the
robot has a belief distributed along the full field – it does not know its own
location. Then the robot starts scanning its surroundings by moving its head
from left to right. As soon as a feature is perceived, it is incorporated into the
localization process.

When scanning, the robot first detects a net and two features of type C
(Fig.6). The localization information is shown in (Fig.7), where the beliefs as-
sociated to the detection are fused. The filled triangle represents the current
estimate.

In order to cope with the natural symmetry of the field, we use unique fea-
tures, like the nets are. When the robot happens to detect the opposite net
(yellow), it helps to identify in which part of the field the robot is currently
in, and the fusion with the previous feature based location gives a fairly good
estimate of the robot position.

(a) (b) (c)

Fig. 7. Belief induced by the observation of: (a) the opponent net, (b) the first C-corner
feature, and (c) the second C-corner feature. The initial position is fully unknown
(belief is distributed uniformly over the full field)

6 Conclusions

The fuzzy position grid approach [5] provides an effective solution to the problem
of localization of a legged robot in the RoboCup domain. In this domain mo-
tion estimates are highly unreliable, observations are uncertain, accurate sensor
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models are not available, and real time operation is of essence. The fuzzy position
grid approach approach has been shown to work in real matches using artificial
landmarks and the nets. In this paper, we have extended this approach to use
naturally occurring features like corners between the field lines. Corner-feature
recognition was based on gray-level image processing for detecting corner pixels,
and on colors to reject corners that do not come from field lines and to classify
different types of corner-features.

The main advantage of this approach, given the current RoboCup rules, is
the ability of having more references for guidance, and thus the amount of time
spent for looking for the colored landmarks is reduced because when the robot
is playing for the ball or aiming at a net, at the same time it can detect corners.
In addition, in the near future colored landmarks will be eliminated from the
RoboCup fields, and techniques based on natural features will be of paramount
importance. The experimental results presented in this paper show that our
technique is suitable in that respect.
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Abstract. This paper describes a behavior-based architecture which in-
tegrates existing potential field approaches concerning motion planning
as well as the evaluation and selection of actions into a single architec-
ture. This combination allows, together with the concept of competing
behaviors, the specification of more complex behaviors than the usual
approach which is focusing on behavior superposition and is mostly de-
pendent on additional external mechanisms. The architecture and all
methods presented in this paper have been implemented and applied to
different robots.

1 Introduction

Artificial potential fields, developed by [1] and also in detail described by [2, 3],
are a quite popular approach in robot motion planning because of their capability
to act in continuous domains in real-time. By assigning repulsive force fields
to obstacles and an attractive force field to the desired destination, a robot
can follow a collision-free path via the computation of a motion vector from
the superposed force fields. Especially in the RoboCup domain, there also exist
several applications of potential functions for the purposes of situation evaluation
and action selection [4, 5, 6].

Most approaches consider potential fields only as a tool being embedded
in another architecture, e. g. a planner [4, 7]. In these cases, the potential field
implementations are limited to special tasks such as obstacle avoidance or the
computation of an appropriate passing position. Due to some limitations, which
are discussed in Sect. 2.1, the standard approach is not able to produce a behavior
of an adequate complexity for several tasks, e. g. robot soccer.

The approach presented here combines existing approaches in a behavior-
based architecture [3] by realizing single competing behaviors as potential fields.
The architecture has generic interfaces allowing its application on different plat-
forms for a variety of tasks. The process of behavior specification is realized via
a description language based on XML.

� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.
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This paper, which is based on the works of [8], is organized as follows: Sec-
tion 2 gives an overview of the structure of the architecture, the mechanisms
for behavior selection and the way of behavior specification, Section 3 shows the
possibilities of modeling the environment, the Sections 4 and 5 describe the used
approaches and some extensions for motion planning and action evaluation. Pre-
vious applications of the architecture are presented in Section 6 and the paper
ends with the conclusion in Section 7.

2 Architecture

The architecture described in this section represents a framework for modeling
the environment and a set of behaviors. It is also responsible for the task of
behavior selection.

2.1 Competition Instead of Exclusive Superposition

As above-mentioned, potential fields are based on the superposition of force
fields. Being a quite smart technique for obstacle avoidance, this approach fails
when accomplishing more complex tasks including more than one possible goal
position. An obvious example is the positioning of a goalkeeper: The usage of
attractive force fields for its standard defense position as well as for a near
ball to be cleared would lead to a partial erasement of the fields causing an
unwanted behavior. This problem could be solved by using an external entity
which selects the most appropriate goal, but this proceeding would affect the
claim of a stand-alone architecture. Therefore, different tasks have to be splitted
into different competing behaviors. This applies also to tasks based on action
evaluation, especially since they use a different computation scheme, as explained
in Sect. 5.

The approach of action selection by [9, 3], as shown in Fig. 1, has been
considered as being most suitable for this architecture. A number of indepen-
dent behaviors without any fixed hierarchy as in [10] compete for execution

v2

v1

max(a(v ),..,a(v ))1 n
V= v

...
nv

Behavior 1

W
or

ld
 M

od
el

Behavior n

Behavior 2 V

Fig. 1. The basic scheme of behavior selection. Only the behavior the output v of which
has the highest activation value a(v) will be executed
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robot−1−state robot−2−state ball−state

World Model

Goal

Robot

Ball

KickBall

Selector

Object Classes
own−state

Instances

Object States

Result

Behaviors

Fig. 2. A simplified example of a behavior for playing soccer, showing the elements of
the architecture and their interdependencies

by the respective computation of activation values which represent the current
appropriateness.

As potential fields are rather based on functions and vectors than on symbolic
representations [11], there are several facile ways to gain activation values from
single behaviors, e. g. the value of a potential function at a certain position or
the length of a computed motion vector. Constant activation values for standard
behaviors are also possible.

To refine the behavior selection scheme, various mechanisms could be used.
Among the blocking and keeping of behaviors under certain circumstances, be-
haviors can be combined with others to realize small hierarchies. For instance,
this allows the usage of a number of evaluation behaviors differentiating situa-
tions (e. g. defense or midfield play in robot soccer) respectively combined with
appropriate motion behaviors.

2.2 The Design of the Architecture

As to be seen in Fig. 2, the architecture consists of several interdependent ele-
ments:
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Object States. An object state contains information about an object in the
environment. The appropriate data has to be converted from the robot’s
sensor layer, as described in Sect. 2.3.

Object Classes. An object class is used as a template for object instances.
Due to its complex configuration, it is described in a separate section (3).

Object Instances. Obtaining all necessary parameters and data from classes
and object states, instances may be assigned to one or more behaviors. In
the case of a world model containing absolute positions, their state can also
be static.

Behaviors. In this architecture a behavior equals a potential field for motion
planning respectively an action evaluation via potential functions. These
methods are described in more detail in the Sections 4 and 5.

2.3 Embedding the Architecture in Robot Systems

To use the architecture within a special robot system, two components have to be
programmed to connect the generic interfaces with both the robot’s sensor layer
and the execution layer. Concerning the sensor component, it does not matter
whether the robot system uses localization techniques to compute a world model
using absolute positions or just reacts on sensor measurements, as long as an
appropriate mapping of the data structures may be found. The second compo-
nent has to be an interpreter which translates the abstract motion parameters
or activates chosen actions, e. g. a kick or a ball catching motion, both by setting
the corresponding motor parameters.

Fig. 3. Extracts from an XML behavior specification: a) An object class describing the
attributes of an opponent robot. b) A motion behavior for moving towards a ball
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2.4 Using XML for Behavior Specification

As afore mentioned, the architecture consists of several elements. Specifying a
behavior is therefore equivalent to specifying all entities and their interdepen-
dencies. Such modeling tasks may be managed in a better way by using external
configuration files than by programming all needed elements in a programming
language such as e. g. C++. Thus, a format for behavior specification has been
described in XML. Figure 3 shows extracts from an example behavior. The
reasons to use XML instead of defining a new grammar from scratch are its
structured format as well as the big variety and quality of existing editing, vali-
dation, and processing tools. Many XML editors, for example, are able to check
the validity of a behavior specification at run time or even assist the user during
the selection of elements and their attributes. Actually, a behavior specification
has to be transformed into an intermediate code which may easily be interpreted,
since on many embedded computing platforms, XML parsers are not available
due to resource and portability constraints.

3 Modeling of the Environment

Since the methods for motion planning and action selection, which will be ex-
plained in the following sections, are not directly configurable, the whole behav-
ior depends on the model of the environment, in particular on the parameters
of the object classes. The architecture offers various options allowing a detailed
description. An object class O may be considered as the following tuple:

O = (fO, GO, FO) (1)

With fO being a potential function, which may be chosen among several standard
functions [2] and a social function introduced by [12]. The range of the field as
well as its gradient depend directly on the parameters which have to be assigned
to fO. A geometric primitive GO is used to approximate an object’s shape. The
kind of field FO determines the shape of the region influenced by O, which may,
for example, be a circumfluent area around GO or a tangential field around the
position of the instance.

As shown in Fig. 4, an object instance excites in its environment both a
potential field and a charge [4] based on its potential function. They may be
computed separately in the following way: Let P be an arbitrary position in the
environment of an object instance and vO (P, S, GO, FO) a function computing
a vector from P to an instance I of the class O given its geometry and kind of
field as well as the object state S assigned to the instance, the value ϕI (P ) of
the potential function is to be computed as follows:

ϕI (P ) = f(|vI (P, S, GO, FO)|) (2)

Analogous, the field vector vI (P ) of the potential field is:

vI (P ) = f ′(|vI (P, S, GO, FO)|) vI (P, S, GO, FO)
|vI (P, S, GO, FO)| (3)
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a) b)

Fig. 4. In the environment of an object instance both a) a potential field and b) the
value of the potential function may be computed

Due to this duality, each object instance may be assigned to and used by motion
behaviors as well as for the evaluation of actions.

4 Motion Behaviors

All motion behaviors are mainly based on the standard motion planning ap-
proach by [1]. Some of the main extensions have been the integration of relative
motions which allow the robot to behave in spatial relations to other objects,
e. g. to organize in multi-robot formations, and the implementation of a path
planner to avoid local minima.

4.1 The General Procedure of Motion Planning

Following the standard approach as described in [1, 2, 3], a vector v can be com-
puted by the superposition of the force vectors vI of all n object instances
assigned to a behavior:

v =
n∑

I=1

vi (R) (4)

With R being the current position of the robot, v can be used to determine
the robot’s direction of motion, rotation and speed. Due to the equal interface
of all objects, this method does not have to distinguish between attractive and
repulsive objects.

4.2 Relative Motions

Assigning force fields to single objects of the environment allows the avoidance
of obstacles and the approach to desired goal positions. Nevertheless, moving to
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more complex spatial configurations, e. g. positioning between the ball and the
penalty area or lining up with several robots is not possible directly. An extension
of the Motor-Schema approach [13] to dynamically form multi-robot formations
has been developed by [14]. A quite similar technique has been used in this
architecture, but it is not limited to a set of special formations. Relative motions
are realized via special objects which may be assigned to behaviors. Such an
object consists of a set of references to object instances and a spatial relation, e. g.
between or relative-angle. These are used to dynamically compute a geometric
representation of the desired destination region, which will subsequently be used
as the object’s GO. Via an additional assignment of a potential function, such
objects may be integrated into the process of motion planning in a transparent
way among all other object instances.

4.3 Dealing with Local Minima

Local minima are an inherent problem of potential fields [15] which has, of
course, to be discussed when using this approach for motion planning since an
optimal standard solution does not exist. In the past, several heuristics have
been proposed [3], but they cannot guarantee to be effective. Due to the increas-
ing computing resources even in embedded systems, the usage of path planners
becomes practicable in real-time applications [16].

This approach uses the A* algorithm [17] for path planning. To discretize
the continuous environment, a search tree with a dynamic number and size of
branches, similar to [16] is built up (see Fig. 5). The potential functions of the
objects in the environment are used to determine the path costs.

Fig. 5. Planning a path to the ball on a Sony Four-legged Robot League field. The
dark lines show the generated search tree. The chosen path is drawn bright
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The path planner is integrated in such a way that it may be used by every
motion behavior. There also exist mechanisms to detect whether the robot enters
or leaves a local minimum and thus to use the path planner only on demand.

5 Behaviors for Action Evaluation

In this architecture, actions are considered to be indivisible entities which have
to be executed by the robot after their selection, e. g. the activation of a kick
motion. It is also possible that an action evaluation behavior is combined with
a motion behavior to determine the appropriateness of its execution.

There exist several approaches using potential functions to evaluate certain
situations or the results of planned actions. Most of them rasterize the environ-
ment into cells of a fixed size [5, 7] and compute the value of each cell to determine
the most appropriate position. A quite different approach is the Electric Field
Approach [4] which is computationally much less expensive. By computing the
anticipated world state after an action, only relevant positions have to be evalu-
ated, as shown in Fig. 6. Due to its efficient computation and the direct mapping
of possible actions, a similar approach has been integrated into the architecture.

5.1 The Procedure of Action Evaluation

Analogous to the computation of a field vector, the value ϕ (P ) (for which [4]
use the term Charge) may be determined at an arbitrary position P , being the
sum of the potential functions of all object instances assigned to the behavior:

ϕ (P ) =
n∑

I=1

ϕI (P ) (5)

To use this method to evaluate a certain action which changes the environment,
e. g. kicking a ball, this action has to be mapped to a geometric transformation
in order to describe the motion of the manipulated object. A set off different

Fig. 6. Two examples of action evaluation from [4]. In both cases a kick to the side
as well as a forward kick of a ball are evaluated. Bright regions represent a better
evaluation
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transformations, inter alia including rotation, translation, and tracing the po-
tential field gradient, has been implemented, together with mechanisms to check
for collisions and practicability of the action. External mechanisms as planners
are not needed. To describe more complex actions, e. g. turning with a ball and
subsequently kicking to the goal, sequences of actions may also be specified.

Having computed an anticipated future state, the value ϕ may also be deter-
mined along with a value ϕd representing the change of the environment which
will be caused by an execution of the action. Both values may be used as acti-
vation values of the behavior.

6 Applications

Up to now, the architecture has been applied to two different platforms, both
being RoboCup teams of the Universität Bremen, to be seen in Fig.7.

The main test and development platform have been the robots of the Bremen
Byters, which are a part of the GermanTeam [18], a team which competes in the
Sony Four-legged Robot League. To specify the environment of that domain,
about 40 object instances based on 15 different classes have been used. Each
player has a different role and therefore a different set of behaviors. For playing
soccer, about 10–15 behaviors have been needed, e. g. Go to Ball, Go to Defense
Position or Kick Ball Forward. Due to the large number of degrees of freedom,
these robots are able to perform many different motions, resulting in a variety
of kicks. After measuring the effect of each kick on the position of the ball, they
could directly be specified as behaviors and therefore be evaluated and selected
by the architecture. Also sequences of actions have been used, allowing a quite

a) b)

Fig. 7. The behavior architecture has been used in RoboCup competitions as well on
a) Sony ERS-210A robots as to control b) Small-size robots
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forward-looking play. Except for the handling of special game states, for which
all members of the German Team use XABSL [19], the complete behavior could
be realized via the architecture presented in this paper.

The second platform has been the control program of B-Smart [20], running
on an external PC and computing the behaviors for a team of omni-directional
driven small-size robots, which are able to move with a speed of up to two meters
per second. Due to the generic nature of the architecture and the similarity of
the domains, large parts of the Bremen Byters’ behaviors and their specification
of the environment were copied leaving only several changes of parameters to be
made, e. g. the dimensions of the field and the ranges of the potential functions.
Through that, the portability of this approach of behavior modeling has been
shown. Nevertheless, the direct interchange of unchanged behaviors is not a
primary goal. Especially considering robot soccer competitions, optimizations
for a single system are often more important.

7 Conclusion and Future Works

This paper presents a behavior-based architecture for autonomous mobile robots,
integrating several different approaches for motion planning and action evalua-
tion into a single general framework by dividing different tasks into competing
behaviors. This approach turned out to be able to specify an overall behavior
sufficiently for handling complex tasks in the robot soccer domain. The archi-
tecture’s abstract design using external behavior specifications in XML files has
also appeared to be well manageable.

In the future, the authors intend to port the architecture to other platforms
to test and extend the capabilities of this approach. There exist several features
already implemented but not adequately tested, e. g. the integration of object
instances based on a probabilistic world model. In addition, the behavior selec-
tion process is currently extended to deal with a hierarchy of sets of competing
behaviors similar to [21, 22], allowing the specification of even more complex
overall behaviors.

At the RoboCup 2004, the architecture will be used again by B-Smart and
will also be integrated in the behavior control of the German Team.
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Abstract. Navigation is one of the most fundamental tasks to be ac-
complished by many types of mobile and cognitive systems. Most ap-
proaches in this area are based on building or using existing allocentric,
static maps in order to guide the navigation process. In this paper we
propose a simple egocentric, qualitative approach to navigation based
on ordering information. An advantage of our approach is that it pro-
duces qualitative spatial information which is required to describe and
recognize complex and abstract, i.e., translation-invariant behavior. In
contrast to other techniques for mobile robot tasks, that also rely on
landmarks it is also proposed to reason about their validity despite in-
sufficient and insecure sensory data. Here we present a formal approach
that avoids this problem by use of a simple internal spatial representa-
tion based on landmarks aligned in an extended panoramic representation
structure.

1 Introduction

Navigation is one of the most fundamental tasks to be accomplished by robots,
autonomous vehicles, and cognitive systems. Most successful approaches in the
area of robot navigation like potential fields (see [10] and [7]) are based on
allocentric, static maps in order to guide the navigation process (e.g. [9]). This
approach has an intuitive appeal and gains much intuition from cognitive science:
the cognitive map (a good recent overview [16]). The main purpose is to build
up a precise, usually allocentric, quantitative representation of the surrounding
environment and to determine the robot’s position according to this allocentric,
quantitative map.

One difficulty results from the fact that the same spatial representation serves
as a basis for different tasks often with heterogeneous requirements. For exam-
ple, more abstract reasoning tasks like planning coordinated behavior, e.g., coun-
terattack and double pass, and plan recognition usually rely on more abstract,
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qualitative spatial representations. Generation of qualitative spatial descriptions
from quantitative data is usually a difficult task due to uncertain and incomplete
sensory data. In order to fit heterogeneous requirements, we should be able to
represent spatial qualitative description at different levels of granularity, i.e., in-
variant according to translation and/or rotation and based on different scalings.

Based on recent results from cognitive science (see, e.g., [30]), we present
a formal, egocentric, and qualitative approach to navigation which overcomes
some problems of quantitative, allocentric approaches. By the use of ordering
information, i.e., based on a description of how landmarks can shift and switch,
we generate an extended panoramic representation (EPR). We claim that our
representation in combination with path integration provides sufficient informa-
tion to guide navigation with reduced effort to the vision process. Furthermore
the EPR provides the foundation for qualitative spatial descriptions that may
be invariant to translation and/or rotation.

Since our approach abstracts from quantitative or metrical detail in order to
introduce a stable qualitative representation between the raw sensor data and
the final application, it can for example be used in addition to the well-elaborated
quantitative methods.

2 Motivation

Modeling complex behavior imposes strong requirements on the underlying rep-
resentations. The representation should provide several levels of abstraction for
activities as well as for objects. For both types of knowledge, different repre-
sentations were proposed and it was demonstrated that they can be used suc-
cessfully. Activities can, e.g., be described adequately with hierarchical task net-
works (HTN) which provide clear formal semantics as well as powerful, efficient
(planning-) inferences (see e.g. [4]). Objects can be described either in ontology-
based languages (e.g., OWL [21]) or constraint-based languages (e.g., [8]). Both
types of representations allow for the representation of knowledge at different
levels of abstraction according to the domain and task specific requirements. In
physically grounded environments, the use of these techniques requires an ap-
propriate qualitative spatial description in order to relate the modeled behavior
to the real world.

2.1 Allocentric and Egocentric Representations

In an egocentric representation, spatial relations are usually directly related to
an agent by the use of an egocentric frame of reference in terms like, e.g., left,
right, in front, behind. As a consequence, when an agent moves through an
environment, all spatial relations need to be updated. In contrast, representations
based on an allocentric frame of reference remain stable but are much harder to
acquire. Additionally, the number of spatial relations which have to be taken into
account may be much larger because we have to consider the relations between
each object and all other objects in the environment, whereas the number of
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(a) Allocentric relations (b) Egocentric relations

Fig. 1. Allocentric vs. egocentric spatial relations

relations in egocentric representations can be significantly smaller (see Fig. 1)1.
An interesting phenomenon, when looking into the didactic literature about, e.g.,
sports [12] we often find that (tactical and strategic) knowledge is described in
both, egocentric and allocentric terms, whereas, e.g., the literature about driving
lessons strongly relies on purely egocentric views. At least one of the reasons
are that the latter representation seems to provide better support for acting
directly in physically grounded environments, since perception as well as the
use of actuators are directly based on egocentric representations. In addition,
egocentric representations provide better support for rotation and translation
invariant representations when used with a qualitative abstraction (see sections
3.3 and 4 for more details).

3 Related Work

3.1 Cognition: Dynamic, Egocentric Spatial Representations

The fact that even many animals (e.g., rodents) are able to find new paths lead-
ing to familiar objects seems to suggest that spatial relations are encoded in an
allocentric static “cognitive map”. This almost traditional thesis is supported by
many spatial abilities like map navigation and mental movement that humans
are able to perform (beginning with [26] and [14]). Nevertheless, recent results
in cognitive science provide strong evidence for a different view ([30] among
many others). Instead of using an allocentric view-independent map, humans
and many animals build up a dynamic, view-dependent egocentric representa-
tion. Although the allocentric interpretation of the cognitive map seems to differ
radically from the egocentric representation theory, both theories can account
for many observations and differ mainly in two points: The allocentric, cognitive
map-interpretation assumes that the spatial representation is view-independent
and that therefore viewpoint changes do not have any influence on the per-
formance of, e.g., spatial retrieval processes. Many recent experiments provide
evidence for the opposite, they show that viewpoint changes can significantly

1 For reasons of clarity not all allocentric relations are drawn in diagram 1(a).
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reduce performance in terms of time and quality (e.g. pointing errors) (among
others, [28] and [29]). The second main difference is concerned with the dynamic
of the underlying representation. The egocentric interpretation assumes that all
egocentric relations have to be updated with each egocentric movement of a
cognitive system. The underlying assumption of a sophisticated series of exper-
iments done by Wang ([28] and [29]) was that spatial relations have to remain
stable in an allocentric, cognitive map independent from egocentric movements.
When errors arise, e.g., because of path integration, the error rate (“configura-
tion error”) should be the same for all allocentric relations; otherwise they rely
on an egocentric representation. The results indicate clear evidence for egocen-
tric representations and have been confirmed in a series of differently designed
experiments2, e.g., [3] and [5].

3.2 Robot Navigation

Navigation and localization is the most fundamental task for autonomous robots
and has gained much attention in the robotic research over the last decades.
While several earlier approaches addressed this problem qualitatively [9], e.g.,
topological maps ([11], [15], [1]), more recent approaches focus very successfully
on probabilistic methods. Famous examples are RHINO [23], MINERVA [22] and
more recently [25]. Currently, the most promising techniques for robust mobile
robot localization and navigation are either based on Monte-Carlo-Localization
(MCL) (see [18] for RoboCup-application and the seminal paper [24]) or on var-
ious extentions of Kalman-filters (e.g., [13]) using probabilistic representations
based on quantitative sensory data. MCL is based on a sample set of postures;
the robot’s position can be estimated by probabilities which allow to handle
not only the position tracking- and the global localization problem but also the
challenging kidnapped robot problem of moving a robot without telling it.

Furthermore, probabilistic methods based on quantitative data play a crucial
role in handling the mapping problem, i.e., the SLAM-problem3. Very much the
same is true for many robotic approaches to navigation, e.g., potential fields for
avoiding obstacles by following the flow of superposed partial fields in order to
guide the robot to a goal position (see [10] and [7] for a RoboCup-application)
based on quantitative data.

According to the spatial semantic hierarchy (SSH) [9], these approaches try
to address the problems related to robot navigation on the control level. Besides
the strong computational resource requirements, they usually do not address
the problem of generating a discrete, qualitative spatial representation which for

2 Nevertheless, these results do not allow the strict conclusion that humans do not
build up an allocentric cognitive map. On the contrary, e.g., Easton and Sholl [3]
have shown that under very specific conditions it is possible to build up allocentric
maps. Nevertheless, these results indicate, that under more natural conditions human
navigation relies on egocentric snapshots and a dynamic mapping between these.

3 This term is also directly connected to a set of algorithms addressing exactly this
problem (e.g., [2]).
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(a) Concrete Panorama (b) Abstract Panorama

Fig. 2. Panorama-views

instance is required at more abstract levels, e.g., for describing complex coordi-
nated tactical and strategic behavior both on individual- and on team level.

3.3 The Panorama Approach

The concept of panorama representation has been studied extensively in the
course of specialized sensors (e.g., omnivision, see, e.g., [31]). We present an
extended approach based on the panorama approach by Schlieder ([20] and [19]).

A complete, circular panorama can be described as a 360o view from a spe-
cific, observer-dependent point of view. Let P in Fig. 2(a) denote a person, then
the panorama can be defined as the strict ordering of all objects: house, woods,
mall, lake. This ordering, however, does not contain all ordering information as
described by the scenario. The mall is not only directly between the woods and
the lake, but more specifically between the opposite side of the house and the
lake (the tails of the arrows). In order to represent the spatial knowledge de-
scribed in a panorama scenario, [20] introduced a formal model of a panorama.

Definition 1 (Panorama). Let Θ= {θ1, . . . , θn} be a set of points θi ∈ Θ
and Φ = {φ1, . . . , φn} the arrangement of n-1 directed lines connecting θi with
another point of Θ, then the clockwise oriented cyclical order of Φ is called the
panorama of θi.

As a compact shorthand notation we can describe the panorama in Fig. 2(b)
as the string < A, C, D, Bo, Ao, Co, Do, B >. Standard letters (e.g., A) describe
reference points, and letters with a following o (e.g., Ao) the opposite side (the
tail side). As the panorama is a cyclic structure the complete panorama has to
be described by n strings with n letters, with n being the number of reference
points on the panorama. In our example, the panorama has to be described by
eight strings. Furthermore, the panorama can be described as a set of simple
constraints dl(vp, lm1, lm2)4. Based on this representation, [19] also developed
an efficient qualitative navigation algorithm.

The panorama representation has an additional, more important property:
it is invariant with respect to rotation and translation. But evidently, not ev-

4 Short for direct − left(viewpoint, landmark1, landmark2).
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ery behavior can be described in such an abstract manner. In order to model
complex, coordinated behaviors, often more detailed ordinal information is in-
volved. Additionally, different metric information (e.g., distance) is required in
some situations. In the following section, we show how the panorama can be
extended in a way that more detailed ordinal and metric information can be
introduced.

4 An Extended Panorama Representation

Instead of building an allocentric map we provide an egocentric snapshot-based
approach to navigation. The most fundamental difference between both ap-
proaches is that an egocentric approach strongly relies on an efficient, continuous
update mechanism that updates all egocentric relations in accordance with the
players’ movement. In this section we show that this task can be accomplished by
strict use of a simple 1D-ordering information, namely an extended qualitative
panorama representation (EPR).

This update mechanism has to be defined with respect to some basic condi-
tions:

• Updating has to be efficient since egocentric spatial relations change with
every movement, i.e., the updating process itself and the underlying sensor
process.

• The resulting representation should provide the basis for qualitative spatial
descriptions at different levels of granularity.

• The resulting representation should provide different levels of abstraction,
i.e., rotation and/or translation invariance.

• The process of mapping egocentric views should rely on a minimum of allo-
centric, external information.

Due to the nature of ordering information, this task has to be divided into
two subtasks: (1) updating within a given frame of reference (short notation:
FoR), i.e., the soccer field and (2) updating of landmark representations from
an external point of view, e.g., the penalty area. In section 4.1 we briefly discuss
the key properties of the first task in relation to ordering information from a
more theoretical point of view, whereas in section 5 these aspects are investi-
gated in more detail. In section 4.2 we describe the theoretical framework un-
derlying the mapping- and update-mechanism for egocentric views on external
landmarks.

4.1 Within a Frame of Reference

A crucial property of panoramic ordering information is that it does not change
as long as an agent stays within a given FoR, i.e., the corners of a soccer field, do
not change unless the player explicitly leaves the field (see Fig. 3(a)). So in order
to use ordering information for qualitative self-localization we have to introduce
an egocentric FoR. But even with an egocentric FoR the location within this
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(a) Use of Egocentric Frame of Reference (b) Triangle panorama construction
by projection (result here: (ACB))

Fig. 3. FoR and Triangle panorama

FoR can only be distinguished into a few different qualitative states (e.g., ego-
front between front-left and front-right corner of the field, see Fig. 3(a)). This
way of qualitative self-localization is too coarse for many domains as well as for
the different RoboCup-domains. In section 5 we demonstrate in more detail how
angular distances can be used to overcome this problem5.

A perhaps even more important property of spatial locations within a given
FoR is that they can be used as a common FoR for the position of different
landmarks in relation to each other (e.g., the position of the penalty area can
be described in within-relation to the soccer field). This property is especially
important for an egocentric snapshot-based approach to navigation since it pro-
vides the common frame that is required to relate different snapshots to each
other (for a more detailed discussion see [27]).

4.2 Updating Outside-Landmark Representations

In a re-orientation task we can resort the knowledge about the previous position
of a player. Therefore we concentrate on an incremental updating process, based
on the following two assumptions: (1) It is known that the configuration of
perceived landmarks A, B, ... ∈ L either form a triangle- or a parallelogram
configuration (e.g. either by vision or by use of background knowledge). (2) The
position Pt−1 of an agent A in relation to L at time step t − 1 is known. The
EPR (LPT ) of a triangle configuration can then be defined as follows (see also
Fig. 3(b)):

5 An additional approach is to introduce more landmarks that are easy to perceive or
to introduce additional allocentric FoR when available (e.g., north, south, etc.).
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Definition 2 (Triangle Landmark Panorama). Let PA denote the position
of an agent A and CT (ABC) the triangle configuration formed by the set of points
A, B, C in the plane. The line LPA/V P is the line of view from PA to VP, with
VP being a fixed point within CT (ABC). Furthermore, LOrth(PA/V P ) be the or-
thogonal intersection of LPA/V P . The panoramic ordering information can be
described by the orthogonal projection P (PA, V P, CT (ABC)) of the points ABC
onto LOrth(PA/V P ).

Therefore, moving around a triangle configuration CT (ABC) results in a se-
quence of panoramas which qualitatively describe the location of the observer
position. A 360o movement can be distinguished in six different qualitative states:

Observation 1. (Triangle Landmark Panorama Cycle)
The EPR resulting from the subsequent projection P (PA, V P, CT (ABC)) by
counter-clockwise circular movement around VP can be described by the fol-
lowing ordered, circular sequence of panoramas:
(CAB), (ACB), (ABC), (BAC), (BCA), (CBA)

For each landmark panorama the landmark panorama directly left as well as
at the right differ in exact two positions that are lying next to each other (e.g.,
(ABC), (BAC) differ in the position exchange between A and B). These position
changes occur exactly when the view line LPA/V P intersects the extension of one
of the three triangle lines: LAB , LAC , LBC . Starting with a given line (e.g., LAB)
and moving either clock- or counter-clockwise, the ordering of line extensions to
be crossed is fixed for any triangle configuration (see Fig. 3(b)). This property
holds in general for triangle configurations but not, e.g., for quadrangle configu-
rations (except for some special cases as we will see below). Since (almost) each
triplet of landmarks can be interpreted as a triangle configuration, this form of
qualitative self-localization can be applied quite flexibly with respect to domain-
specific landmarks. The triangle landmark panorama, however, has (at least) two
weaknesses: The qualitative classification of an agent’s position into six areas is
quite coarse and, triangle configurations are somewhat artificial constructs that
are rarely found in natural environments when we consider solid objects6. A nat-
ural extension seems to be applying the same idea to quadrangles (see Fig. 4).
The most direct approach is to interpret a quadrangle as a set of two connected
triangles sharing two points by a common line so that each quadrangle would
be described by a set of two triangle panoramas. With this approach, the space
around a quadrangle would be separated into ten areas and therefore it would
be more expressive than the more simple triangle panorama. It can be shown
that eight of the resulting triangle landmark panoramas (one for each triangle of
the quadrangle) can be transformed into quadruple tuples that result when we
transform, e.g., a rectangle directly into a landmark panorama representation
(e.g., the given tuple ((BCA)(CDA)) can be transformed into (BCDA) without

6 The triangle configuration can be applied generally to any triplet of points that form
a triangle - also to solid objects. The connecting lines pictured in Fig. 3(b) and 4(a)
are used to explain the underlying concept of position exchange (transition).
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(a) Parallelogram panorama construction
by projection (result here: (BACD))

(b) Circular representation of panoramic
ordering information for parallelograms

Fig. 4. Parallelogram panorama

loss of information)7. The expressiveness of the other two landmark panoramas
is weaker: they have to be described as a disjunction of two quadruple tuples.
Since the expressiveness is weaker and the landmark panorama representation
of a quadruple tuple panorama representation is much more intuitive we focus
on the latter one (see Fig. 4(a)).

Definition 3 (Parallelogram Landmark Panorama). Let PA denote the
position of an agent A and CP (ABC) the parallelogram configuration formed by
the set of points A, B, C, D in the plane. The line LPA/V P is the line of vi-
sion from PA to VP, with VP being a fixed point within CP (ABCD). Further-
more, LOrth(PA/V P ) be the orthogonal intersection of LPA/V P . The landmark
panoramic ordering information can then be described by the orthogonal projec-
tion P (PA, V P, CP (ABCD)) of the points ABCD onto LOrth(PA/V P ).

Moving around a parallelogram configuration CP (ABCD) also results in a
sequence of landmark panoramas which describe the location of the observer
position qualitatively. A 360o movement can be split into twelve different states:

Observation 2. (Parallelogram Landmark Panorama Cycle)
The panoramic landmark representations resulting from the subsequent projec-
tion P (PA, V P, CP (ABCD)) by counter-clockwise circular movement around VP

7 The detailed proof will take too much space. However, the basic proof idea is quite
straightforward: each panorama transition happens because of the intersection of the
landmarks’ line extensions with the line of vision of the moving agent, so the number
of disjoint lines (multiplied by 2, since each line is intersected twice) specifies the
number of transitions and therefore the number of distinguishable areas. The loss of
expressiveness of two of the triangle tuples can be explained in the same way: assume
that the quadrangle ABCD is defined by the two triangles ABC and ADC sharing
the diagonal AC. Position changes of the points B/D cannot be distinguished since
they happen in two different triangles, which are not in relation to each other. Al-
ternatively, we can show that the number of resulting ordering constraints is smaller
(for more details on the constraint representation see section 3.3).

can be described by the following ordered, circular sequence of panoramas:
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((BCAD), (BACD), (ABCD), (ABDC), (ADBC), (DABC),
(DACB), (DCAB), (CDAB), (CDBA), (CBDA), (BCDA))

The two presented landmark panoramas can be mapped flexibly onto land-
marks that can be found in natural environments like a penalty area. While solid
objects often form rectangle configurations, irregular landmarks can be used in
combination as a triangle configuration, since this approach is not strictly re-
stricted to point-like objects. An interesting extension is to build up more complex
representations by using landmark configurations as single points in larger land-
mark configurations. This allows us to build up nesting representations which sup-
port different levels of granularity according to the requirements of the domain.

5 Implementation

According to the described scenarios, the EPR is meant to be a qualitative fun-
dament for tasks that are important for mobile robot exploration. Due to the
oversimplification of the four-legged league RoboCup scenario (i.e., no penalty
area and no goal area to move around), the latter outside-case described in sec-
tion 4.2 does not find capital application here, but we claim that it will show
its features in more complex scenarios which offer a larger number of landmarks
to move around. Here, we will show some experimental extraction of EPR se-
quences to practically point up the idea presented in section 4.1 and the basic
idea of building panoramic ordering information from the image data.

For our first experiments, we use the RobotControl/SimRobot [17] simulation
environment for the simulation of one four-legged robot. This tool is shared with
the GermanTeam, which is the German national robotic soccer team participat-
ing in the Sony four-legged league in the international RoboCup competitions.
The EPR concept presented is not proposed to be restricted to this special
domain, as discussed. The tool supports simulated image retrieval and motion
control routines that are easy to use and portable to physical robots, while it
is possible to encapsulate the EPR and adapted image feature extraction in
distinct solutions, letting other modules untouched.

5.1 Visual Feature Extraction

In order to expediently fill the EPR with information, the recognition of land-
marks is necessary. Usually, the robot’s viewing angle of 57.6o degrees is not
sufficient to get a reasonably meaningful EPR with the feature extraction of
goals and flags supported by the RobotControl tool (see [18] for a description of
these features).

Even if the scene is regarded from one goal straight to the other, there are
just three landmarks that can be found. On the other hand, the standard con-
figuration of all landmarks as can be seen in Fig. 5 is of an unfavorable kind
for the EPR. The landmarks build a convex structure that the robot can never
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Fig. 5. Simulation environment of the GermanTeam (left); the standard four-legged
league field configuration (right)

��

��

Fig. 6. Landmarks for the EPR. Center column: Landmarks extracted (for six rep-
resentation between given start position (left) and goal position (right): “L” for L-
junctions, “T” for T-junctions, “X” for X-junctions; horizontal lines (circles), vertical
lines (squares), goals (light triangles) and flags (dark triangles))

leave, thus the ideal EPR will never allow to reason about the environment by
permuted landmarks (see section 4.1). Thus, we further introduced the symme-
try line operator proposed by Huebner [6] to extract 2D field lines as additional
features from the image data. The method is simple, robust, and works with-
out plenty of parametrization. Additionally, it offers the opportunity to test the
approach with natural landmarks (lines) instead of artifacts (colored beacons).
After processing the images, lines are distinguished from curves and represented
by their start and end point in the image (see Fig. 6).

These lines can be put into the EPR by adopting these points or the cen-
ter point, for example. Anyway, a classification of edge types is more efficient
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with respect to the subsequent need of recovering landmarks. To support the
panorama with a broader range of landmark types which ideally are points on
the field, we classify each pair of lines extracted from an image into different
line pair types. In our experiment, we extracted L-junctions, T-junctions and
X-junctions (see Fig. 6) representing the additional landmarks that are used for
the EPR.

5.2 Qualitative Representation

The simulated environment for the experiment corresponds to the standard four-
legged league field configuration with lines instead of the sideboards. One robot
is instructed to move a certain path presented by a given sequence of EPRs. Us-
ing the EPR representation and a qualititative conversion of the feature angles,
we can establish a qualitative EPR sequence of detected landmark configura-
tions for a path. Some samples of such sequences might look like the following,
corresponding to the EPR of Fig. 6:

[(T_JUNC,VERY_FAR);(L_JUNC,SAME);(T_JUNC,SAME);(X_JUNC,SAME);]
[(T_JUNC,VERY_FAR);(X_JUNC,SAME);(FLAG,SAME);(T_JUNC,SAME);]
[(T_JUNC,FAR);(FLAG,SAME);(L_JUNC,CLOSE);(T_JUNC,MEDIUM);
(T_JUNC,MEDIUM);(L_JUNC,SAME);(L_JUNC,CLOSE);]
[(FLAG,FAR);(L_JUNC,SAME);(L_JUNC,CLOSE);(T_JUNC,MEDIUM);
(L_JUNC,SAME);(T_JUNC,CLOSE);(L_JUNC,MEDIUM);(T_JUNC,SAME);]
[(FLAG,FAR);(GOAL,FAR);]
[(FLAG,FAR);(GOAL,FAR);(L_JUNC,CLOSE);]

Each of these ordering sequences corresponds to a snapshot-like qualitative
description of the robot’s location during the path. E.g., in the first sequence,
there are four ordered and classified landmarks that are additionally described
by their qualitative angular distance to the previous landmark. Caused by the
panoramic representation, the first “T”-junction is very far (VERY FAR) dis-
placed from the previous landmark (the “X”-junction in this case). Including
qualitative angular distances like VERY FAR also allows to convert this angular
representation to a number of qualitative location descriptions (e.g., according
to the first sequence, “The X-junction is very far LEFT of the T-junction.” or
“The X-junction is same RIGHT of the T-junction.”).

As also can be seen in this example, the line landmarks appear and disappear
frequently in the robot’s view. This is caused by the landmark feature extraction
working on insufficient simulated image data. We are optimistic that real images
are more comfortable for the extraction of lines, because they are not supposed to
be fragmented like those in simulated images. Although this is error-prone in this
regard, we claim to deal with this problem using the EPR. The representation
can generally be useful for this re-orientation task, where the agent knows at
least to some extent where it has been. Based on this information, the circular
panorama landmark representation can tell us which hypotheses are plausible
according to previous information.
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Fig. 7. Landmarks for the EPR on real images. Top row: image data and extracted
field / border lines. Bottom row: Landmarks extracted

The same panoramic representation is additionally used in our simulation
soccer team Virtual Werder. Although sensor problems are neglectable since
the world model is more comprehensive and detailed, it provides a simple and
intuitive interface for the generation of qualitative descriptions.

5.3 Experiments on Real Images

Finally, some experiments have been made to test the proposed feature extrac-
tion and EPR construction on real images (see Fig. 7)8 using one Sony AIBO
ERS-7 model inside a common four-legged league scenario. Without plenty of
adaptation, the results are as good as those in the simulation examples. Problems
appearing by the line extraction technique (e.g. side walls as lines, lines found
over horizon, optional grouping of lines to handle occlusions) will be addressed
in future work to increase robustness and performance.

6 Conclusion and Future Work

Navigation, localization, planning, and reasoning for physically grounded robots
imposes strong but heterogeneous requirements on the underlying spatial rep-
resentation in terms of abstraction and precision. In contrast to many other
approaches to this topic which try to generate allocentric maps, we proposed a
new egocentric approach based on recent results from cognition. The qualitative
EPR is dynamic in a predictable way for outside landmarks as stated in the two
observations described above. This representation, however, provides also inter-
esting properties for navigation inside fixed landmarks (e.g., navigating within
a room).

Besides the re-orientation task mentioned in the last section, the landmark
panorama can help to focus perception in a qualitative self-allocation task. Dur-

8 The difference of size in the corresponding images is caused by the different image
sizes between the old AIBO model ERS-210 and the new ERS-7.
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ing the transition of one panorama landmark into another exactly one position
change is performed. Therefore, in this case the perception of further landmarks
is without any use for updating the qualitative position of the agent. Addition-
ally, the panorama landmark representation is not only useful for position updat-
ing but also for re-orientation without knowledge about the previous position.
The perception of a partial landmark panorama of a triangle configuration is
sufficient to provide us with two hypotheses about the current position. In order
to validate which hypothesis holds we just have to find out where another land-
mark appears in the panoramic structure. Additionally, a landmark panorama
provides a stable basis for qualitative, spatial descriptions (e.g. left of, right of),
since it is, obviously, sensitive to rotation but invariant to transition, it is also
interesting for several outstanding applications based on qualitative information.

Although a detailed analysis of the relation to the recent cognitive results is
out of the scope in this paper, we want to mention that the EPR shows several
properties which are observed in recent experiments: e.g., translation tasks seem
to be performed more easily and accurately than rotation tasks.

Several tasks remain to be done. We are currently extending our landmark-
based (re-)orientation vision module so that it is not only able to track EPRs
but also allows active snapshot-based navigation (first results are available).
Thereby we implement the concept of outside-landmarks that formally describes
how landmarks can shift and switch during movement (see section 4.2). This
should also allow to detect the geometric structure of previously unseen objects.
After validating our extended panorama representation in the RoboCup-domain,
we consider to transfer this method of the EPR into an omnidirectional vision
module for mobile robot tasks.
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Abstract. Collision detection in a quadruped robot based on the com-
parison of sensor readings (actual motion) to actuator commands (in-
tended motion) is described. Ways of detecting such incidences using just
the sensor readings from the servo motors of the robot’s legs are shown.
Dedicated range sensors or collision detectors are not used. It was found
that comparison of motor commands and actual movement (as sensed by
the servo’s position sensor) allowed the robot to reliably detect collisions
and obstructions. Minor modifications to make the system more robust
enabled us to use it in the RoboCup domain, enabling the system to
cope with arbitrary movements and accelerations apparent in this highly
dynamic environment. A sample behavior is outlined that utilizes the
collision information. Further emphasis was put on keeping the process
of calibration for different robot gaits simple and manageable.

1 Introduction

Many research efforts in mobile robotics aim at enabling the robot to safely and
robustly navigate and to move about both known and unknown environments
(e.g. the rescue scenarios in the RoboCup Rescue League [1], planetary surfaces
[13]). While wheeled robots are widely used in environments where the robot can
move on flat, even surfaces (such as office environments or environments that are
accessible to wheelchairs [5]), legged robots are generally believed to be able to
deal with a wider range of environments and surfaces. There are many designs
of legged robots varying in the number of legs used, ranging from insectoid or
arachnoid with 6, 8 or more legs (e.g. [2]), 4-legged such as the Sony Aibo [3],
humanoid: 2-legged (e.g. [8]).

Obstacle avoidance is often realized using a dedicated (360◦) range sensor
[12]. Utilizing vision rather than a dedicated sensor is generally a much harder
task since a degree of image understanding is necessary. For the special case of
color coded environments, straight forward solutions exist that make use of the
knowledge about the robot’s environment (such as the color of the surface or
the color of obstacles [6]). If, however, obstacle avoidance fails, robots often are
unable to detect collisions since many designs lack touch sensors or bumpers.
The robot is unaware of the failure of its intended action and ends up in a
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Fig. 1. a) A collision of two robots. Neither robot cannot move into the desired di-
rection. Even worse, robots often interlock their legs which further prevent them from
resolving the situation. b) Illustration of the DOFs of the Aibo. Each robot leg has
three joints, two degrees of freedom (DOF) in the shoulder joint and one DOF in the
knee joint, denoted Φ1, Φ2 and Φ3. Joints are labeled in the following way: F (ront) or
H(ind) + L(eft) or R(ight) + Number of joint (1, 2, 3). Using this nomenclature, the
knee joint of the highlighted leg in the above image is FR3

situation it is unable to resolve; it is - quite literally - “running into a wall”
without noticing it.

Apart from the current action failing, collisions (and subsequently being
stuck) have severe impact on the robot’s localization if odometry is used to any
degree in the localization process (as is the case in [11, 4]). For these approaches
to be robust against collisions, they tend to not put much trust in odometry
data .

This work investigates the possibilities of detecting collisions of a Sony Aibo
4-legged robot using the walking engine and software framework described in
[10]. The robot does not have touch sensors that can be used to detect collisions
of it with the environment. As we will show, the servo motor’s direction sensors
can be used for this task. Work by [9] shows that it is possible to learn servo
direction measurements for different kinds of (unhindered) motions and use this
to detect slippage of the robot’s legs and also to detect collisions of the robot
with its environment.

The approach to collision detection using the Aibo presented by [9] stores a
large number of reference sensor readings and uses these to detect unusual sen-
sor readings caused by collision and slip. Our approach differs in that we make
assumptions about the robot motion that allows the robot to detect collisions
by comparing the actuator command (desired motion) to the sensor readings
(actual motion). The used set of reference values can be much smaller using
this approach. We will show that the method is robust and also quickly ad-
justable to different walking gaits, robots, and surfaces. Section 4 compares the
two approaches in detail.



152 J. Hoffmann and D. Göhring

2 Method

2.1 Comparison of the Actuator Signals and the Direction Sensor
of the Robot’s Servos

The presented collision detection method is based on the comparison of actuator
commands to direction sensor readings. Fig. 2 shows typical sensor measurements
alongside actuator signals.

Fig. 2. Sensor and actuator data of freely moving legs (in the air) at a desired ground
speed of 75 mm/s. Sensor and actuator curves are almost congruent except for a slight
phase shift

It can be seen that for an unhindered period of movement T the sensor and
actuator curve of a joint are congruent, i.e. they are of the same shape but
shifted by a phase Δϕ . If Δϕ was zero, the area in between the two curves
becomes minimal:

0 ≤
∫ t0+T

t0

(a(t) − s(t + Δϕ))2 dt (1)

Tests using discrete time showed that collisions cause a discrepancy between
actuator and sensor data which can be recognized by calculating the area be-
tween the sensor and actuator data. It was found that it was not necessary to
sum over one complete period of the motion to detect collisions. Shorter intervals
yield faster response times. Trading off response time and sensitivity to sensor
noise, we found that 12 frames1 were sufficient. The last 12 frames are used to
calculate the the Total Squared Difference (TSD ):

TSDa,s(Δϕ) =
t2∑

i=t1

(ai − s(i+Δϕ))2 (2)

Diagram 3 shows the TSD of the FL1 joint (left shoulder) for a robot colliding
with the field boundary. The peaks in the TSD when the robot’s leg hits the
boundary are clearly distinguishable.

1 A frame is an atomic step of the motion module; there are 125 frames per second,
one frame is 8 ms long.
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Fig. 3. Sensor and actuator data of a collision with the field boundary walking forward
at 150 mm/s. In the TSD the collisions can be seen as peaks in the curve. They
occur briefly after the actual collision and can easily be distinguished from unhindered
movements

For classification of collisions the TSD is compared to a threshold. If the TSD
is larger than this threshold, it is assumed that a collision has occurred. The
thresholds for every motion component (i.e. walking forward/backward, walking
sideways, rotation) are saved in a lookup table. For combined motions (e.g.
walking forward and walking sideways at the same time) the different thresholds
for each motion component are summed as described in section 3.3.

2.2 Aligning the Actuator and Sensor Curve

Fig. 4 shows the impulse response of one of the robot’s servo motors. It can
be seen that the joint doesn’t move for about 5 frames (40 ms). Reasons for
this are momentum and calculation time; the step height and the load that
the joints have to work against also have an influence on the observed phase
difference. After 5 frames the joint slowly starts moving and accelerates until it
reaches its maximum speed after 8 frames. Just before reaching its destination,
the joint angle changes are decreasing. This is due to the joint’s P.I.D. controller
smoothing the robot’s motions.

In figure 5, a) the TSD is shown for a sample motion. The smallest values
of the TSD are found at the intersection of the two curves. Collision effects

Fig. 4. Sensor and actuator data for a rectangular actuator impulse. The actuator
function jumps to its new value. The corresponding servo’s direction sensor readings
are shown
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Fig. 5. Left. Sensor and actuator data for walking freely at 150 mm/s. Actuator and
sensor curve out of phase and the corresponding TSD Right. As above but phase
shifted. Sensor function is shifted by 8 frames. The corresponding TSD now clearly
shows collisions (peaks in the curve)

Fig. 6. Actuator commands and sensor measurements during an actual RoboCup game.
The robot is changing directions frequently. It can be seen that the servo is unable to
perform the requested motions

have little influence on the difference level. In b) actuator and sensor curves are
aligned by shifting the sensor data curve left by 8 frames. The calculated TSD
shows a strong response to collisions.

Since phase shifts of varying length were observed, the 12 frames wide win-
dow of the TSD is calculated for several phase shifts Δϕ ranging from 6 to 15
frames. The smallest TSD is used to detect collisions. This approach eliminates
phase shifts which are not caused by collisions and reduces the risk of wrongly
recognized collisions (false positives). Due to the small number of possible values
of Δϕ , real collisions still produce a strong signal.

2.3 Filtering of Actuator Input

The presented approach to collision detection works well under laboratory condi-
tions, i.e. when applied to homogeneous motions with small, well defined motion
changes (see sample application described in section 4). In real world appli-
cations, motion commands may change rapidly over time as the robot interacts
with the environment. In the dynamic, highly competitive RoboCup domain, the
robot changes its walking speed and direction quite frequently as determined by
the behavior layer of the agent. Figure 6 shows the actuator commands for a
robot playing soccer. Most of these changes are relatively small and unproblem-
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atic but some are too extreme to be executed by the servos, e.g. when the robot
suddenly sees the ball and moves towards it at the highest possible speed. This
is compensated by increasing the TSD threshold if the joint acceleration exceeds
a certain value. This increased threshold is used only for some tenths of a second
and then falls back to its initial level.

2.4 Threshold Calibration

The values of the thresholds are calibrated manually. They are measured for
each of the elementary motions (forward/backward, sideways, rotation) in steps
of 30 mm/s and 0.5 rad respectively. This adds up to a total of 40 measurements
needed for operation.

A threshold is determined by letting the robot walk freely and without col-
lision or slip on the field freely for about three seconds while monitoring both
motor commands and sensor readings. The TSD is calculated and the maximum
TSD is used to derive a threshold value. The maximum TSD value that occurred
is tripled; this means that for the robot to detect a collision, the TSD must be
3 times greater than the maximum TSD measured during calibration.

In our experiments the calibration was done by hand since robot gaits do
not undergo frequent change and the calibration process is performed quickly.
We therefore did not see the need for automating the calibration process (given
that an external supervisor has to make sure that no collisions occur during
calibration anyway).

3 Detectability of Collisions During Directed Robot
Locomotion

For different walking directions, collisions have different effects on the robot’s
joints depending on how the joints are hindered in their motion. Therefore, the
following cases were investigated. In our experiments, only the legs’ servos were
used for collision detection. However, the robot’s head motors can also be used
to directly detect whether a robot hits an obstacle with its head (or its head’s
freedom of motion is otherwise impaired by an obstacle).

In the detection of collisions, a trade off has to be performed between being
sensitive to collisions and being robust against false positives (i.e. the detection
of a collision where in reality the robot was moving freely). Since we wanted to
avoid false positives, the threshold value for detecting collisions was raised at the
cost of being less sensitive to detecting collisions. Furthermore, by integrating
the information gathered over a short period of time, false positives can be
suppressed. This, however, makes the robot less reactive.

3.1 Elementary Motions

Walking Forward or Backward. Collisions are easily detected in the front left or
right shoulder joints FL1 and FR1 of the robot, depending on which of the legs
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hits the obstacle (see 1). This way collisions with the field boundary can be
detected. Collisions with other robots can also be detected, but not as reliably
because this sort of collision is of a much more complex type (the other robot
may be moving, etc.). Collisions when walking backwards are slightly harder to
recognize because of the particular position of the joints of the hind legs. This
is due to the robot’s body being tilted forward and the backward motion not
being symmetric to the forward motion.

The rate of detection of collisions during forward movement was about 90%;
for backward movement it was about 70%. Sometimes collisions would not be
detected because the robot would push itself away from obstacles rather than
being hindered in its joints’ motions. No false positives were observed.

Walking Sideways. Collisions which are occurring while the robot is walking
sideways can be recognized best in the sideways shoulder joint θ2 (e.g. FL2 )
on the side where the robot hits the obstacle. This is not quite as reliable as
in the case of forward motions because the Aibo loses traction more quickly
when walking sideways for the gait that was used. About 70% percent of the
actual collisions were detected. Some phantom collisions were detected at a rate
of about 1-2 per minute.

Turning. The same joints that are used to recognize collisions while moving
sideways can be used to recognize collisions when the robot is turning. This
way, a common type of collision can also be detected: The legs of two robots
attempting to turn interlock and prevent the rotation from being performed
successfully. How well this can be recognized depends on how much grip the
robots have and on the individual turning (or moving) speeds.

The detection rate of collisions and the rate of false positives is of the same
order as when the robot is moving sideways. When raising the detection threshold
to completely eliminate false positives for a robot rotating at 1.5 rad/sec, the
rate of detection drops to about 50%.

3.2 Leg Lock

The before mentioned “leg lock” also occurs in situations where two robots are
close to each other (e.g. when chasing the ball). Leg lock is detected in the same
way collisions are. Therefore, “leg lock” is detected but cannot be distinguished
from other collisions.

3.3 Superposition of Elementary Motions

While it is easy for the robot to recognize the above motions separately, it is
harder to recognize collisions when motions are combined, e.g. when the robot
walks forward and sideways at the same time. For lower speeds, the resulting mo-
tions can be viewed as a superposition of the three elementary motions and the
resulting threshold is approximated by the sum of the three individual thresholds:

T (v, s, r) = T (v, 0, 0) + T (0, s, 0) + T (0, 0, r) (3)
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where v is the forward, s the sideways, and r the rotation component of the
motion. For high speeds, the requested motions exceed the servos performance.
To compensate for this, the collision thresholds are increased by multiplication
by a scale factor f which is a function of v and s:

f = f(v, s) =

{
1 if v < 50mm/s and s < 50mm/s
v+s
100 otherwise

(4)

With this extension, the method can be applied to practically all kinds of
robot motions and speeds that we observed in a RoboCup game.

4 Application and Performance

Sample Application. A simple behavior was implemented in the XABSL behav-
ior mark up language [7]: The robot walks straight ahead; if it touches an obstacle
with one of its front legs, it stops and turns left or right depending on the leg
the collision was detected with. The robot turns away from where the collision
occurred then continues to walk straight.

This simple behavior was tested on the RoboCup field in our laboratory
and it was found to work reliably regardless of the type of collision (e.g. static
obstacle or other robots). Collisions were detected with high accuracy. In some
rare cases, collisions would not be detected immediately because of slippage of
the robot’s legs. In these cases, the robot would recognize the collision after a
brief period of time (order of tenths of seconds).

Fig. 7. Simple behavior option graph denoted in XABSL [7]. The robot walks forward
until it hits an obstacle. It then turns away from it and continues walking in the new
direction
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RoboCup. As pointed out in [9], collision detection can be used to have the
robot “realize” that an intended action was not successful and to have it act
accordingly. It did, however, prove to be a difficult task to find the right action
in a situation where two robots run into each other. This usually happens when
they pursue the same goal, in our case when both are chasing the ball. Backing
off gives the opponent robot an advantage, pushing it makes the situation worse.
Current work investigates possible actions.

Other Approaches. A similar approach aimed at traction monitoring and colli-
sion detection was presented by another RoboCup team, the “Nubots”, in 2003
[9]. The method compares the current sensor data to reference sensor data. It
does not use actuator commands for collision detection. The reference data con-
sists of sensor data value and variance for a given motion type and is measured
prior to the run. This training is done by measuring the sensor data of possible
combinations of elementary motions. A four-dimensional lookup table is used to
store the reference data. The four dimensions of the table are: forward/backward
motion (backStrideLength), sideward motion (strafe), rotation (turn), and time
parameter which stores information about the relative position of the paw in
its periodic trajectory. Using this approach, the “Nubots” were able to detect
collisions and slip. However, the four-dimensional lookup table requires a con-
siderable amount of memory and training time (according to [9], 20x12x20x20
entries are used to fully describe a gait). During the training it is important that
no collisions or slip occur. Using the lookup-table, no assumptions are made
about similarities between actuator command and sensor readings.

In contrast, our approach makes the assumption that there is a similarity
between intended and actual motion and the variance of the sensor signal is
constant for the entire period of the motion. Making these (fair) assumptions,
very little memory is needed (40 parameters describe all possible motions) while
still achieving good results in detecting obstacles. The parameter table needed
for a given gait is generated quickly and easily.

5 Conclusion

With the presented method the robot is able to reliably detect collisions of a 4-
legged robot with obstacles on even surfaces (e.g. RoboCup field). Comparing
the requested motor command to the measured direction of the servo motors of
the robot’s legs was found to be an efficient way of detecting if the robot’s free-
dom of motion was impaired. In a sample behavior, the robot turns away from
obstacles after having detected the collision. The method was extended for use
in RoboCup games. Here it is used to detect collisions (with players and the field
boundaries) and to let the robot act accordingly and also to improve localization
by providing additional information about the quality of current odometry data
(validity). Further work will focus on finding appropriate reactions in competi-
tive situations.
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Abstract. We show how to apply learning methods to two robotics
problems, namely the optimization of the on-board controller of an om-
nidirectional robot, and the derivation of a model of the physical driving
behavior for use in a simulator.

We show that optimal control parameters for several PID controllers
can be learned adaptively by driving an omni directional robot on a field
while evaluating its behavior, using an reinforcement learning algorithm.
After training, the robots can follow the desired path faster and more
elegantly than with manually adjusted parameters.

Secondly, we show how to learn the physical behavior of a robot. Our
system learns to predict the position of the robots in the future accord-
ing to their reactions to sent commands. We use the learned behavior
in the simulation of the robots instead of adjusting the physical simula-
tion model whenever the mechanics of the robot changes. The updated
simulation reflects then the modified physics of the robot.

1 Learning in Robotics

When a new robot is being developed, it is necessary to tune the on-board
control software to its mechanical behavior. It is also necessary to adapt the high-
level strategy to the characteristics of the robot. Usually, an analytical model
of the robot’s mechanics is not available, so that analytical optimization or a
perfect physical simulation are not feasible. The alternative to manual tuning of
parameters and behaviors (expensive and error-prone trial and error) is applying
learning methods and simulation (cheap but effective trial and error). We would
like the robot to optimize its driving behavior after every mechanical change.
We would like the high-level control software to optimize the way the robot
moves on the field also, and this can be best done by performing simulations
which are then tested with the real robot. But first the simulator must learn
how the real robot behaves, that is, it must synthesize a physical model out of
observations. In this paper we tackle both problems: the first part deals with the
“learning to drive” problem, whereas the second part deals with the “learning
to simulate” issue.
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1.1 Learning to Drive

When autonomous robots move, they compute a desired displacement on the
floor and transmit this information to their motors. Pulse width modulation
(PWM) is frequently used to control their rotational velocity. The motor con-
troller tries to bring the motor to speed — if the desired rotational velocity has
not yet been reached, the controller provides a higher PWM signal. PID (propor-
tional, integral, diferential) controllers are popular for this kind of applications
because they are simple, yet effective. A PID controller can register the absolute
difference between the desired and the real angular velocity of the motor (the
error) and tries to make them equal (i.e. bring down the error to zero). However,
PID control functions contain several parameters which can only be computed
analytically when an adequate analytical model of the hardware is available. In
practice, the parameters are set experimentally and are tuned by hand. This
procedure frequently produces suboptimal parameter combinations.

In this paper we show how to eliminate manual adjustments. The robot is
tracked using a global camera covering the field. The method does not require
an analytical model of the hardware. It is specially useful when the hardware is
modified on short notice (adding, for example, weight or by changing the size of
the wheels, or its traction). We use learning to find the best PID parameters.
An initial parameter combination is modified stochastically — better results
reinforce good combinations, bad performance imposes a penalty on the combi-
nation. Once started, the process requires no human intervention. Our technique
finds parameters so that the robot meets the desired driving behavior faster and
with less error. More precise driving translates in better general movement, ro-
bust positioning, and better predictability of the robot’s future position.

1.2 Learning to Simulate

Developing high-level behavior software for autonomous mobile robots (the “play-
book”) is a time consuming activity. Whenever the software is modified, a test
run is needed in order to verify whether the robot behaves in the expected way
or not. The ideal situation of zero hardware failures during tests is the excep-
tion rather than the rule. For this reason, many RoboCup teams have written
their own robot simulators, which are used to test new control modules in the
computer before attempting a field test. A simulator saves hours of work, espe-
cially when trivial errors are detected early, or when subtle errors require many
stop-and-go trials, as well as experimental reversibility.

The simulator of the robotic platform should simulate the behavior of the
hardware as accurately as possible. It is necessary to simulate the delay in the
communication and the robot’s inertia; heavy robots do not move immediately
when commanded to do so. The traction of the wheels, for example, can be
different at various speeds of the robot, and all such details have to be taken into
account. An additional problem is that when the robots are themselves being
developed and optimized, changes in the hardware imply a necessary change
in the physical model of the robot for the simulation. Even if the robots does
not change, the environment can change. A new carpet can provide better or
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worse traction and if the model is not modified, the simulation will fail to reflect
accurately the new situation. In practice, most simulation systems settle for a
simplistic “Newtonian” constant-friction mass model, which does not correspond
to the real robots being used.

Our approach to solve this modelling problem is to learn the reaction of the
robots to commands. We transmit driving commands to a mobile robot: The de-
sired direction, the desired velocity and desired rotation. We observe and record
the behavior of the robot when the commands are executed using a global video
camera, that is, we record the instantaneous robot’s orientation and position.
With this data we train predictors which give us the future position and orienta-
tion of the robots in the next frames, from our knowledge of the last several ones
[4]. The data includes also commands sent to the robots. The predictor is an
approximation to the physical model of the robot, which covers many different
situations, such as different speeds, different orientations during movement, and
start and stop conditions. This learned physical model can then be used in our
simulator providing the best possible approximation to the real thing, short of
an exact physical model which can hardly be derived for a moving target.

2 Related Work

We have been investigating learning the physical behavior of a robot for some
time [4]. Recently we started applying our methods to PID controllers, using
reinforcement learning.

The PID controller has been in use for many decades, due to its simplicity
and effectiveness [6]. The issue of finding a good method for adjusting the PID
parameters has been investigated by many authors. A usual heuristic for obtain-
ing initial values of the parameters is the Ziegler-Nichols method [18]. First an
initial value for the P term is found, from which new heuristic values for the
P, I, and D terms are derived. Most of the published methods have been tested
with computer simulations, in which an analytical model of the control system
is provided. When an analytical model is not available, stochastic optimization
through genetic programming [13] or using genetic algorithms is an option. Our
approach here is to use reinforcement learning, observing a real robot subjected
to real-world constraints. This approach is of interest for industry, where often
a PID controller has to tune itself adaptively and repetitively [17].

The 4-legged team of the University of Texas at Austin presented recently a
technique for learning motion parameters for Sony Aibo robots [12]. The Sony
robots are legged, not wheeled, and therefore some simplification is necessary due
to the many degrees of freedom. The Austin team limited the walking control
problem to achieving maximum forward speed. Using “policy gradient reinforce-
ment learning” they achieved the best known speed for a Sony Aibo robot. We
adapted the policy reinforcement learning method to omnidirectional robots by
defining a quality function which takes into account speed and accuracy of driv-
ing into account. Another problem is that we learn to drive in all directions
but not just forward. This makes the learning problem harder, because there
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can always be a compromise between accuracy and speed, but we succeeded in
deriving adequate driving parameters for our robots.

With respect to simulations, the usual approach is to build as perfect a model
of the robot and feed it to a simulation engine such as ODE (Open Dynamics
Engine). This is difficult to do, and the simulated robot probably will not behave
as the real robot, due to the many variables involved. In an influential paper, for
example, Brooks and Mataric identify four robotic domains in which learning can
be applied: learning parameters, learning about the world, learning behaviors,
and learning to coordinate [5]. We are not aware, at the moment, of any other
RoboCup team using learned physical behaviors of robots for simulations. We
think that our approach saves time and produces better overall results than an
ODE simulation.

3 The Control Problem

The small size league is the fastest physical robot league in the RoboCup com-
petition, all velocities considered relative to the field size. Our robots for this
league are controlled with a five stages loop: a) The video image from cameras
overlooking the field is grabbed by the main computer; b) The vision module
finds the robots and determines their orientation [15]; c) Behavior control com-
putes the new commands for the robots; d) The commands are sent by the main
computer using a wireless link; e) A Motorola HC-12 microcontroller on each
robot receives the commands and directs the movement of the robot using PID
controllers (see [7]). Feedback about the speed of the wheels is provided by the
motors’ impulse generators.

For driving the robots, we use three PID controllers: one for the forward
direction, one for the sideward direction and one for the angle of rotation (all
of them in the coordinate system of the robot). The required Euclidean and
angular velocity is transformed in the desired rotational speed of three or four
motors (we have three and four-wheeled robots). If the desired Euclidian and
angular velocity has not yet been achieved, the controllers provide corrections
which are then transformed into corrections for the motors.

3.1 Microcontroller

The control loop on the robot’s microcontroller consists of the following sequence
of tasks: The robot receives from the off-the-field computer the target values
for the robot’s velocity vector vx, vy and the rotational velocity ω, in its local
coordinate system; the HC-12 microcontroller, which is constantly collecting the
current motor speed values by reading the motors’ pulse generators, converts
them into Euclidian magnitudes (see Section 3.2); the PID-Controller compares
the current movement with the target movement and generates new control
values (Section 3.3); these are converted back to motor values, which are encoded
in PWM signals sent to the motors (Section 3.2).
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3.2 From Euclidian Space to Wheel Parameters Space and
Vice Versa

The conversion of the robot velocity vector (vx, vy, ω) to motor velocity values
wi of n motors is computed by:

⎛

⎜⎜⎜⎝

w1
w2
...

wn

⎞

⎟⎟⎟⎠ =
1
r

⎛

⎜⎜⎜⎝

x1 y1 b
x2 y2 b
...

...
...

xn yn b

⎞

⎟⎟⎟⎠

⎛

⎝
vx

vy

ωn

⎞

⎠ . (1)

The variable r is the diameter of the omnidirectional wheels, b is the distance
from the rotational center of the robot to the wheels, and Fi = (xi, yi) is the
force vector for wheel i. The special case of three wheels at an angle of 120o can
be calculated easily.1

For the opposite direction, from motor velocities to Euclidian velocities, the
calculation follows from Eq. (1) by building the pseudo-inverse of the transfor-
mation matrix. We map the values of n motors to the three dimensional motion
vector. If the number of wheels is greater than three, the transformation is
overdetermined, giving us the nice property of compensating the pulse counter
error of the wheels (by a kind of averaging).

3.3 PID Controller

As explained above, we have programmed three PID controllers, one for the
forward (vx), one for the sideward velocity (vy), and one for the desired angular
velocity (ω). Let us call ex(t) the difference between the required and the actual
velocity vx at time t. Our PID controller computes a correction term given by

Δvx(t) = Pex(t) + I(
�∑

k=0

ex(t − k)) + D(ex(t) − ex(t − 1)) (2)

There are several constants here: P , I, and D are the proportionality, integration,
and difference constants, respectively. The value of Δvx(t) is incremented (with
respect to the leading sign) by an offset and then cut into the needed range. The
correction is proportional to the error (modulated by P ). If the accumulated error
is high, as given by the sum of past errors, the correction grows, modulated by the
integral constant I. If the error is changing too fast, as given by the difference of
the last two errors, the correction is also affected, modulated by the constant D.
A controller without I and D terms, tends to oscillate, around the desired value.
A controller with too high I value does not oscillate, but is slow in reaching the
desired value. A controller without D term can overshoot, making convergence
to the desired value last longer.

1 http://www-2.cs.cmu.edu/~reshko/PILOT/
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The error value used in the above formula is multiplied by a scaling constant
before plugging its value in the formula. This extra parameter must also be
learned. It depends on the geometry of the robot.

3.4 Learning the PID Parameters

We solve the parameter optimization problem using a policy gradient reinforce-
ment learning method as described in [12]. The main idea is based on the as-
sumption that the PID parameters can be varied independently, although they
are correlated. Thus, we can modify the parameter set randomly, calculate the
partial error derivative for each parameter, and correct the values. Note that, in
order to save time, we vary the whole parameter set in each step and not each
parameter separately.

The parameter set P consists of 6×3 = 18 elements (p1, . . . , p18). The number
of parameters is independent from the number of wheels, because we use one PID
controller for each degree of freedom and not for each wheel. The standard hand-
optimized parameters are used as the starting set. In each step, we generate a
whole new suite of n parameter sets

P1 = (p1 + π1
1 , . . . , p18 + π1

18)
P2 = (p1 + π2

1 , . . . , p18 + π2
18)

...
Pn = (p1 + πn

1 , . . . , p18 + πn
18).

(3)

Whereby the value πj
i is picked with uniform probability from the set {−εi, 0,+εi}

and εi is a small constant, one for each pi.
The evaluation of one parameter set consists of a simple test. The robot has

to speed up from rest into one particular direction, at an angle of 45o relative
to its orientation. It has to drive for some constant time, without rotations and
as far as possible from the starting point. Then the robot has to stop abruptly,
also without rotating and as fast as possible (see Fig. 1(b)). During this test
phase, the robot does not receive any feedback information from the off-the-field
computer.

Each test run is evaluated according to the evaluation function Q(Pj), which
is a weighted function of the following criteria: the deviation of the robot to the
predetermined direction, the accumulated rotation of the robot, the distance of
the run, and the distance needed for stopping. The only positive criterion is the
length of the run; all other are negative.

We evaluate the function Q(Pj) for all test parameter sets Pj , where
j = 1, . . . , n. The sets are collected according to the π constants for every pa-
rameter into three classes:

C+
i = {Pj |πj

i = +εi, j = 1, . . . , n},

C−
i = {Pj |πj

i = −εi, j = 1, . . . , n},

C0
i = {Pj |πj

i = 0, j = 1, . . . , n}
(4)
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Fig. 1. (a) The quality of the tested parameter sets. The graph shows only the evalu-
ated parameter sets which are varying up to εi from the learned parameter i. Therefore,
the values are noisy. (b) Example of a test run. The straight line shows the desired
direction and the dotted line shows the real trajectory of the robot on the field

For every class of sets, the average quality is computed:

A+
i =

∑
P∈C+

i
Q(P)x

‖C+
i ‖ , A−

i =

∑
P∈C−

i
Q(P)x

‖C−
i ‖ , A0

i =

∑
P∈C0

i
Q(P)x

‖C0
i ‖ (5)

This calculation provides us a gradient for each parameter, which shows us,
whether some specific variance π makes the results better or not. If this gradient
is unambiguous, we compute the new parameter value according to Eq. 6:
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Fig. 2. The four componets of the quality function. The total quality is a weighted
average of these four magnitudes
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Fig. 3. The learned parameters, started from the hand-optimized set. The parameters
are not independent

p′
i =

⎧
⎨

⎩

pi + ηi if A+
i > A0

i > A−
i orA+

i > A−
i > A0

i

pi − ηi if A−
i > A0

i > A+
i orA−

i > A+
i > A0

i

pi otherwise
(6)

Where the learning constant for each parameter is ηi. The old parameter set
is replaced by the new one, and the process is iterated until no further progress
is detected.

3.5 Results

We made two experiments: In the first, we learned only the P, I, and D values.
These values were initialized to 0. The evolution of the learning process is shown
in Fig. 1(a) and in Fig. 2. Fig. 1(a) shows the quality of the test runs during the
whole learning process and Fig. 1(b) a sample run of the robot. The total quality
of a test run can be broken down into the four quality magnitudes. These are
shown in Fig. 2. At the beginning, the robot does not move. After 10 iterations
of parameter evaluation and adaptation, the robot moves at an average of one
meter per second, with acceleration and braking. The average deviation from
the desired direction is 10 percent at the end point.

In a second experiment, the PID controller was initialized with the hand-
optimized values. The result is shown in Fig. 3. The parameters are not inde-
pendent, which leads to some oscillations at the beginning.
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In the experiment shown in Fig. 3 the rotation controller is also learned,
although the task of the robot is only to drive in one direction without rotating.
However, rotation control is important for straight movement, because an error
caused by wheel slippage at the beginning of the movement — in the acceleration
phase — can be compensated later.

The PID parameters learned with our experiments are used now for control
of our robots. They can be relearned, if the robot is modified, in a few minutes.

4 Learning the Behavior of the Robot

We reported in a previous paper how we predict the position of our small-size
robots in order to cope with the unavoidable system delay of the vision and control
system [4]. When tracking mobile robots, the image delivered by the video camera
is an image of the past. Before sending the new commands to the robot we have
to take into account when the robot will receive them, because it takes some time
to send and receive commands. This means that not even the current real position
of the robots is enough: we need to know the future position and future orienta-
tion of the robots. The temporal gap between the last frame we receive and the
time our robots will receive new commands is the system delay. It can be longer
or shorter, but is always present and must be handled when driving robots at high
speed (up to 2 m/s in the small size league). Our system delay is around 100 ms,
which corresponds to about 3 to 4 frames of a video camera running at 30 fps.

The task for our control system is therefore, from the knowledge of the last
six frames we have received, and from the knowledge of the control commands
we sent in each of those six frames, to predict the future orientation and position
of the robots, four frames ahead from the past.

The information available for this prediction is preprocessed: since the reac-
tion of the robot does not depend on its coordinates (for a homogeneous floor)
we encode the data in the robot’s local coordinate system. Obstacles and walls
must be handled seperately. We use six vectors for position, the difference vec-
tors between the last frame which has arrived and the other frames in the past,
given as (x, y) coordinates. The orientation data consist of the difference be-
tween the last registered and the six previous orientations. Each angle θ is en-
coded as a pair (sin θ, cos θ) to avoid discontinuity when the angle crosses from
2π to 0. The desired driving direction, velocity and rotation angle transmitted
as commands to the robot of the last six frames are given as one vector with
(vx, vy, ω)-coordinates. They are given in the robots coordinate system. We use
seven float values per frame, for six frames, so that we have 42 numbers to make
the prediction. We don’t use the current frame directly, but indirectly, because
we actually use the differences between each last frame and the current frame.
The current motor values do not influence the robot motion in the next four
frames (because of the delay), so they are irrelevant.

We use neural networks and linear regression models to pretict the future
positions and orientations of the robot, one or four frames in advance. For de-
tails see [8].
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4.1 The Simulator

Once we have trained a neural network to simulate the physical response of the
robot to past states and commands, we can plug-in this neural network in our
behavior simulation. We play with virtual robots: they have an initial position
and their movement after receiving commands is dictated by the prediction of
the behavior of the real robots in the next frame. We have here an interesting
interplay between the learned physical behavior and the commands. In each
frame we use the trained predictors to “move” the robots one more frame. This
information, however, is not provided to the behavior software. The behavior
software sends commands to the virtual robots assuming that they will receive
them with a delay (and the simulator enforces this delay). The behavior software
can only ask the neural network for a prediction of the position of the robot in
the fourth frame (as we do in real games). But the difference between what the
high-level behavior control “knows” (the past, with four frames delay) and how
the simulator moves the robot (a prediction, only one frame in advance) helps us
to reproduce the effect of delays. Our simulator reproduces playing conditions
as nearly as possible. Fig. 4 shows a comparison of the driving paths obtained
with different models and reality.

As can be seen in Fig. 4, the “Newtonian” model is too smooth. The real
driving behavior is more irregular, because when the robot drives it overshoots or
slips on the floor. Our simple “Newtonian” model could be extended by a more
realistic one, which includes for examle nonlinear friction terms. The learned
behavior (c) reflects more accurately this more problematic and realistic driving
behavior, so we don’t need any model. This is important for high-level control,
because the higher control structures must also learn to cope with unexpected
driving noise.

(a) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Real Robot

(b) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Physical Model

(c) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Prediction Model

(d) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Real Robot with Orientation

(e) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Physical Model with Orientation

(f) −100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100
Prediction Model with Orientation

Fig. 4. A comparison of driving paths: (a) real path driven by a real robot, (b) simu-
lation of the same path with a physical model and (c) simulation with the prediction
model. (d),(e),(f) show the same paths including the orientation of the robot, drawn
as small segments
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5 Conclusions and Future Work

Our results show that it is possible to apply learning methods in order to optimize
the driving behavior of a wheeled robot. They also show that learning can even
be used to model the physical reaction of the robot to external commands.

Optimizing the driving behavior means that we need to weight the options
available. It is possible to let robots move faster, but they will collide more
frequently due to lack of precision. If they drive more precisely, they will tend to
slow down. Ideally, in future work, we would like to derive intelligent controllers,
specialized in different problems. The high-level behavior could decide which one
to apply, the more aggressive or the more precise. Another piece of future work
would be trying to optimize high-level behaviors using reinforcement learning,
so that they compensate disadvantages of the robot on-board control.

We have seen in Fig. 4, that the predicted robot motion (c) is more accurate
than the real one (a), because the prediction (any prediction) smooths the ob-
served real movements. The driving noise could be also analyzed and its inclusion
in the simulator would make the model even more realistic.

This paper is part of our ongoing work on making robots easier to adapt to
an unknown and variable environment. We report elsewhere our results about
automatic color and distortion calibration of our computer vision system [9].
The interplay of vision and control software will make posible in the future to
build a robot, put it immediately on the field, and observe how it gradually
learns to drive.
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Abstract. In this paper, we report on the status of the RoboCupJunior league,
four years after it was founded. Since its inception in 2000, we have been survey-
ing and/or interviewing students and mentors who participate in the international
event. Here we present a high-level overview of this data.We discuss demographics
of participants, characteristics of preparation and educational value. We highlight
trends and identify needs for the future, in terms of event organization, educational
assessment and community-building.

1 Introduction

RoboCupJunior (RCJ), the division of RoboCup geared toward primary and secondary
school students, was founded in 2000. The focus in the Junior league is on education. RCJ
offers three challenges (see figure 1) — soccer, rescue and dance — each emphasizing
both cooperative and competitive aspects. The stated mission of RoboCupJunior is: “to
create a learning environment for today, and to foster understanding among humans
and technology for tomorrow”. RCJ provides an exciting introduction to the field of
robotics, a new way to develop technical abilities through hands-on experience with
computing machinery and programming, and a highly motivating opportunity to learn
about teamwork while sharing technology with friends. In contrast to the one-child-
one-computer scenario typically seen today, RCJ provides a unique opportunity for
participants with a variety of interests and strengths to work together as a team to achieve
a common goal.

The idea for RoboCupJunior was demonstrated in 1998, with a demonstration at
RoboCup-98 in Paris [1]. The first international competition was held in 2000 in Mel-
bourne, Australia at RoboCup-2000, with 25 teams from 3 countries participating [2].
In 2001, in Seattle, USA, there were 25 teams from 4 countries (83 students plus 17
mentors) [3]. In the following year, the initiative exploded and 59 teams from 12 coun-
tries came to RoboCupJunior-2002 in Fukuoka, Japan (183 students plus 51 mentors)
[4]. Most recently, 67 teams from 15 countries participated at RoboCupJunior-2003 in
Padova Italy (233 students plus 56 mentors). The fifth annual international RoboCupJu-
nior event will be held in Lisbon, Portugal in early July 2004 and a similar rate of
expansion is expected.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 172–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) soccer (b) rescue (c) rescue “victims” (d) dance

Fig. 1. RoboCupJunior challenges

This paper focuses on reporting on the status of the RoboCupJunior league from
several standpoints. Since its inception, we have been involved in evaluating RCJ for
the dual purpose of tracking its growth in terms of members and internationalization
and examining what it is about RCJ (and robotics in general) that is so exciting and
motivating for students and what intrigues mentors and keeps them involved from one
year to the next. We have conducted interviews and surveys of students and mentors
since the first RCJ event in Melbourne. Our initial report was a pilot study, based on
interviews of mentors [2]. A follow-up study was reported in 2002 that included input
from students and compared the trends identified in 2000 to data collected in 2001 [3].
The data indicated the possibility of exciting results, if a more comprehensive study were
conducted with more participants over a longer time period. This report attempts to take
a step in that direction.

Since the initiative exploded in popularity in 2002, we have collected more than three
times as much data as in the first two years. Here, we analyze that data and compare it
with the initial years. Additionally, we report the demographic statistics and increase in
participation world-wide. We describe developments within the RCJ league and close
with a brief summary and future plans.

It is important to keep in mind when reading this report that the data was collected at
an annual international event hosted by a different country each year. The host regions
typically account for approximately 40% of RCJ teams, so as a result, the trends are
highly subjective to the norms and characteristics of each region. The interesting piece
is to find trends that breach the cultural divide and some are identified below.

2 Participation

We examine rates of participation in terms of the number of teams and the number of
students and mentors who have attended each event. Three years are compared: 2001-
2003. All the data presented for subsequent years both in terms of registration and
evaluation statistics was not collected in 2000, so we consider 2000 to be a pilot year
and here restrict our comparisons to 2001-2003. We view the data in three ways, looking
at the population distribution across countries, challenges and gender.

We examine the international distribution of teams over the three years. In 2001,
teams from 4 countries participated. This rose to 12 countries in 2002 and 15 in 2003.
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Table 1. Distribution of teams from different countries

2001 2002 2003 2001 2002 2003
Australasia Europe
Australia 10 (40%) 8 (14%) 5 (7%) Denmark 1 (2%)
China 2 (3%) 4 (6%) Finland 1 (2%) 1 (1%)
Japan 29 (49%) 12 (18%) Germany 5 (20%) 5 (8%) 15 (22%)
Korea 5 (8%) Italy 7 (10%)
Singapore 4 (6%) Norway 1 (2%) 1 (1%)
Taiwan 2 (3%) Portugal 1 (1%)
Thailand 4 (7%) Slovakia 1 (2%) 3 (4%)
North America UK 2 (8%) 3 (4%)
Canada 1 (2%) 2 (3%) Middle East
USA 8 (32%) 1 (2%) 4 (6%) Iran 3 (4%)

Countries are grouped by region and listed in alphabetical order. Entries contain the number
of teams that participated that year. The number in parenthesis indicates what percentage of
total participation was represented by that country. Blank entries indicate that a country did not
participate in the corresponding year. Bold entries highlight the host country each year.
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Fig. 2. Distribution each year of students from different countries

key: oz = Australia; ca = Canada; ch = China; dk = Denmark; fn = Finland; ge = Germany; ir =
Iran; it = Italy; jp = Japan; ko = Korea; no = Norway; po = Portugal; si = Singapore; sl = Slovakia;
ta = Taiwan; th = Thailand; uk = UK; us = USA.

Statistics on teams are shown in table 1. The corresponding statistics counting students
(instead of teams) is illustrated graphically in figure 2.

Table 2 shows the distribution of participants entering each of the four challenges:
1-on-1 soccer, 2-on-2 soccer, rescue and dance. Note that 1-on-1 soccer was not held in
2001 and rescue was not held in 2002. These were the decisions of local organizers1. It
is interesting to note that 2-on-2 soccer remains the most popular challenge, involving
from about two-thirds to three-quarters of participants. Dance attracts about one-third of
participants. Rescue, revamped in 2003, draws just under 20% of participants; however
it is anticipated that this percentage will rise (see section 4.2).

1 Subsequently, through efforts to provide a more formal structure for RCJ, these crucial types
of decisions were placed in the hands of an international technical committee which includes
two members of the RoboCup Federation Executive Committee.
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Table 2. Challenges

2001 2002 2003
teams students teams students teams students

dance 7 (28%) 29 (35%) 12 (20%) 63 (34%) 18 (27%) 67 (29%)
rescue 4 (16%) 16 (19%) 12 (18%) 39 (17%)
1-on-1 soccer 4 (7%) 10 (5%) 14 (21%) 49 (21%)
2-on-2 soccer 22 (88%) 68 (82%) 45 (76%) 125 (68%) 45 (67%) 166 (71%)

Table 3. Percentage of female student participants, per year and by challenge

2001 2002 2003

total 10 (12%) 30 (16%) 37 (16%)

dance 5 (17%) 16 (25%) 22 (33%)
rescue 0 (0%) 7 (18%)
1x1soccer 0 (0%) 3 (6%)
2x2soccer 7 (10%) 16 (13%) 13 (8%)

We are also interested in studying the gender balance, across years and challenges,
for both students and mentors. Here, we present data on rates of female participation
within the student population. Note that we are not including mentors because the data
we have is sparse and inaccurate. One planned improvement for the immediate future
is standardization and centralization of data collection for all RCJ participants (students
and mentors).

In table 3, we show the percentage of female student participants over all three years.
The total number is presented and is also broken down by challenge. Note that some
students participate in more than one challenge, which explains why the sum of the
values broken down by challenge exceeds the total number in the top row. Also note
that the challenge percentages are the rates of female participation calculated over all
students who participated in that challenge (not over all participants).

RoboCupJunior has seen strong growth in the number of female participants. We
highlight the fact that the dance challenge, which provides a unique outlet for creativity,
attracted 33% female participants in 2003, double the rate of just two years earlier,
and also well above typical rates for computer science and most engineering fields,
which generally range from 10-20% female. This trend has been duplicated in all of the
national open events held thus far, most notably in Australia where over half the RCJ
dance participants in 2003 were female. This is impressive, as the scale of the Australian
RoboCupJunior effort is such that each state has its own regional championship and on
the order of five hundred students participate in the country’s national RoboCupJunior
event each year.

3 Evaluation

In 2000, we conducted video-taped interviews of mentors with the intent of beginning
a longterm study of the effects of RCJ across a wide spectrum of technical, academic
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and social areas. We transcribed and analyzed this data, which is presented in [2]. The
experience informed the creation of a set of surveys for both students and mentors, which
we administered in 2001. These were analyzed and presented in [3]. We used these
results to modify our survey methodology, shifting from mostly open-ended, qualitative
questions to a closed, quantitative questionnaire for 2002 and 2003. In this section, we
detail our findings from these last two years, comparing them to the results of 2001. Note
that since our data collection methodology from 2000 differed so significantly from the
subsequent years, we do not attempt to make any direct comparisons to this data.

It is also worth mentioning that we conducted video-taped interviews of students
in 2001 and 2002. Analysis of this data is problematic for several reasons. The data
collection methodology was inconsistent, primarily because interviews were conducted
by volunteers who were not trained interviewers and so many interviews became con-
versations and deviated from the prescribed set of questions. This was compounded by
language issues (both at the time of the interviews and later, during transcription). In
addition, accurate transcription is extremely time-consuming and error-prone. Thus we
cannot draw statistical conclusions from these interviews, although they have served a
useful purpose in developing the surveys. We did not conduct interviews in 2003 and
do not plan any for 2004. Future evaluations may include more structured interviews
conducted by researchers in areas such as education and human development.

Table 4 shows the rate of return on the surveys for all three years (2001-2003). Totals
are shown; as well, the data is subdivided by gender and country. Except for the totals,
the percentages are calculated as the rate of return of all people who responded (not over
all participants). The percentages reported for “country” are the percentage of the total
responses that were from each nation. This gives an indication of the extent to which
overall trends might be attributed to a particular country. This is not the same as the
response rate from each country, i.e., the percentage of participants from a particular
country who complete the surveys. That is shown in table 5 and gives an indication of
to what extent a collective country’s response is representative of that country.

3.1 Students’ Responses

A total of 192 students participated in the survey (2001, 39 students; 2002, 104 students;
2003, 49 students). Out of these, 84% were male and 16% were female (162 males and
29 females in total; 2001, 34 males, 5 females; 2002, 86 males, 17 females; 2003, 42
males, 7 females). Here we present analysis of their responses to four questions.

How was your team organized? We collected valid answers to this question only in
2002 and 2003. In 2001, the question was phrased with open-ended responses rather than
multiple choice answers, and many students misunderstood the question (for example,
some answered “well”). So we changed the format of the question to multiple-choice in
2002. Based on the 2002 and 2003 data, many students responded that their teams were
organized at after school programs (2002, 46%; 2003, 39%). About one fifth of teams
were organized by one of the team members (2002, 18%; 2003, 22%). In both years,
14% of the students responded that their teams were organized by community youth
groups or organizations. However, in 2002, 13% of the student participants reported that
their teams were organized in class as part of their normal school day (as opposed to
2% in 2003. But in 2002, about half of the teams were Japanese teams and the event
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Table 4. Return rates on surveys, 2001-2003

2001 2002 2003
students mentors students mentors students mentors

total
responses 39 (48%) 16 (94%) 104 (57%) 16 (29%) 49 (21%) 27 (53%)

breakdown by gender
male 34 (87%) 13 (81%) 86 (83%) 24 (89%) 42 (86%) 10 (63%)
female 5 (13%) 3 (19%) 17 (16%) 3 (11%) 7 (14%) 4 (25%)

breakdown by country
Australia 11 (28%) 2 (13%) 17 (16%) 4 (15%) 0 (0%) 1 (6%)
Canada 5 (5%) 0 (0%) 0 (0%) 0 (0%)
China 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Denmark 1 (1%) 1 (4%) 0 (0%)
Finland 2 (2%) 1 (4%) 0 (0%) 0 (0%)
Germany 11 (28%) 6 (38%) 9 (9%) 2 (7%) 13 (27%) 1 (6%)
Iran 7 (14%) 2 (13%)
Italy 0 (0%) 0 (0%)
Japan 57 (55%) 15 (56%) 16 (33%) 3 (19%)
Korea 0 (0%) 0 (0%)
Norway 2 (2%) 1 (4%) 1 (2%) 1 (6%)
Portugal 0 (0%) 0 (0%)
Singapore 9 (18%) 5 (31%)
Slovakia 2 (2%) 1 (4%) 3 (6%) 3 (19%)
Taiwan 0 (0%) 0 (0%)
Thailand 6 (6%) 2 (7%)
UK 1 (3%) 1 (6%) 0 (0%) 0 (0%)
USA 16 (41%) 7 (44%) 3 (3%) 0 (0%) 0 (0%) 0 (0%)

Note that in 2003, 2 mentors (12%) did not answer the gender question.

was organized by the local city government. Because the local city government recruited
teams from the city public district, many participating teams from the local area were
organized at school.

How did you find out about RoboCupJunior? In 2001 and 2002, many students
reported that they learned about RCJ from their school teachers (2001, 74%; 2002, 61%;
2003 24%). On the other hand, in 2003, the most popular informant was a local robotics
society (35%), which was 0% in 2001 and 11% in 2002. This difference can be attributed
to local influences in the host region.

What robot platform did your team use? The most popular robot platform used by
RCJ teams is the Lego Mindstorms Robotics Invention Kit (2001, 72% of the student
participants; 2002, 46%; 2003, 43%). This could be because Lego Mindstorms is also
the most widely available robot platform around the world. One interesting trend to point
out is that in 2002, 41% of student participants reported that their teams used the Elekit
SoccerRobo. This is because RCJ-2002 was held in the city in Japan where the Elekit
company is headquartered. Another trend to point out is, in recent years, more and more
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Table 5. Survey return rates for students and mentors, by year and country

2001 2002 2003
students mentors students mentors students mentors

Australia 48% 67% 77% 57% 0% 25%
Canada 56% 0% 0% 0%
China 0% 0% 0% 0%
Denmark 100% 50%
Finland 100% 0% 0% 0%
Germany 79% 120% 56% 50% 22% 11%
Iran 70% 67%
Italy 0% 0%
Japan 57% 71% 53% 30%
Korea 0% 0%
Norway 100% 100% 50% 100%
Portugal 0% 0%
Singapore 56% 125%
Slovakia 100% 100% 38% 100%
Taiwan 0% 0%
Thailand 60% 50%
UK 33% 50% 0% 0%
USA 37% 100% 100% 0% 0% 0%

teams are adding components of their own. In 2001, no student participants reported that
they added components not included in the original kit. But 16% students in 2002 and
31% in 2003 reported that they added components.

How much time did you spend preparing for RCJ? Students were asked to specify
when they began preparation for the event, how often their team met and how long
each meeting lasted. Most teams spend 1-3 months preparing (36% in 2001, 30% in
2002 and 39% in 2003); however responses ranging from 3-12 months are only slightly
lower. Very few teams spend less than 1 month preparing. Most teams meet once per
week, although this data is hard to tally, since many students wrote in the margins of the
survey that they started meeting once a week, and then met more frequently as the event
drew closer. Overwhelmingly, teams spend more than 90 minutes at each meeting. All
of these trends regarding preparation time are very similar from one year to the next, not
deviating for different regions. It is interesting to note the length of meeting time. Since
class periods in schools are typically shorter than 90 minutes, this points out that it is
hard to find sufficient preparation time for RCJ only through classroom work.

3.2 Mentors’ Responses

A total of 59 mentors participated in the survey (2001, 16 mentors; 2002, 27 mentors;
2003, 16 mentors). Out of the 59 mentor survey participants, 80% were male and 17%
were female2. Here we present analysis of their responses to four questions.

2 47 males and 10 females in total; 2001, 13 males, 3 females; 2002, 24 males, 3 females; 2003,
10 males, 4 females, 2 did not provide gender data.
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What was your role in the team? Out of all the mentor participants, 33 are school
teachers, 13 are parents of the student participants, 10 are community group organizers,
3 are science museum/center staff, and 6 are from some type of organization. Every year,
about half of the mentors are teachers (2001, 41%; 2002, 67%; 2003, 50%). In 2001,
more parents (50% of the respondents) and fewer teachers got involved in than other
years. Since RCJ typically occurs in July, many schools around the world are on summer
holiday, so finding teachers to participate can be problematic. This was highlighted at
RCJ-2001, when the event was held in the USA, because the summer school holidays
are long and students tend to go to camp or get jobs.

What type of school and community does your team come from? Many teams are
affiliated with public schools (2001, 63%; 2002, 41%; 2003, 69%). This shows that
educational robotics is not limited for those who go to private schools with high-end
technologies. Most of them are from either urban or suburban areas (2001, 38% in urban
and 38% in suburban; 2002, 44% in urban and 44% in suburban; 2003, 38% in urban
and 6% in suburban). This could be because of a lack of RoboCupJunior-related events
and/or activities in rural areas in general. Many RCJ local competitions tend to be held
in large cities. This suggests that the organizers of RCJ events need to examine ways to
extend local events to more rural areas in the future.

How did your team fund its effort? Mentors reported that about 70% or more teams
received money from their schools, sponsors, local government, or/and fundraising ac-
tivities (2001, 75%; 2002, 68%; 2003, 88%). In 2001, half the teams received funding
from sponsors. 19% of the teams did fundraising activities and 13% received support
from their school. 31% of teams had their parents pay for them. On the other hand, in
2002, more teams had their parents pay (41%) and were less successful for receiving
sponsorship (33%). Also, teams received more funding from their schools (30%) and
local government/board of education (11%). However, some teams had to have the team
members and/or mentors pay to participate (teacher, 2 teams; members, 1 team). In
2003, half of the teams received sponsorship including RoboCupJunior travel support,
and 25% of them receive support from their school. However, parental support was still
one of the main resources for the teams.

On the other hand, more than 75% of the mentors did not receive any direct funding
(2001, 75%; 2002, 89%; 2003, 75%) (i.e., payment for their time, e.g., as after-school
teachers). Some of them were able to get paid through their schools or from grants,
but it is obvious that the mentors need avenues for financial support. Yet this statistic
is astounding — as overworked as most schoolteachers are, the vast majority of them
are motivated enough by RCJ to volunteer their time and participate, sometimes even
spending their own money. Despite of the financial hardships, most mentors indicate
their intention to participate the International competition again (2001, 63%; 2002, 89%;
2003, 88%).

Do you use robotics in your school curriculum, and if yes, how? Out of 33 teacher-
mentors, 31 teacher-participants provided information about their schools. All of them
teach middle (11-14 year-old) and/or high (older than 15) school age students. Only
four teach elementary (5-10 year old) school age students (some of them also teach
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Fig. 3. Students’ self-assessment

key: mat = math; phy = physics; pgm = computer programming; mec = mechanical engineering;
ele = electronics; sci = general science; com = communication skills; tem = teamwork; pdv =
personal development (such as organization). NA means that the question was not answered.

older students). This suggests that educational robotics is used more with students who
are older than 10. The future questions will be finding out the reason why RCJ does
not attract elementary school teachers and how to make it more accessible for these
teachers; although we can speculate on two points. First, it is more difficult to travel
with younger children than with older students3; so it may be that, as a result, RCJ
is perceived as an event for older participants. Second, younger children typically have
trouble concentrating for extended periods of time. Given that the large majority of teams
spend over 90 minutes at each meeting time, it may be that many younger children do
not have the focus to stay involved for a sustained period of time, over a number of
months.

About half of the mentors teach technology. Other commonly taught subjects are
chemistry (6 teachers), general science (6 teachers), and physics (5 teachers). Despite
the fact that educational robotics can be used to illustrate a variety math concepts, only
three mentors are math teachers (all three participated in 2001).

Eighteen teachers responded that they use robotics in their curriculum and 13 teachers
do not use it in the curriculum but do use it in after school programs. However, 13
teachers out of the 18 teachers organized their RCJ teams after school, not within their
class room period. This suggests that we should investigate in the future what are the
obstacles for teachers using robotics in their curriculum to organize their teams as part
of classroom activities.

We are working on developing materials to help teachers take an integrated approach
to educational robotics and RCJ. Students should be encouraged to write lab reports,
journaling their efforts in engineering and programming. They can create posters and
oral presentations about their developments. As indicated above, robotics can be used
to demonstrate a wide variety of math skills; and some of our work involves creating
curriculum to do this.

3 Less supervision and parental involvement is required.
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Fig. 4. Which aspects were positively affected by students’ participation in RCJ?

3.3 Educational Value

A large part of the evaluation is dedicated to trying to identify what students are actually
learning from participating in RCJ. The surveys administered in 2002 and 2003 include
a series of statements (such as, “I am better in math because of working with robots.”)
to which respondents indicated agreement or disagreement on 5-point scale. Figure 3
shows how students responded.

In order to get more of a snapshot view, we took this data plus the responses to
similar questions from 2001 and interpreted each response as to whether the students and
mentors thought each aspect was positively affected by involvement in RoboCupJunior.
The results are shown in figure 4.
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Finally, it is interesting to note that students assess themselves and their experience
differently from mentors observing the effects. Figure 5 shows the difference, for each
year, in student versus mentor opinion.

4 Development

As the league has grown, it has changed. Here, we highlight two recent changes.

4.1 E-League

The newest initiative within RoboCup is a new entry-level league developed and exhib-
ited for the first time in 2003 [5]. This league is designed to provide an easy entry into
RoboCup involving more undergraduate students, as a means for RoboCupJunior “grad-
uates” to continue with the project between high school and graduate school (where most
RoboCup senior league participants come from). The league is also intended to serve as
an accessible entry-point for undergraduates who have not participated in RoboCupJu-
nior. The league is inexpensive (compared to the other RoboCup senior leagues).

4.2 Rescue

In 2003, we designed and constructed a miniature, modular version of the NIST standard
USAR test bed especially for RoboCupJunior [6]. The design features a varying number
of “rooms”, connected by hallways and ramps (see figure 1b). Two doorways are located
at standard points in each room so that multiple rooms (modules) can be linked together
easily. Modules can be stacked, to provide additional challenge; lighting conditions in
lower rooms with a “roof” are different than in rooms with an open top. The number of
modules in an arena is not fixed; we used four modules at RCJ-2003 in Padova.

The floor of each room is a light color (typically white). The surface could be smooth,
like wood, or textured, such as a low-pile carpet. The rooms can be furnished or bare; the
walls can be decorated or left empty. This allows teams to enhance their modules with
decorations of their own design. One idea is to let teams bring “wallpaper” to events as
a means for sharing team spirit and local culture.

A black line, made with standard black electrical tape, runs along the floor through
each room, entering in one doorway and exiting through the other. Along the black line,
“victims” are placed randomly throughout the arena. The victims are like paper doll cut-
outs, made of either green electrical tape or reflective silver material (see figure 1c). As
in the senior rescue game, teams receive points for detecting victims. They are penalized
for missing existing victims and for mis-classifying victims (i.e., finding victims that
are not really there). When the robot locates a victim, it is supposed to pause on its path
and also make an audible beeping sound.

5 Summary

We have presented a report on the status of RoboCupJunior, four years after its birth. We
have provided statistical data on the demographics of participants, highlighting gender
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differences and a broadening range of internationalization. Further, we have offered re-
sults and analyses of evaluation surveys collected at RoboCupJunior international events
since 2000. New developments were described, and we identified areas of improvement
for the future.

One aspect of evaluating only the annual RCJ international event is that there is
a concentration of teams from the local, host region. This presents a challenge from a
research standpoint, since the cohort differs somewhat from year to year. However, it also
helps highlight particular characteristics of these regions. Expanding our data collection
to local and regional events world-wide will help identify broader effects that are (and
are not) sensitive to cultural differences.

As RCJ expands worldwide, there is an increasing need to establish a better organiza-
tional foundation and structure for information dissemination and community-building.
We have recently received significant support from the Association for Computing Ma-
chinery (ACM) to maintain and grow the initiative on an international basis. This support
will help us improve the RCJ web-site and offer improved channels for information,
communication and resources.

http://www.robocupjunior.org
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Abstract. Real-time decision making based on visual sensory informa-
tion is a demanding task for mobile robots. Learning on high-dimensional,
highly redundant image data imposes a real problem for most learning al-
gorithms, especially those being based on neural networks. In this paper
we investigate the utilization of evolutionary techniques in combination
with supervised learning of feedforward nets to automatically construct
and improve suitable, task-dependent preprocessing layers helping to re-
duce the complexity of the original learning problem. Given a number of
basic, parameterized low-level computer vision algorithms, the proposed
evolutionary algorithm automatically selects and appropriately sets up
the parameters of exactly those operators best suited for the imposed
supervised learning problem.

1 Introduction

A central problem within the field of robotics is to appropriately respond to
sensory stimulation in real-time. At this, visual sensory information becomes
more and more important. When applying techniques of machine learning to
such tasks, one faces a number of recurring problems. In most cases it is simply
not feasible to feed the whole image information directly into a neural network
or into any other learning algorithm. Often a (hand-coded) computer vision
subsystem is used to preprocess the images and extract useful visual features.
Usually, the developer himself specifies such a restricted set of features and the
structure of an intermediate data representation. By using the resulting low-
dimensional feature vectors and the intermediate data representation, learning
becomes possible.

Since there is still no all-purpose domain-independent computer vision sys-
tem, adapting or redesigning the computer vision subsystem for a new problem is
a time consuming and expensive task. But compared to finding a general-purpose
computer vision subsystem and a transferable intermediate data representation
it is generally easier and more reliable to build highly specialized, task-dependent
preprocessing layers. Accordingly, we believe computer vision subsystems should
concentrate on extracting only task-relevant features.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 184–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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What features are needed to be extracted in order to be fed to the learning
algorithm, is highly dependent on the task itself. Therefore, when specifying the
intermediate data representation and designing the computer vision subsystem,
it is absolutely necessary to consider not only the input images but also the
desired output signals.

To give an example (see experiment 2): Consider a set of some images con-
taining a dice in front of a uniform background and others containing only the
empty background. If the task were to detect the presence or absence of the dice
in a particular image it would at least be necessary to look for a rectangular
or quadratic area and return a boolean value. If the dice should be grabbed
by a robot-arm the detected feature (“quadratic area”) could still be the same.
Additionally it would however be necessary to calculate its center of gravity or
its bounding box. Finally, if the task was to read the dice it would be necessary
to detect a completely different feature, namely the markers on it. However, in
this task the position of the features is unimportant and does not need to be
considered. Encoding their individual absence or presence is sufficient. It does
not take much effort to come up with scenarios in which an extraction of even
more features is needed.

This example clearly shows that different applications require different sets
of features to be extracted. Searching the images for prominent or interesting
features without considering the application of the extracted information can not
give the optimal solution to a task. The approach presented in this paper, there-
fore is to treat the learning of both the preprocessing and the control subsystem
as a whole, always considering both input and desired output.

The algorithm presented here, is able to directly solve a supervised learning
problem on visual input without any further information or help from the outside.
We have chosen to use a hybrid solution that comprises an evolutionary algorithm
(outer loop) and the supervised training of feedforward nets (inner loop). The can-
didate solutions (individuals of the evolutionary process) are composed of a neural
network realizing the decision making process and a specialized and highly task-
dependent computer vision subsystem for preprocessing the image data. Candi-
date preprocessing subsystems are automatically constructed during the evolu-
tionary process. The primitives forming the computer vision subsystem are more
or less complex, highly parameterized, hand-coded programs, each realizing a fea-
ture detector, global operator or other low-level computer vision algorithm.

2 Related Work

A considerable number of methods has been developed to tackle the problem
of feature selection. Statistical methods based on principle component analysis
(PCA) (for example [5], [8], [9]) are able to remove redundant features with a
minimal loss of information. One probelm of such methods is that they are often
computationally expensive. Locally linear embedding (LLE) is a non-linear non-
iterative unsupervised method that can be used for dimensionality reduction
[15]. LLE can be extended to data with class information available [13], too.
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Martin C. Martin has used genetic programming to construct visual feature ex-
tracting programs for a computer vision subsystem of a robot solving a simple navi-
gation task [11]. Instead of considering the task as a whole, the subtask to be solved
by the visual feature extractors and their correct output was explicitly specified.

Tony Belpaeme proposes a genetic algorithm for the evolutionary construc-
tion of visual feature extractors not needing any information about the target
output of these extractors [2]. According to Belpaeme it would be possible to
measure the fitness of the extractors as their performance in the task itself. But
for performance reasons he proposes to use the entropy of the resulting feature
vectors instead. Belpaeme does not provide any information about the general-
ization behavior of the algorithm or its performance in real tasks.

The Schema Learning System (SLS) proposed by Bruce A. Draper [6] is able
to learn special-purpose recognition strategies under supervision using a library
of executable procedures. The parameters of the computer vision algorithms in
the library, however, have to be set by hand for every different task [7].

Bala et al. [1] use a genetic algorithm to search for a subset of user pro-
vided visual features in an object classification task. A classifier is constructed
by inducing a decision tree using these feature subsets and a training set of
labeled images.

In [3] Heinrich Braun and Joachim Weisbrod present a hybrid algorithm
(ENZO) evolving the topology of feedforward nets. As ENZO is permitted to
change the input layer, it is able to select features and reduce the dimensionality.
The main fitness criterion is the performance of the evolved nets during a “local”
training phase. The algorithm was later combined with reinforcement learning
to solve complex learning problems [4].

3 Description of the Algorithm

3.1 Evolution of Candidate Solutions

The navigation and classification tasks examined have all been formulated as
supervised learning problems: Given a training set

P = {(Bp;yp) ∈ [0, 255]3
k×l × [0, 1]m | p = 1, ..., n}

of n training patterns (Bp;yp) consisting of images Bp and corresponding target
vectors yp, the task is to find a control program minimizing an error term. We
have chosen to use the “total sum of squares” (TSS)

E =
n∑

p=1

m∑

j=1

(opj − ypj)2

of the difference between the output op of the control program and the target
yp. In all of these tasks, the input is a single multi-spectral image encoded in
a k × l-matrix B. The entries of the matrix are color values given in the RGB
color space.
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Fig. 1. The general structure of a candidate. The candidate is composed of the com-
puter vision sublayer and a downstream neural network realizing the control subsystem.
The computer vision subsystem consists of smaller building blocks (operators) that all
access the image matrix directly. Their individual output is concatenated and returned
as the output of the computer vision subsystem

In order to minimize the error term an evolutionary algorithm is proposed.
The algorithm constructs and modifies complex candidates of a predefined ar-
chitecture.

The Structure of the Individuals. The evolved candidates (individuals xi

of the population Xt) consist of two distinct subsystems. The layer processing
the raw image matrices is a low-level computer vision subsystem. The control
subsystem forming the second layer receives its input data from this computer
vision subsystem. It performs the output generation (action selection) based on
a more compact representation of the original data.

The subsystem realizing low-level vision tasks is a set of smaller subsystems
that will be called “operators” throughout this text. These operators all realize
a parameterized (by parameter vector p) function hp(B) = v returning a q-
dimensional vector v for every given image matrix B. These operators could be
simple filters like Gaussian blur, point-of-interest detectors like corner detectors
or even complex programs like segmentation algorithms. The operators all reduce
the input to a representation of the image much simpler and more compact than
the image itself. This could be realized by (preferably) reducing the dimension
or by choosing a “simpler” but still iconic encoding of prominent features (like
edge or region maps) or by combining both of these methods.

These operators are ordered in parallel (Fig. 1) and totally independent of
each other. They all access the image directly and do not consider the output of
each other.

Generally the operators employed in this work need at least one parameter
to appropriately adapt their behavior to the circumstances. Some operators may
even change their behavior substantially according to different parameter set-
tings. Each operator returns a vector of constant length that is concatenated to
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Fig. 2. The different steps of the algorithm. The outer cycle consists of the five steps
of the evolutionary algorithm. The inner evaluation cycle evaluates each candidate by
using its computer vision subsystems to obtain the preprocessed input data and by
training the neural network several epochs on this data. The observed training and
testing error are used to calculate the fitness

the output vectors of the other operators to form the final output of the image
preprocessing layer. The length of the output vector is allowed to change only
when the parameters are changed. Besides the parameters influencing the be-
havior of the operators, each operator has some boolean parameters to switch
the output of a specific feature on or off.

In conclusion, the image processing layers of the candidates may differ in their
composition of operators, in the setting of parameters controlling the internal
behavior of the operators and in the selection of output values returned.

The control layer is formed by a simple feedforward net. The dimension of
the input layer is determined by the size of the image processing layer’s output
vector, whereas the dimension of the output layer is determined by the dimension
of the target vector provided with the training patterns. The internal topology
of the net, however, is a free variable. Because the topology of a neural net has
a major impact on its learning behavior and has to be chosen carefully it will be
subject to evolutionary optimization too.

The Evolutionary Algorithm. Starting with a random initialized popula-
tion, an (μ, λ)-evolutionary strategy with the addition of elitism is followed. The
implemented algorithm comprises five different steps: Selection, recombination,
mutation, evaluation and reinsertion (see Fig. 2).

During the selection phase, μ parents are chosen randomly for mating. The
probability P (xi) of selecting individual xi as the k-th parent is proportional to
its fitness:

P (xi) =
f(xi)∑

xj∈Xt
f(xj)

.
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During the recombination phase every two “neighboring” individuals x1 and
x2 are recombined to form an offsprings x′ by randomly choosing a subset of
operators from the original operators of x1 and x2. The network topology is
passed unchanged from the first individual.

Afterwards a mutation operator is applied to the resulting offsprings. A ran-
dom number of entries of the computer vision operators’ parameter vectors and
the topology of the neural network are mutated by adding a zero-mean gaussian
random variable. The chance of changing the entry pi of the parameter vector p
is set to 0.1 in all experiments.

Every newly formed individual is evaluated according to the fitness function
described in the next section.

Finally, the fittest λ childrens replace the λ worst individuals of population
Xt to receive the new population Xt+1. This is a combination of elitism and
fitness based reinsertion.

It should be noted that although the evolution of good solutions typically
takes several hours (when not parallelized), the basic operators and the resulting
programs are able to analyze the input and calculate an output in real-time on
present personal computers.

Training the Net to Measure the Fitness. The images B of the training
patterns (Bi;yi) are analyzed with each candidate’s vision subsystem to form a
set of training patterns (h(Bi);yi) suitable for the input layer of its neural net-
work. The net is trained on the resulting pattern set using resilient propagation
(Rprop [14]) for a specific number of epochs. Afterwards the neural network is
evaluated on the testing set. The TSS on the training and testing set are both
normalized to yield a fitness value between 0 and 1 (bigger means better). The
final fitness of the candidate is the weighted sum of these two values and some
additional, less important and lower weighted components that may reward good
runtime performance or smaller memory consumption.

In all experiments discussed in this paper, the fitness has been a weighted
sum of training error, testing error (smaller gives higher fitness) and of three
lower weighted factors penalizing higher numbers of hidden layer neurons and
connections, bigger input layers and the runtime needed to process one image by
the candidate’s vision subsystem. These factors have shown to produce efficient
candidates with rather small networks and a good generalization behavior.

3.2 Building Blocks of the Computer Vision Subsystem

From the huge number of well studied operators, detectors and algorithms, we
have selected and adapted or implemented five algorithms to be used in the ex-
periments. These operators are: a corner-detector employing the SUSAN prin-
ciple [16], an operator returning a single image from the gauss pyramid, a his-
togram operator, returning n 2-dimensional UV histograms of n non-overlapping
image partitions (inspired by [17]), a region-growing algorithm known as “color
structure code” (CSC, [12]) and the operator with the most parameters, a seg-
mentation algorithm based on the lower layers of the CVTK library [10].
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Whereas two operators return iconic representations (of reduced dimension-
ality), the other operators return “meaningful” symbolic representations. For
example the CVTK and CSC operators both return abstract descriptions of
uniformly colored image regions containing information such as color, coordi-
nates of the center of gravity, area, bounding rectangle and compactness of the
regions found.

Each operator needs at least one parameter to be set properly; for example:
the level of the gauss pyramid to return or the maximum color-distance being
used by the CSC algorithm to decide, whether or not two neighboring pixels
belong to the same region.

Since the detailed description of all algorithms and parameters would go
beyond the scope of this paper, we will exemplarily describe in detail the CVTK
operator.

This operator uses a given set S of samples s = (srgb, sc) = (r, g, b, c) of the
discrete “classification” function f : I3 �→ 0, 1, .., N that assigns a class label c
to every rgb-value srgb ∈ I3. Implementation dependent, the values of the red,
green and blue channel are from the set I = {0, 1, ...255}.

The algorithm uses a simple nearest-neighbor classification to segment the
image. The label of each pixel bij of the image B is determined by finding the
“closest” sample sclosest = arg minsrgb

d(srgb, bij) and assigning its class label
sc iff the distance is smaller than a threshold t. If there is no sample having a
distance smaller than t the class label of the background (0) is assigned to bij .

The distance d is the Euclidian distance between the color values of the pixel
bij and the sample s after transforming both to one of four possible color spaces
(RGB, YUV, UV, CIE L*a*b*). The color space can be chosen by setting a
parameter of the operator.

Table 1. Parameters of the CVTK operator. Some parameters are influencing the seg-
mentation process itself, whereas a second group of parameters selects what properties
should be returned

parameter type multitude description
algorithm max classes int 1 number of different color classes

color space int 1 encodes the color space to use
(r,g,b,c) int4 1..n labeled color samples
t double 1 distance threshold
min size double 1 minimum size of regions

output regions out int 1 regions per color class to return
order boolean 1 order according to area
area boolean 1 return the area
center boolean 1 return the center of gravity
class boolean 1 return the class label
compactness boolean 1 return the compactness
bounding box boolean 1 return corners of bounding box
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After classifying the whole image pixel by pixel, neighboring pixels of the
same color class are connected to regions. Internally, the algorithm uses a contour
based region description to calculate region features like center of gravity, area,
bounding rectangle or compactness. Finally the algorithm returns a list of n
region descriptions. By setting boolean output parameters, the user can specify
what features each description should contain. Table 1 lists all parameters of the
CVTK operator.

4 Results

The algorithm has been tested on two classification tasks and on one robot-
navigation experiment. We have not used any artificial images but only real
world images captured by a digital camera under typical office-lighting con-
ditions. There have been absolutely no efforts to reduce shadows or to en-
sure uniform lighting conditions. The image sets can be found at http://www-
lehre.inf.uos.de/˜slange/master/ .

Experiment 1: Subtraction of Colored Gaming Pieces. The images show
different settings of up to eight red and blue gaming pieces on a white back-
ground. There are always at least as many blue as red pieces and never more
than four pieces of the same color in the image frame. The task is to calculate
the difference between the number of blue and red pieces and to label the im-
ages accordingly. There is an additional testing set that is used after finishing
the evolution to judge the generalization performance of the whole evolutionary
process – in contrast to the net’s testing error that is calculated on the first
testing set and used to guide the selection of the individuals. The training set
contains 98 images, the testing set 27 images and the second testing set 9 images
(320 × 240 pixel).

Experiment 2: Reading a Dice. In this setup a dice was filmed from a con-
stant camera position. The images have to be classified into 6 classes according
to the number of markers on the upper side of the dice. Again, there are three
sets of equally sized (160×120 pixel) and correctly labeled images. The training
set consists of 45 images, the testing set of 12 and the additional testing set con-
tains 15 images. The second testing set also contains 5 images of a completely
different and slightly bigger dice than the dice used during the evolution.

Experiment 3: Driving to the Ball. In this simple navigation task, a camera-
equipped robot has to drive to a ball that is positioned somewhere in the sur-
rounding area. There are no obstacles between the robot and the ball. The
training and testing data is acquired by hand-steering the robot to the ball with
a cableless joystick. The task is solved several times by a human. During this
process the program stores a few hundred captured images together with the
human provided control signal to form the training and testing sets. Afterwards
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Fig. 3. From top to bottom, from left to right: Orinal image of the testing set of the
subtraction task and the region image produced by the single cvtk operator of the best
individual after t = 0, t = 12, t = 25, t = 50, und t = 150 epochs

a controller is evolved on this training data and finally tested in the real envi-
ronment.

All experiments have been conducted with an initial population size of 60,
μ = 20 and λ = 15. The evolutionary process was always stopped after 200
epochs.

As a “proof of concept” the subtraction experiment has been solved first
by allowing the candidate computer vision subsystems to contain only a single
CVTK operator. This operator has a really huge parameter space and has to be
set up carefully since the provided sample colors completely determine the result
of the segmentation process. Due to changing lighting conditions and shadows
the task of finding good sample colors is very difficult even for a human.

The progress made during the evolution in extracting the interesting regions
is visualized in fig. 3. While the image processing is not substantially improved
after the 50th epoch, the other settings keep improving.

Actually, in the very first run of the experiment, the best individual after
200 epochs adapted a quite intelligent and efficient strategy. Inspecting the pa-
rameter settings and generated intermediate representations, we have found the
operator to not only robustly find the gaming pieces but also to return the small-
est feature vector possible: The individual discards any information about the
position, size and area and only considers the color of the regions found. The
feature vector passed from the computer vision subsystem to the learning sub-
system has only eight “boolean” entries – four for each of the two foreground
color classes. This small representation is possible because the necessary mini-
mal size of regions was set appropriately during evolution to filter out all false
positive detections, that are consistently smaller in size than the correctly de-
tected regions.
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Fig. 4. Results of training a single CVTK operator in experiment 1. The fitness of the
population and its best individual improve parallely (left). The Hamming Distance mea-
sured for the best individual continously decreases on the testing set (right). The Ham-
ming Distance has beend divided by the number of patterns in order to be comparable

In all of the five repetitions we have performed with this setup, the best
individual after 200 epochs always classified at least eight of the second, unseen
testing set’s nine images correctly. As can be seen in fig. 4 the training error of the
best individual is very low right from the beginning. This is no suprise because
a sufficiently big feedforward net is easily trained to memorize a relatively small
training set. Obviously, it is the generalization error that has to be minimized
during the evolutionary process.

Afterwards, the algorithm was tested in the first two experiments with all
operators active. The classification results listed in tab. 2 show the resulting
solutions to perform clearly above chance.

During the experiments, the algorithm was observed to have problems in the
first task due to some operators dominating the entire population too early. This
happens, because the population size – due to the computational cost – has been
chosen to be relatively small and some operators may give notably better results
than others during early stages of the optimization. If those “early starting”
operators are not the operators that give the better results in the long run, the
problem might occur.

This problem might be circumvented by simply training the different oper-
ators separatly in the early stages of the evolutionary process. Table 2 shows
that evolving the operators for the first 30 epochs separately solves the observed
problems effectively.

Finally, the algorithm was tested successfully in the robot-navigation task1.
Although the ball is nearly always reached, the robot drives very slowly at some
positions. We believe this behavior results from inaccurate or contradictory con-
trol signals in the training pattern rather from an error in the evolved computer
vision subsystem.

1 Multimedia files of both the training and testing phase can be found at http://www-
lehre.inf.uos.de/˜slange/master/.
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Table 2. Percentage of the correct classifications of the images of the two testing sets
by the best individual after 200 epochs of evolution. The evolution has been started
for 0, 10, 30 epochs with isolated subpopulations each containing only one type of
operators

Subtraction Dice
testing set testing set 2 testing set testing set 2

no isolation 96% 44% 100% 100%
10 epochs isolated 96% 56% 100% 93%
30 epochs isolated 100% 100% 100% 100%

One interesting observation from the inspection of the vision systems con-
structed is that instead of detecting the whole area of the ball, some subsystems
only search for an equatorial stripe. The center of the detected stripe always
closely coincides with the center of the ball. The advantage of extracting this
smaller region seems to be that problems due to highlights in the upper re-
gion of the ball and shadows in the lower half could be effectively circumvented.
Compared to the subsystems which considered the whole area of the ball, the
subsystems seem to be more robust against noisy pixels in the background and
therefore had to sort out fewer false detections. In spite of this obvious difference
in the preprocessing layer we were not able to detect any significant differences
in the behavior of the robot.

5 Conclusion

We have introduced an elegant algorithm that is able to directly learn different
tasks on visual input. In contrast to earlier work, it does not need any a priori
knowledge neither about features to be extracted nor the layout of an intermedi-
ate representation. It is able to construct specialized, task-dependent computer
vision subsystems that enable a learning algorithm to successfully learn the task.
Moreover it finds good parameter settings for the employed operators even in
huge parameter spaces. The generalization performance of the resulting strate-
gies is clearly above chance. As yet, we have only used tasks having a “color-
based” solutions. We plan to implement other operators and to try different and
more difficult tasks in the future.
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Abstract. To date, RoboCup games have all been played under con-
stant, bright lighting conditions. However, in order to meet the over-
all goal of RoboCup, robots will need to be able to seamlessly handle
changing, natural light. One method for doing so is to be able to iden-
tify colors regardless of illumination: color constancy. Color constancy is
a relatively recent, but increasingly important, topic in vision research.
Most approaches so far have focussed on stationary cameras. In this pa-
per we propose a methodology for color constancy on mobile robots. We
describe a technique that we have used to solve a subset of the problem,
in real-time, based on color space distributions and the KL-divergence
measure. We fully implement our technique and present detailed empir-
ical results in a robot soccer scenario.

Keywords: Illumination invariance, Color constancy, KL-divergence,
mobile robots.

1 Introduction

Color constancy (or illumination invariance), though a major area of focus, con-
tinues to be a challenging problem in vision research. It represents the ability of
a visual system to recognize an object’s true color across a range of variations
in factors extrinsic to the object (such as lighting conditions) [3]. In this paper,
we consider the problem of color constancy on mobile robots.

In the RoboCup Legged League, teams of mobile robots, manufactured by
Sony [2], coordinate their activities to play a game of soccer. To date, games have
all been played on a small field (4.4m × 2.9m) under constant, bright lighting
conditions (Figure 1). However, the overall goal of the RoboCup initiative [1,
11] is, by the year 2050, to develop a team of humanoid robots that can beat
the world champion human soccer team on a real outdoor soccer field. Color
constancy is one of the important barriers to achieving this goal.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 196–208, 2005.
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In the past, color constancy has been studied primarily on static cameras
with relatively loose computational limitations. On mobile robots, color con-
stancy must be achieved in real time, under constantly changing camera posi-
tions, while sharing computational resources with other complex tasks such as
localization, movement, decision-making etc. This paper contributes a color con-
stancy method based on the KL-divergence measure that is efficient enough to
work on mobile robots that must operate under frequent illumination changes.
Our method is fully implemented and tested on a concrete complex robot con-
trol task.

The remainder of the paper is organized as follows. In Section 2 we present
some basic information on the problem and identify a subset of the overall prob-
lem that we address in this paper. Section 3 provides a brief review of related
approaches that have been employed to solve the color constancy problem. Sec-
tion 4 describes the experimental setup, the basic algorithm involved, and the
mathematical details of our comparison measure. Details on the experimental
results are provided in Section 5 followed by the conclusions in Section 6.

2 Background Information

In this section, we present a brief description of our experimental platform and
describe the specific problem addressed in this paper.

On the Sony Aibo ERS-7 robots [2], we perform the visual processing in
two stages: color segmentation and object recognition. During the initial off-
board training phase, we train a color cube C that maps a space of 128 × 128 ×
128 possible pixel values1 to one of the 10 different colors that appear in its
environment (pink, yellow, blue, orange, marker green, red, dark blue, white,
field green, black – see Figure 1). C is trained using a Nearest Neighbor (NNr)
(weighted average) approach based on a set of hand-labelled input images. Due
to computational constraints, C is precomputed and then treated as a lookup
table. The robot uses C during task execution to segment an image and then
recognize objects of importance. For full details on this process see our technical
report [17].

The actual pixel readings associated with a given object can vary significantly
with changes in lighting conditions (both environmental and as a result of shad-
ows) and there is significant overlap between some of the colors in the problem
space. A color cube trained for one particular lighting condition can therefore be
rendered ineffective by a reasonably small change (e.g., the difference between
daytime and nighttime on the same playing field within a normal room with
windows). In this paper, we propose an approach to solve this problem.

In our lab, the lighting on the soccer field varies significantly between the
bright condition (≈ 1500 lux with all lights on) and the dark condition (≈ 350
lux with only the fluorescent ceiling lights on). One of the primary requirements

1 We use half the normal resolution of 0-255 along each dimension to reduce storage
space requirements.
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to playing soccer is that of finding the ball and scoring a goal, which we de-
fine as the find-ball-and-score-goal task. If trained under the bright illumination
condition, the robot is able to perform this task proficiently. But if the same
robot is now made to function under the dark illumination condition (or any
other illumination condition significantly different from the bright illumination
condition), it is totally lost and cannot even recognize the ball. On the other
hand, if the robot is equipped with a color cube trained under the dark illumi-
nation condition, it scores a goal in the same amount of time as in the bright
illumination. Again, it is effectively blind when the lights are all turned on.

Our long-term goal is to en-

Fig. 1. An Image of the Aibo and the field

able the robot to perform this
task in lighting conditions that
may continuously vary between
the two extremes (bright and
dark). In this paper, we consider
the subtask of enabling a robot
to work in three illumination con-
ditions: bright, intermediate and
dark where intermediate refers
to an illumination condition al-
most midway between the other
two illumination conditions.
Preliminary results indicate that
solving this subtask may be suf-
ficient for solving, or nearly solv-
ing, the long-term goal itself.
In order to work in all three illumination conditions, the robot must be able to:

1. Correctly classify its input images into one of the three illumination condi-
tions;

2. Transition to an appropriate color cube based on the classification and use
that for subsequent vision processing;

3. Perform all the necessary computation in real-time without having an ad-
verse effect on its task performance.

We present an algorithm that meets all of these requirements in Section 4.
First, we take a brief look at some of the previous techniques developed to achieve
illumination invariance.

3 Related Approaches

Several approaches have been attempted to solve the problem of color constancy.
Though they differ in the algorithmic details, most of them, to date, have fo-
cussed on static camera images. The Retinex Theory of Land [12] and the “Gray
World” algorithm by Buchsbaum [5] are based on global or local image color av-
erages, though these have later been shown to correlate poorly with the actual
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scene illuminant [4]. The gamut mapping algorithm, first proposed by Forsyth [9]
and later modified by Finlayson [6, 7], using median selection, is based on a set
of mappings that transform image colors (sensor values) under an unknown il-
luminant to the gamut of colors under a standard (canonical) illuminant. The
probabilistic correlation framework, developed by Finlayson [8], operates by de-
termining the likelihood that each of a possible set of illuminants is the scene
illuminant.

The Bayesian decision theoretic approach, proposed by Brainard [3], combines
all available image statistics and uses a maximum local mass (MLM) estimator
to compute the posterior distributions for surfaces and illuminants in the scene
for a given set of photosensor responses. Tsin [19] presents a Bayesian MAP
(maximum a posteriori) approach to achieve color constancy for the task of out-
door object recognition with a static surveillance camera while Rosenberg [15]
describes a method that develops models for sensor noise, canonical color and
illumination, and determines the global scene illuminant parameters through
an exhaustive search that uses KL-divergence as a metric. More recently, Lenser
and Veloso [13] presented a tree-based state description/identification technique.
They incorporate a time-series of average screen illuminance to distinguish be-
tween illumination conditions using the absolute value distance metric to deter-
mine the similarity between distributions. In this paper we explore an alternative
similarity measure based on color space distributions.

In the domain of mobile robots, the problem of color constancy has often
been avoided by using non-vision-based sensors such as laser range finders and
sonar sensors [18]. Even when visual input is considered, the focus has been
on recognizing just a couple of well-separated colors [10, 14]. There has been
relatively little work on illumination invariance with a moving camera in the
presence of shadows and artifacts caused by the rapid movement in complex
problem spaces. Further, with few exceptions (e.g. [13]), the approaches that do
exist for this problem cannot function in real-time with the limited processing
power that we have at our disposal.

4 Approach

In this section, we introduce our experimental setup as well as our algorithmic
framework.

4.1 Experimental Setup

We set out to see if it would be possible to distinguish between and adapt to the
three different lighting conditions in our lab. Similar to our earlier work [16], we
trained three different color cubes, one each for the bright, intermediate, and the
dark illumination conditions.

We hypothesized that images from the same lighting conditions would have
measurably similar distributions of pixels in color space. The original image
is available in the YCbCr format, quantized into 256 bins: [0-255] along each
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dimension. In an attempt to reduce processing, but still retain the useful infor-
mation, we transformed the image to the normalized RGB space, i.e. (r, g, b).
By definition,

r =
R+1

R+G+B+3
, g =

G+1

R+G+B+3
, b =

B+1

R+G+B+3

and r + g + b = 1. Thus any two of the three features are a sufficient statistic
for the pixel values. For a set of training images captured at different positions
on the field for each of the three illumination conditions, we then stored the
distributions in the (r, g) space, quantized into 64 bins along each dimension.
Once the distributions are obtained (one corresponding to each training image),
the next question to address is the measure/metric to be used to compare any
two given distributions.

4.2 Comparison Measure

In order to compare image distributions, we need a well-defined measure capa-
ble of detecting the correlation between color space image distributions under
similar illumination conditions. We examined several such measures on sample
images [16], we decided to use the KL-divergence measure 2.

KL-divergence is a popular measure for comparing distributions (especially
discrete ones). Consider the case where we have a set of distributions in the 2D
(r, g) space. Given two such distributions A and B (with N = 64, the number of
bins along each dimension),

KL(A, B) = −
N−1∑

i=0

N−1∑

j=0

(Ai,j · ln
Bi,j

Ai,j
)

The more similar two distributions are, the smaller is the KL-divergence between
them. Since the KL-divergence measure contains a term that is a function of the
log of the observed color distributions, it is reasonably robust to large peaks in
the observed color distributions and is hence less affected by images with large
amounts of a single color.

4.3 Algorithmic Framework

Once we had decided on the measure to be used for comparing image distribu-
tions, we came up with a concrete algorithm to enable the robot to recognize
and adapt to the three different illumination conditions (bright, intermediate,
and dark).

The robot starts off assuming that it is in the bright illumination condition.
It is equipped with one color cube for each illumination condition and a set
of (training) sample distributions generated from images captured at various

2 Strictly speaking, KL-divergence is not a metric as it does not satisfy triangle in-
equality but it has been used successfully for comparing distributions.
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positions on the field. In our experiments, we used 24 distributions for each
illumination condition, though, as we shall show, we do not need so many to
perform satisfactorily.

As new images are processed, one is periodically tested for membership in one
of the three illumination class, using a fixed number of training samples from each
class for comparison. The distribution obtained from a test image is compared with
the training samples using the KL-divergence measure, to determine the training
sample that is most similar to it. The test image is then assigned the same illumi-
nation class label as this training sample. If sufficient number of consecutive im-
ages are classified as being from an illumination condition, the robot transitions
to another color cube (representing the new illumination condition) and uses that
for subsequent operations. Parameters included in this process were as follows:

– numtrain: the number of training samples from each class per comparison.
– t: the time interval between two successive tests.
– numd, numi, numb: the number of consecutive dark, intermediate or bright

classifications needed to switch to the corresponding color cube. We allow
these parameters to differ.

– ang: a threshold camera tilt angle below which images are not considered
for the purposes of changing color cubes. This parameter is introduced to
account for the fact that the image appears dark when the robot is looking
straight down into the ground (or the ball), which in most cases means that
it is looking at a region enveloped in shadow.

5 Experimental Results

In this section, we describe the experiments that we used to determine the op-
timum values for the parameters. We then present the experiments that we ran
to estimate the performance of the algorithm on the robot with respect to the
goal-scoring task.

5.1 Estimation of Parameters

On the ERS-7 robot, with our current code base [17], generating a test distri-
bution takes ≈ 25msec and the comparison with all 72 training distributions
takes ≈ 130msec, i.e., comparing the test sample with each training sample
takes 130

72 ≈ 2msec. Further, the normal vision processing takes ≈ 30–35msec
per image, leading to a frame rate of 30 frames per second without any check for
change in illumination. Thus, if we tested for illumination change on each input
image, we would take ≈ 190msec per image giving us a very low frame rate of
5–6 frames per second, not including the processing required for action selection
and execution. Doing so would lead to a significant loss of useful sensory infor-
mation. As a result, we cannot afford to test each input image. Instead, we need
to identify parameter values that do not significantly affect the normal operation
of the robot while also ensuring that the illumination changes are recognized as
soon as possible. With the parameter values that the robot ends up using we are
still able to operate at around 25 frames per second.
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Bright Interm Dark
numtrain Max Min Max Min Max Min

24 950
1000 (0) 904

1000 (0) 997
1000 (0) 934

1000 (0) 1000
1000 (0) 1000

1000 (0)
12 913

1000 (0) 857
1000 (1) 979

1000 (0) 903
1000 (0) 1000

1000 (0) 999
1000 (0)

6 874
1000 (0) 712

1000 (3) 964
1000 (0) 850

1000 (0) 1000
1000 (0) 944

1000 (0)

Fig. 2. Classification accuracy and color cube transitions (all three illuminations)

Exp1: Classification Accuracy. The goal of this experiment was to deter-
mine how much the classification accuracy, using KL-divergence, depended on
the parameters t and numtrain. In order to do that the robot was placed at
various positions on the field and only allowed to pan its head. The robot pe-
riodically sampled the images that it received from its camera and tested them
to identify the illumination condition. The goal was to measure the real-time
performance and see if there was any significant correlation between the perfor-
mance of the robot and the associated position on the field. We chose six test
positions, at each of which we measured the classification accuracy over a set of
one thousand images. We first performed this experiment with t = 1 second, and
with three different training sample sizes:

1. Case1 : numtrain = 24 (all training samples).
2. Case2 : numtrain = 12.
3. Case3 : numtrain = 6.

Figure 2 shows the results of the experiment when performed under each
illumination, corresponding to cases 1, 2 and 3. We also measured the number of
times the robot transitioned between color cubes for each given test condition.
Since each test was conducted completely under one of the three illumination
conditions, ideally there would be no transitions. The values in parentheses there-
fore represent the number of (incorrect) color cube transitions that would occur
if we chose to use the corresponding values of the parameters during normal
operation. Observe that in the dark lighting conditions there were practically no
misclassifications at any of the test positions.

The transition to the bright illumination takes place after two consecutive
test images are classified as being under the bright illumination condition while
for the other two illumination conditions (intermediate, dark), this threshold is
set at four and six respectively (i.e., numd = 6, numi = 4 and numb = 2).
The transition parameters were weighted in this manner because it was noted
during experimentation that lighting inconsistencies (such as shadows) during
both training and testing led to significantly more noise in the bright conditions.

From a close examination of the raw data, we report several observations:

– In the dark illumination, the robot did not err even in the case where
numtrain = 6. This makes sense considering the fact that the dark illu-
mination condition is much different from the bright illumination condition
(350lux vs 1500lux) and the presence of shadows or obstructions only makes
the image darker.
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numtrain Bright Shifts Intermediate Shifts Dark Shifts
24 432

500 0 456
500 0 480

500 0
12 398

500 1 421
500 1 482

500 0
6 360

500 2 395
500 1 490

500 0

Fig. 3. Accuracy and transitions under each illumination under all three sampling cases

– In the bright and intermediate illumination conditions, the number of train-
ing samples made a difference in the performance of the robot; at each po-
sition, the performance worsens as numtrain is decreased.

– The transitions (shifts) that occurred in the bright illumination condition
were due to shadows or obstructions and this caused the robot to move from
the bright to the intermediate illumination condition.

– In the rare case that the robot changed to the incorrect color cube, the error
was sustained only for a few test frames before the robot recovered.

Next we varied t and repeated the experiments performed previously. Here,
no significant change was noticed in the classification accuracy. With t = 0.5
seconds or 0.25 seconds instead of 1 second there was no significant change in
the classification accuracy. However it did increase the processing performed. We
quantify this effect in subsequent experiments.

Exp2: Task Execution. The find-ball-and-score-goal task was incorporated in
this experiment to estimate the effect of the color constancy algorithm on the
robot’s task performance under constant illumination. The robot was placed at
the center of the field facing one of the goals (say g1) while the ball was placed at
the center of the penalty box around the other goal (g2) (see Figure 1). The robot
had to find the orange ball and then score on g2. We performed this experiment
with the robot trying to score on either goal (blue/yellow) over one half of the
total number of trials. In this process, it used the colored markers around the
field to localize itself [17].

The robot performed the check for change in the illumination condition with
t = 1 and ang = −10 (i.e. consider cases where the tilt angle of the camera is
greater than 10o) and its accuracy was tested under all three sampling conditions
used in experiment 1, i.e., we tested for numtrain = 24, 12, and 6. We set the
tilt angle threshold to ensure that when the robot is staring down at the ground
or the ball, the shadows do not cause the robot to make a wrong transition.
Figure 3 displays the classification accuracy and the number of transitions that
occurred during task execution under all three cases. Since testing was done
under each illumination condition separately, the shifts column represents the
number of incorrect transitions that occurred.

From the results, we deduced that the value of numtrain does not make a
big change in the dark illumination case; the misclassifications that did occur in
the dark illumination case happened when the robot fell down and was staring
at the white border or field lines. But this was not the case under the bright
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t (sec) numtrain=24 numtrain=12 numtrain=6
1.0 6.8±0.3(0) 6.8±0.4(0) 6.8±0.4(0)
0.5 6.9±0.3(0) 7.0±0.6(0) 7.0±0.5(0)
0.25 8.8±0.6(2) 9.1±1.8(0) 8.2±1.9(0)
0.125 51.8±31.7(4) 18.3±2.5(1) 11.7±6.2(0)
0.0 75.0±36.9(6) 52.8±13.1(3) 13.8±3.0(0)

Fig. 4. Time taken (in seconds) to find-and-walk-to-ball under bright illumination

and intermediate illuminations; with the decrease in numtrain, the robot ended
up making more errors (and wrong transitions between color cubes). The errors
that occurred were mostly due to shadows when the robot was running into the
goal. But the robot always recovered within a few test frames (fewer than 5).

Under this tilt angle setting, the (incorrect) color cube transitions were only
one-off from the actual illumination condition, i.e., there were no incorrect tran-
sitions from bright to dark or vice versa. We could set higher tilt angle thresholds
but then the robot is slow to identify changed illumination conditions which has
a bad effect on its overall performance.

Exp3: Parameter Combinations. Next, we wanted to determine the param-
eter settings that would enable strong real-time performance. Specifically, we
considered the parameters numtrain and t.

To do so, we defined the find-and-walk-to-ball task. This task is identical
to the find-ball-and-score-goal task, except that the robot only needs to find
the ball and walk up to it, rather than actually score. This modification makes
the measurements less dependent on the performance of other modules, such as
kicking.

Under constant lighting conditions with a single color cube, the robot can
find-and-walk-to-ball in 6.7(±0.6) seconds. The results for the bright illumination
case, averaged over 10 trials, are in Figure 4. The values for the other two
illuminations were not significantly different (as expected). We considered the
cases where the robot did not find the ball after two minutes to be complete
misses and omitted them from the results. The numbers in parentheses indicate
the number of complete misses that occurred while collecting 10 values.
From Figure 4, we conclude that:

– The parameter values t = 1 second and t = 0.5 seconds (and to some extent
t = 0.25 seconds), with all three sampling schemes, work fine on the robot
in real-time without having an adverse effect on the normal game playing
performance.

– With all the other testing frequencies there were instances, especially with
numtrain = 24, when the robot missed the ball during its scan due to the
computation involved; by the time the robot had processed one frame that
had the ball, its head was beyond the position were it could recognize the
ball (the robot needs to see the ball continuously for around 3 frames before
it accepts it as the ball [17]). In addition, when the testing was done on every
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Lighting (start/after 1.5 seconds) Time (seconds)
bright / intermediate 8.5 ±0.9

bright / dark 11.8 ±1.3
intermediate / bright 8.6 ±1.0
intermediate / dark 9.6 ±3.1
dark / intermediate 11.5 ±1.4

dark / bright 10.7 ±1.1

Fig. 5. Time taken to find-and-walk-to-ball under changing illumination

frame (or even once every 0.125 seconds), the robot’s motion towards the
ball was extremely jerky.

5.2 Changing Illumination

Once we had determined values for all the parameters, we were ready to test
the robot on its task under changing illumination conditions. Based on the
experiments described above, we chose the parameter values: ang = −10o,
t = 1 second, numd = 6, numi = 4, numb = 2, and numtrain = 24.

Real-Time Transitions. In these experiments, the robot was tested with the
lighting conditions changing after a specific interval. The robot starts off in one
illumination condition and after 1.5 seconds (the time it takes the robot to turn
and see the ball), the illumination is changed by adjusting the intensity of all
the lamps. The robot is then timed as it performs the find-and-walk-to-ball task.
Recall that with a single color cube, the robot is unable to do so: when the
illumination condition changes significantly, it is unable to see a ball that is
right in front of its camera. Now, when the illumination conditions change, the
robot seems lost for a couple of seconds while it recognizes the change and then
functions as normal, scoring goals once again. The results are shown in Figure 53.

Stress Tests. To further explore the robustness of our approach, we report the
results of two tests for which the current algorithm was not designed: interme-
diate lighting conditions (Test 1) and adversarial illumination changes (Test 2).

Test 1. The first experiment we performed involved reducing the intensity of the
lamps in specific patterns. In our lab, we have four lamps mounted on stands
along the shorter edges of the field, as shown in Figure 6.

During testing, we reduced the intensity of all the lamps such that the illumi-
nation on the field is in between the illumination conditions that the robot was
explicitly trained for. To enable comparison of these results, we used the find-
and-walk-to-ball task as in previous sections and recorded the time taken by the
robot to perform the task. In Figure 7 we present the values corresponding to

3 Video showing the robots performing under varying lighting conditions is available
at http://www.cs.utexas.edu/~AustinVilla/legged/illumination
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the case wherein the robot starts off in the bright illumination condition. About
1.5 seconds later, the lighting is changed such that it is between the bright and
the intermediate illuminations (we also tested with the illumination changed to
be midway between the intermediate and the dark conditions).

Test 2. Finally, we decided to test the robot under adversarial conditions. That
is, we tried our best to confuse the robot completely by varying the illumination
in the worst possible way for the robot. Here, we performed the find-ball-and-
score-goal task.

As soon as the robot recognized the ball and

4400mm

2900mm

Blue Goal

Yellow Goal

ROBOT

BALL

L1 L2

L3 L4

Fig. 6. A Line drawing of
the field and the lamp ar-
rangement

started walking towards it, we changed the illumi-
nation condition. That is, as soon as the robot tran-
sitioned to the correct color cube, as indicated by an
LED on the robot, we would change the illumina-
tion to be one class away from the actual illumina-
tion condition. Due to the values of numd, numi and
numb, assuming that we start off under the bright
illumination, the experiment would involve changing
the illumination to correspond to the intermediate
illumination after two seconds. We would turn the
lamps off (dark illumination) after another four sec-
onds, which would be followed by adjusting the in-
tensity of the lamps to half the maximum value (in-
termediate illumination) after a further six seconds.
Then we would turn the lamps on at full intensity

(bright illumination) after around four seconds. This cycle of change in illumina-
tion is performed repeatedly and Figure 8 depicts the corresponding average time
(and standard deviation) taken to accomplish the find-ball-and-score-goal task.

The fact that the robot can perform

Lighting Time (seconds)
bet. bright and interm 12.27 ±0.5
bet. interm and dark 13.3 ±2.0

Fig. 7. Time taken (in seconds) to find-
and-walk-to-ball

this task at all is due to the fact that
it can occasionally recognize the ball
even if it is not using the color cube cor-
responding to the current illumination
condition. Even in the case where some
of the lamps are selectively turned off
(or their intensity is reduced), the robot
transitions into an appropriate color

cube and is still able to perform the task of scoring on the goal. The only way we
could confuse the robot further would be to change between the bright and the
dark illumination conditions in a similar manner. In that case, the robot does
not make any progress to the ball at all.

An important point to note here is that in previous work [16] (where we had
incorporated only two illumination conditions: bright and dark) we had problems
when we tested the robot on illumination conditions that it was not trained
for. There were problems especially while trying to score on the yellow goal in
differentiating between yellow and orange (and between pink and orange). The
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robot would then walk away in an entirely wrong direction in an attempt to follow
a spurious estimate of the ball. We had then hypothesized that adding a few more
illumination conditions in between the two extreme ones might help alleviate
some of the problems. We now see that with the added intermediate illumination
condition, the robot does perform much better. In fact, in all the experiments
mentioned above, the robot performed equal number of trials scoring/walking
towards either goal (blue/yellow).

Also, in our earlier work [16] we used
Lighting Time (seconds)

Adversarial 34.3 (±7.8)

Fig. 8. Time taken (in seconds) to find-
ball-and-score-goal

the previous version of the Sony robots:
ERS210A. With very little modification
in code (only to incorporate one more
illumination condition), the strategy
works fine to distinguish between three
different illumination conditions. We find
that with this change, the robot is better able to work in illumination conditions
corresponding to which the robot does not have training samples.

6 Conclusions/Future Work

In this paper, we have presented an approach that works in real-time to achieve
color constancy on mobile robots in the RoboCup domain. The technique uses
color space distributions, easy to train color cubes, and a simple and efficient
comparison measure (KL-divergence) to determine and adapt to three discrete
illumination conditions. Though we have solved only a subset of the problem, the
results obtained seem to indicate that we do not need to consider a continuous
spectrum of illuminations. When presented with illumination conditions that the
robot is not trained for, there is little degradation of performance.

The problem of color constancy, on mobile robots or otherwise, is extremely
challenging and is far from being solved. In the future, we shall first try to extend
the approach to enable the robot to perform well under an even wider range of
possible illumination conditions. One possible method would be to train a few
discrete color cubes to represent significantly different illuminations (as we have
done here) and then dynamically update the cubes for minor variations in il-
lumination conditions. We shall also look into alternate stochastic approaches
that may enable us to achieve illumination invariance without having to resort to
training several color cubes. Ultimately, we aim to solve the daunting problem of
developing efficient algorithms that enable a mobile robot to function under com-
pletely uncontrolled natural lighting conditions, with all its associated variations.
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Abstract. This paper presents a vision system for robotic soccer which
was tested on Sony’s four legged robot Aibo. The input for the vision
system are images of the camera and the sensor readings of the robot’s
head joints, the output are the positions of all recognized objects in
relation to the robot. The object recognition is based on the colors of
the objects and uses a color look-up table. The vision system creates
the color look-up table on its own during a soccer game. Thus no pre-
run calibration is needed and the robot can cope with inhomogeneous or
changing light on the soccer field. It is shown, how different layers of color
representation can be used to refine the results of color classification.
However, the self-calibrated color look-up table is not as accurate as a
hand-made. Together with the introduced object recognition which is
very robust relating to the quality of the color table, the self-calibrating
vision works very well. This robustness is achieved using the detection
of edges on scan lines.

1 Introduction

The vision system that is described in this paper was implemented for the Sony
four-legged league. This and the other RoboCup real robot leagues (middle-size,
small-size) take place in a color coded environment. The robots play with an
orange ball on a green ground and have to kick to yellow and sky-blue goals. At
the corners of the field there are two-colored poles for localization. The environ-
ment for the games, as the size of the field and the colors of the objects, is well
defined. However, the lighting conditions are not known in advance and might
change during the competition and even during games.

This paper presents a vision system that uses a method for object recognition
that is very robust relating to the quality of the color calibration. This is needed
as the color calibration is not done by a human expert before the game, but
during the game by the vision system itself.

The task of vision-based object recognition in color coded scenarios often is
divided in several subtasks. The first step is the segmentation which assigns a
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color class (orange, green, etc.) to each color (defined by three intensities) of the
color space. How this can be done using thresholds or color look-up tables is de-
scribed in [1].The thresholds and look-up tables usually are created by hand with
the assistance of semi-automated tools. More sophisticated tools do an off-line
self-calibration on sample images [5]. The general problem of all segmentation
methods is, that the color calibration is only valid as long as the lighting condi-
tions do not change. The effect of such a change is described in [6]. A method for
autonomous dynamic color calibration is described in [2]. The drawback of this
method is that it requires for special actions (walk and head motions) to be done
by the robot in order to recalibrate. Sometimes there is a color space transfor-
mation, before the segmentation is done [4, 8]. In the clustering step connected
regions of the same color class are identified [7, 1]. The final step is the classifica-
tion which extracts objects and belonging properties like size and position from
the set of clusters. This step is domain specific and not standardized. Besides
the color based approach there are methods that concentrate on the boundaries
of objects. A very robust method that finds image boundaries is described in [3]
but this solution is too slow to work under real-time conditions on a robot with
limited computational power.

This paper describes a vision system that is based on an analysis of the
color of scan lines segments. How these segments are created and examined is
described in section 2. The method of calibration-free color classification that is
applied to the average colors of the segments is shown in section 3. Section 4
shows some of the experiments that were done to evaluate the vision system.

2 Segment Based Image Processing

The vision system subdivides the scan lines into several segments that are sep-
arated by edges. The segments are the starting point for all further image pro-
cessing. Section 2.1 shows, how the scan lines are placed and how they are split
to segments. The object recognition that is described in section 2.2 is based on
the classification of the colors of the segments. For this classification an auto-
calibrated color table is used (cf. section 3).

2.1 Distribution and Segmentation of Scan Lines

To detect objects in an image and measure their sizes, a set of scan lines is used.
The scan lines are horizon-aligned and distributed such that the density of scan
lines is higher in areas where more attention is needed to detect all objects.
The horizon is used to align vertical scan lines which are perpendicular to the
horizon. The lines run from 10 degrees above the horizon to the bottom end of
the image and have a spacing of 3 degrees.

The segments of a scan line are found using a simple edge detection algorithm.
The algorithm finds the first and the last pixel of an edge. An edge is a sequence
of so called edgels. Edgels are the pixels of scan lines where there is a sharp
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Fig. 1. Segments. a) The original image. b) For each vertical line of the image all edges
on the line were detected. The color of the segments between the edges is the average
color of the pixels of the respective segment. c) Same as b, but with horizon aligned
scan lines that are subdivided into segments, each segment has the average color of
all belonging pixels. d) The segments shown in c displayed with the color class that is
assigned to the average color of each segment

variation of the intensity of at least one color channel. The segments are the
parts between the edges of each scan line.

While the scan lines are scanned for edges, for each segment the first and
the last point and the average intensity over all pixels for each color channel are
determined. Fig. 1 shows such segments.

2.2 Finding Objects by Analyzing Segments of Scan Lines

Finding Points on Lines. On a RoboCup field there are different types of
lines: edges between a goal and the field, edges between the border and the field,
and edges between the field lines and the field.

The Border of the Field and Field Lines. To detect the border of the field and
the field lines, all segments whose average intensities are classified as white are
analyzed. The begin and the end point must be below the horizon, and the
segment below must be green. To distinguish between the field lines and the
field border, the expected size of a field line is examined. This size depends on
the distance from the robot to the field line. Thus the distance to the end point
of the white segment is calculated based on the rotation of the head and the
position of the point in the image. If the length of the segment is more than
fivefold the expected size of a field line, it is classified as a field border. To be
classified as a field line, the segment’s size must not be larger than twice the
expected size of a field line. The figures 2b and 2c show how the vision system
can distinguish between a field line and the field border.

Goals. To recognize the points at the bottom of the goals all sky-blue and yellow
segments are analyzed. The end points must be below the horizon and the begin
points must be above the horizon or lie on the image border. The length of
the segment must be at least 5 pixels and the segment below must be green.
Figure 2a shows such points.
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Fig. 2. Recognition of the border, the field lines, and obstacles. a + b) Points at the
field border and at a field line. The border and the line have a similar size in the image
and are around the same position in the image. They are distinguished based on the
different direction of view of the head. c) The segments that are classified as green.
d) Green Lines: The obstacles percept is the combination of adjacent green segments.
Orange Line: The resulting Obstacles Model

Finding Obstacles. The obstacles percept is a set of lines on the ground that
represents the free space around the robot. Each line is described by a near point
and a far point on the ground, relative to the robot. The lines describe segments
of green lines in the image projected to the ground. In addition, for each far
point a marking describes whether the corresponding point in the image lies on
the border of the image or not.

To generate this percept for each scan line the bottom most green segment is
determined. If this green segment meets the bottom of the image, the begin and
the end point of the segment are transformed to coordinates relative to the robot
and written to the obstacles percept; else or if there is no green on that scan
line, the point at the bottom of the line is transformed to coordinates relative
to the robot and the near and the far point of the percept are identical.

Small gaps between two green segments of a scan line are ignored to assure
that field lines are not misinterpreted as obstacles. In such a case two neighboring
green segments are concatenated. The size limit for such gaps is 4 ·widthfieldline

where widthfieldline is the expected width of a field line in the image depending
on the camera rotation and the position in the image.

Finding the Ball

Finding Points on the Border of the Ball. Usually there should be at most one
orange segment per scan line. However, if there is a highlight or a shadow on
the ball, this might result in a higher number of orange segments per scan line
that represent the ball. In such a case all orange segments that lie on the same
scan line and are part of a sequence of subsequent segments are grouped to one
large segment. Then the begin and the end of the bottom most orange (grouped)
segment on each scan line is added to the list of ball points if there is a green
segment below.

Additional Scan Lines. If the set of ball points contains at least two points,
three additional scan lines are calculated based on the smallest rectangle that
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Fig. 3. Ball Recognition: a) The image of an ball and the color classified segments. b)
White lines: The orange segments. Black circles: All end points of the orange segments,
that are close to the border of the image. Gray circles: All meeting points of an orange
and a green segment. c) White box: The bounding box of all black and gray points in
b. White lines: Lines parallel to the horizon; the center line goes through the center of
the white box. The spacing between the lines depends on the extension of the white
box. White circles: Transitions from orange to green on the white scan lines. d) Red
circles: The largest triangle amongst the gray and the white circles

contains all points of this set. The new scan lines are parallel to the horizon and
evenly overlap the bounding rectangle. This distribution of the additional scan
lines assures that more points on the border of the ball can be found on the left
and the right side. These new scan lines are divided into segments in the same
way as the long vertical scan lines. For each edge that separates an orange and
a green segment a point is added to the set of ball points.

Calculation of the Circle. To calculate a circle that describes the ball first all
points from the set of ball points that lie on the image border are removed. From
the remaining points two points with the highest distance are chosen. Then the
point with the highest distance to these points is selected. If these three points
do not lie on one and the same straight line they are used to calculate the circle
that describes the ball.

Finding Goals. Besides the points at the bottom of the goal, the bearings to
the four sides of the goal are determined. Additionally the angle to the left and
the right side of the larger part of the goal are determined.

The segments that were used to generate the points at the bottom of the goals
are combined to clusters. Two segments of two different scan lines belong to the
same cluster if there is no scan line without a goal colored segment between them.

Additional horizontal scan lines determine the horizontal extensions of the
clusters. All clusters that have white below are rejected because goals are not
outside the border. All clusters that have pink below are rejected because they
probably are a part of a landmark. All other clusters are combined leading to
a bounding box that includes all clusters. Such a bounding box, generated by
combining all valid clusters, is accepted as a goal if it fulfills the conditions: 1:
The bottom is below the horizon. 2: The top is above the horizon or intersects
with the image border. 3: The width is at least 1.5 times the height of the
bounding box or the left or the right intersects with the image border.
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Fig. 4. Finding the goal. a) An image of the goal with color classified segments.
b) The gray boxes show the vertical and horizontal extension of the clusters. The
horizontal extension was measured using additional horizontal scan lines (the pink
lines). c) Combination of the clusters. The red line marks the larger free part of the goal

For a robot that plays soccer the position of the angle and the distance of the
goal are important for localization. To avoid to kick into the goalie the largest
free part of the goal has to be determined. This is done by comparing the clusters
that lead to the goal bounding box. If no cluster or the larger one intersects with
the image border, the angles to the left and the right side of the larger cluster
determine the best angle for a goal kick. If the smaller part intersects with the
border, it can not be decided, whether this part extends outside the image and
is the larger free part of the goal, or not. The vision system does not suggest a
goal kick angle. Figure 4 shows how the goal is recognized.

3 Layered Color Precision

This section shows, how a color look-up table can be created and updated au-
tomatically during the robot plays soccer. The calibration system works on the
segments of scan lines that are created for object recognition (cf. section 2). The
output of the color calibration is the color look-up table that is used to classify
the colors of the segments for object recognition.

3.1 Three Ways to Represent Color Classes

The vision system uses three layers of color precision. Each layer has its own
method to assign colors to color classes.

The layer with the lowest precision, layer 1, represents the color classes
green1, white1, and black1. The colors green1 and white1 are represented by
cuboids in the color space. The rest of the color space is black1. Each cuboid is
defined by 6 threshold (min and max for each color channel).

The next layer of color precision, layer 2, distinguishes between more colors.
It uses a cuboid in the color space to define green2 as a reference color. Relative
to the reference color cuboids for the color classes yellow2, skyblue2, and orange2
are defined. The colors yellow2 and orange2 can be overlapping in color space,
which means that some colors can be classified as yellow2 and orange2.

The layer with the highest precision is layer 3, which uses a color look-up
table to represent white3, green3, yellow3, skyblue3, and orange3. This look-
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Fig. 5. Different layers of color precision. a) Layer1: Rough classification for green and
white. The white and the green cuboid define the color classes. b) Layer2: Refined
classification for green, other colors are classified based in the relation to green. The
green cuboid is the reference color all other cuboids are defined in relation to the green
cuboid. c) Layer3: Classification based on a color look-up table

Fig. 6. Color classified images based on the three different layers of color representation.
a) The original image. b) Layer1: Rough classification for green and white. c) Layer2:
Refined classification for green, other colors are classified based on the relation to green.
d) Layer3: Classification based on a color look-up table

up table is used to classify the colors of the segments for object recognition as
described in section 2.2.

Figure 5 shows all three ways to represent an assignment from colors to color
classes. The color classification of an image is shown in figure 6 for each of the
three forms of representation.

The output of the color calibration system is the layer 3 color representation,
the color look-up table. This is created based on segments that can be identified
to belong to an object with a known color for sure. For example the average col-
ors of all segments that belong to the ball are used to calibrate orange. To extract
such segments the layer 2 -based colors of the segments and knowledge about the
environment is used. The reference color of the layer 2 color representation is
determined using the layer 1 -based colors of the segments together with knowl-
edge about the environment. The layer 1 color representation is constructed
based on statistics over the last images. The following subsections describe, how
this process of color-refinement works in detail.
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3.2 Calibrating Layer 3 Colors

The vision system identifies segments that belong to a certain object for sure
and adds the average colors of the segments to the color class of the object. The
segments are identified based on the layer 1 and layer 2 color classes and on
spatial constraints for the position of the segments in the image.

White. White is the color of the border and the field lines. Segments that are
white1 are possibly a part of the field border. But in some cases parts of the
ball or the ground or field lines can be classified as white1. Thus only the white1
segments that fulfill the following conditions are used to calibrate white3: 1: The
segment is not green2. 2: The begin of the segment is below the horizon. 3: The
length of the segment is at least 4 pixels. 4: The length of the segment is at
least 5 times the expected size of a field line at the position of the center of the
segment. (This filters noise) For each such segment the color look-up table is
expanded such that its average color is classified as white3.

Colors of the Goals. The color classification based on a reference color from
layer 2 can distinguish orange2, yellow2, and skyblue2. But the color precision
is not very high. The colors yellow and orange overlap and the rim of the field
lines often is classified as yellow or sky-blue. If the white of the outer border is
a little bit bluish it also might be classified as sky-blue. Thus only the segments
that are yellow2 or skyblue2 and fulfill these conditions are identified as a part
of goal: 1: The begin of the segment is above the horizon. 2: The end of the
segment is below the horizon. 3: The length of the segment is at least 10. This
filters all segments that are part of a ball or an other robot or caused by the rim
of a scan line. Because of the last condition far distant and thus small goals can
not be used for calibrating the goal colors. The average colors of all these goal
segments are added to the corresponding color class in the layer 3 color class
representation.

Orange. To calibrate orange3, segments of scan lines that lie on a ball are used.
Not all segments that are orange2 are a part of a ball. In some cases a goal
or a small part of a red robot is classified as orange2. Thus only the orange2
segments that fulfill the following conditions are used to calibrate orange3: 1:
The begin of the segment is below the horizon. 2: There is a green segment
below. 3: The length of the segment is at most 1.5 times the expected size of a
ball at the position of the center of the segment. 4: The length of the segment is
at least 0.2 times the expected size of a ball at the position of the center of the
segment if the segment does not intersect with the image border. This method
filters all segments that do not belong to a ball, and unfortunately even a lot
of ball segments. However, in this way enough segments are determined that
belong to a ball for sure. The average color of each such segment is added to the
color look-up table for orange3.

Green. To calibrate green3 all segments that are classified as green1 are ex-
amined. To be used for calibration of green3 the segments have to fulfill the
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Fig. 7. Calibration of green. a) The layer 1 color classes of the image. b) The frequent
colors displayed bright. c) Black: All long scan lines with an average color classified
as green1 (cf. the green pixels in a) White: All long scan lines below the horizon and
below the field border. Green: All long scan lines with a frequent color as average color
(cf. the bright pixels in b). d) The scan lines that are used to calibrate green

following conditions: 1: The average color must be one of the most frequent col-
ors of the current image. (As the green of the ground is the most frequent color
in most images, this helps to filter all other objects) 2: The length must be at
least 30 pixels. (This filters small segments that can be caused by other robots,
the referee or unexpected objects on the field) 3: The field must be found above.
(This ensures that the area outside the field is not used for calibration, in the
case the robot looks over the image border) 6: The begin point must be below
the horizon. (No ground segments are above the horizon) 5: The difference be-
tween the maximal and the minimal intensity of the v-channel must be less than
20. (If the border of the ball intersects with a scan line in a very small angle, it
is possible that no edge is detected. In this case a segment is created that has a
high difference between the minimal and the maximal intensity of the v-channel
as green and orange differ in that channel very much.)

For each segment that fulfills these conditions the color look-up table is ex-
panded such that green3 includes the maximal and the minimal intensities for all
3 channels of the segment. Figure 7 shows which of these conditions are fulfilled
by which scan lines in an example image.

3.3 Calibrating Layer 2 Colors

In layer 2 the colors are defined by cuboids in relation to the reference color
green2. Green is a refined version of the more rough green1 from layer 1. The
other colors in layer 2 do not directly depend on the classification from layer 1
but are approximated using green2 as a reference color.

Green. To define the thresholds for the cuboid of the reference color green2
all segments whose average color is classified as green1 are used that fulfill the
conditions for green segments that are used to calibrate green3 (cf. 3.2). For each
segment that fulfills these conditions the cuboid for the reference color green2
is expanded such that it includes the maximal and the minimal intensities for
all 3 channels of the segment. The other colors are defined in relation to this
reference color.
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Yellow. The yellow of the goal has more redness than the green of the field and
less blueness. The brightness for yellow is not restricted. This leads to the thresh-
olds ymin = 0, ymax = 255 | umin = 0, umax = ugreen

min | vmin = vgreen
max , vmax = 255

for yellow2 relative to the thresholds for green2, where ugreen
min is the lower thresh-

old for the blueness of green and vgreen
max is the upper threshold for the redness

of green.

Orange. Orange has more red than yellow and in the YUV color space more blue
than yellow. The brightness for yellow is not restricted. This leads to the thresh-
olds ymin = 0, ymax = 255 | umin = 0, umax = ugreen

average | vmin = vgreen
max , vmax =

255 for orange2 relative to the thresholds for green2. This means, that the yel-
low of the goal has more redness than the green of the field and less blueness.
The threshold ymin means that sky-blue is not much darker than green.

Sky-blue. These are the thresholds for skyblue2 relative to the thresholds for
green2: ymin = 0, ymax = 255 | umin = ugreen

max , umax = 255 | vmin = 0, vmax =
vgreen

average This means that the sky-blue of the goal has more blueness than the
green of the field and the same or less redness. The brightness for sky-blue is not
restricted.

3.4 Calibrating Layer 1 Colors

To calibrate green1 and white1 for each channel the average intensity īc of all
scanned pixels over the last 10 images is calculated.

White. The minimal brightness for white1 is defined in relation to the average
brightness of the last images. It turned out that for dark images all pixels that
have more than twice the average brightness can be defined as white. For brighter
images a minimal value for white that lies between the average brightness and the
maximal possible brightness is useful. Thus the thresholds for the white1 cuboid
are set to: ymin = min

(
īy · 2,

(īy+255·2)
3

)
, ymax = 255 | umin = 0, umax =

255 | vmin = 0, vmax = 255 Therefore all colors that are brighter than the
threshold ymin are classified as white1.

Green. The thresholds for green1 are set to: ymin = īy · 0.8, ymax = īy ·
1.2 | umin = īu · 0.9, umax = īu · 1.1 | vmin = īv · 0.9, vmax = īv · 1.1 Thus
all colors that are similar to the average color are classified as green1. The tol-
erance for the brightness channel y is slightly larger than the tolerance for the
color channels u and v.

3.5 Adaptation to Changing Lighting Conditions

The method for color calibration as described up to here only assigns new colors
to color classes or changes the assignment of a color from one color class to
another one. Therefore colors that are misclassified once will be misclassified
for ever, except they are assigned to another color class. Thus for each entry of
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the color look-up table (layer 3 color representation) the time when it was last
updated is stored. If an entry was not updated for a longer time, the assignment
to the color class is deleted. This time depends on the color (green is updated
more often than orange). All colors that are used to calibrate green3 are also
used to detect, if there was a sudden change of the lighting conditions. If green3
is calibrated, the average value of the segments used for calibration in the current
image is compared to the average values used for calibration in the last images.
If there is a large difference in at least one color channel, all three layers of color
representation are deleted. Thus the vision system reacts very quickly if there is
a sudden change of the lighting conditions. In this case the robot has to see at
least one object of each color for a few frames to recalibrate all colors.

4 Experimental Results

A crucial parameter for the auto calibration is the reference color. To test if the
reference color does not contain colors different from green obstacles, an obsta-
cle avoiding behavior was executed. The robot was able to pass the soccer field
without touching any arbitrary positioned obstacle. There was no performance
difference compared to a manually calibrated vision system. An easy way to test
if the automatic color calibration is successful is to have a look at the resulting
color classified images. These images should be similar to images that are the
result of a color classification using a hand-made color table. A hand-made color

Fig. 8. a,b,c) Three images of the same scene, taken under different lighting conditions.
d,e,f) The result of color classification based on a color table that was created by hand
for image a g,h,i) The result of color classification based on a color table that was
created automatically for each lighting condition
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table that was created using sample images taken under certain lighting con-
ditions usually is not usable under different lighting conditions (cf. Fig. 8a-f).
The vision system described above was able to adapt the color table when the
lighting conditions changed (cf. Fig. 8g-i). The system presented in this paper
needs 20 ms to process an image of size 176x144 on an Aibo, which is equipped
with a 400 MHz processor.

5 Conclusion

This paper presents a vision system for robotic soccer which needs no pre-run
calibration. The independence of lighting conditions is reached by an auto-
adaptation of color classes and an edge-based analysis of scan lines. The object
recognition and the color calibration employ environmental constraints to de-
termine size and position of the objects. The author would like to thank H.-D.
Burkhard, Th. Röfer, and all members of the Aibo Team Humboldt for their
support.
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3 Universitá di Milano - Bicocca, Dept. Informatica, Sist. e Comun.,

sorrenti@disco.unimib.it

Abstract. In this paper we present a proposal for setting camera pa-
rameters which we claim to give results better matched to applications
in color-coded environments then the camera internal algorithms. More-
over it does not require online human intervention, i.e. is automated, and
is faster than a human operator. This work applies to situations where
the camera is used to extract information from a color-coded world. The
experimental activity presented has been performed in the framework of
Robocup mid-size rules, with the hypothesis of temporal constancy of
light conditions; this work is the necessary first step toward dealing with
slow changes, in the time domain, of light conditions.

1 Introduction

Color cameras are used in many application domains, in robotics especially,
where they represent a relatively cheap, but powerful sensor. Whenever the op-
erating environment of the camera, i.e. the working environment of the embodied
agent, is such that the color of the objects carries the object semantic, then we
say that the agent is immersed in a color-coded world. This work focuses on such
situations, where the agent processing can color-discriminate the objects in the
scene; the camera acquisition parameters should be matched to the color codes,
to facilitate such discrimination.

Unfortunately, dealing with a color-coded world does not simplify things as
much as one can expect; in fact, many aspects are not fixed and contribute to
the difficulty of color-discriminating the world:

1. The actual values of the pixels of the objects can often be really different,
even though the colors are appear as expected; in practice what is granted
is just the human-usable string which represents the name of the color. A
Robocup example: according to the rules the playground has to be green; this
just means that we are happy when the color attribute of the playground
is called green by most humans. On the other hand its color can range
from the emerald-like playground we had at the European championship in
Amsterdam 2000, to the pea green we had at the worlds in Padova 2004.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 221–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2. The actual light on the playground can be different in one or more aspects
(e.g., intensity, color temperature) from site to site; of course this impacts
on the apparent color of the objects

3. The spectral sensitivity curve (quantum efficiency diagram) of the camera
changes with the device in use; of course this impacts on the apparent color
of the objects, as seen by the color classification algorithms

4. The values of the parameters which affect the functioning of the many cir-
cuits inside the camera have also a large impact on the apparent color of the
objects

5. This point applies only if the algorithms for the automatic setting of some
parameters are active; the actual algorithm changes with the camera; we
would not be happy to discover that our processing does not provide a rea-
sonable output any more, if we change the camera model and/or brand

Cameras functioning usually depend on some parameters, which are in charge
of controlling the image acquisition process. Examples of such parameters are:
the gain of the amplifier which takes in input the output of the light collect-
ing device and gives out the usable output of the camera, the color balancing
“knobs”, which allow to change the relative weight of the color channels in or-
der to deal with different color temperatures of the light, etc. Even though the
values of such parameters are not usually given the appropriate relevance, i.e.
many users just leave them to their default, their role is really relevant in the
image grabbing process. Slight changes of some parameters turns into very dif-
ferent images. As their values affect the best results that can be attained by the
processing which is applied to the grabbed image, we would like image grabbing
parameters set so to grab the near-best images, in terms of the noise acting on
the color classification. This should be compared to current praxis, consisting
in taking the default values and then working hard to discriminate the colors.
Notice that the colors have largely been mixed-up during image grabbing.

It is important to recall that some parameters can be automatically set by the
internal algorithms of the camera, while the others are usually left to the manual
intervention (if any) of the user. The camera internal algorithms, however, cannot
match the requisites of a specific application, mainly because of their generality
with respect to the observed scene. As an example, a mid-size Robocup robot
could require to discriminate between blue and cyan, but this capability is not
part of the functionalities of a normal camera. Moreover, the internal algorithms
do not perform well when the camera not in very good light conditions, e.g.
when the camera has in view both bright and dark areas. To perform well here
means to reach a quality of the image which a human operator could reach,
by acting on the camera parameters. A last consideration concerns the internal
algorithms, which are usually unknown; they are regarded as part of the source
of revenues by the camera builder companies: we tried to gain knowledge of
their functioning both from the literature and asking the manufacturer, without
usable results. Therefore such algorithms are often turned off, at least to allow
the user to understand what’s actually going on in the camera, even though the
user knows that doing so implies working far away from optimality.
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It should be noted that the manual determination of near-optimal values is
a time-consuming task and has to be performed by a human operator. This is
especially true when working in not optimal light conditions, which is unfortu-
nately when internal algorithms use to fail most. Moreover, the intervention of
a human operator in setting these parameters introduces another problem, due
to his/her inherently subjective perception of colors, which could make subse-
quent processing to fail. In order to leave out his/her subjectivity the operator
should work basing on some quantitative index, therefore paving the way to an
automatic use of the same index.

In this paper we propose to formalize the problem of selecting the acquisi-
tion parameters as an optimization task (see Section 2) and we solve such an
optimization problem using the genetic meta-heuristic (see Section 3). The ex-
perimental activity, presented in Section 4, has been performed in the framework
of Robocup mid-size rules, with time-constant light conditions. We consider this
work as the necessary first step toward adaptation to slow time-changes of the
light conditions. The overall aim of this work is to make the setup time short
while minimizing the human intervention, in agreement with the short-setup
issue in Robocup mid-size.

2 Setting Up the Problem

The Robocup mid-size league working environment is a so-called color-coded
world: it can be described as follows, as ruled by current (2003) rules: the robots
move on a flat and rectangular playground built with a green carpet; the two
teams of four robots, like in real soccer, defend one goal and attack the other
goal. Each of the two goals (one yellow, the other blue) lay on one of the two short
sides of the playground. The poles of the goals are white, as the playground lines
(side and touch lines, goal area lines, etc). The four corners feature a quarter
circle arc white line in the playground and a pole with 3 bands of colors: the
corner poles on the blue goal side have colored bands: yellow, blue, and yellow
again, from the playground upward. The corners on the other side present the
bands, but with the yellow and blue bands exchanged. More details, for the
interested reader, can be found in the rule document [1].

The light on the playground is adjusted between 300lux and 900lux. Very
slight spatial differences in the light intensity are allowed, e.g. shadows due
to the goals, robots, etc. Starting from 2004 slight time changes of the light
are allowed as it will be implied also by an imperfect (and cheaper) lightening
system, complemented by natural light from outdoor. With such a wide range in
light intensity typical issues regard highlights and shadows. With a strong light
the red of the ball tends to get yellow in the un-avoidable highlights on the ball,
the playground also gets filled with highlights where the green is so diluted to
be easily perceived as cyan or even white. With too poor a light the blue gets
undistinguishable from black and cyan, etc.

In order to describe the parameters involved in the image acquisition process,
we considered those included in the IEEE1394 IIDC (DICAM, Digital Cam-
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era) version 1.30 standard [2]. IIDC is an open commercial standard on top of
IEEE1394, the well-known Firewire serial bus, an affordable interface for high-
speed devices, like cameras. IIDC is a standard for the so-called digital-video, i.e.
uncompressed video on Firewire, and, because of the processing time constraints
of applications, IIDC is the usual approach in Robotics since no un-compression
is required. Many IIDC cameras are available on the market, from webcam-level
to professional ones, CCD or CMOS based. When claimed to be compliant with
IIDC, such cameras should export settings which are a subset of the settings
defined in IIDC specifications. In the view of general usability in Robocup com-
petitions, we carried out the work with low-cost webcam-level Firewire IIDC
cameras; notice that this choice just applies to the experiments, i.e. the specific
set of parameters on which to conduct the optimization, and does not affect the
proposal per sé.

In the following we report a list of parameters in the IIDC standard (IIDC
1394-based Digital Camera Specification v. 1.30), with a very short explanation;
some of them can be set to automatically determined by the camera internal
algorithms. Of course the experimental work has been carried out just on the
ones implemented in the actual camera we used, as described in Section 4.

1. EXPOSURE: the combination of the sensitivity of the sensor, the lens aper-
ture and the shutter speed; most webcam-level cameras can actually change
just the exposure time

2. IRIS: the lens aperture control; most webcam-level cameras do not have
a mechanical iris; instead they use to act on the integration time of the
incoming light, i.e. the exposure time

3. GAIN: the electronic amplification of the camera circuit gain control
4. SATURATION: the saturation of the COLOR, i.e. the degree to which a

color is undiluted by white light; if a color is 100 percent saturated, it contains
no white light; if a color has no saturation, it is a shade of gray

5. WHITE BALANCE - RED channel: the camera can automatically adjust
the brightness of the red, green and blue components so that the brightest
object in the image appears white, this is done by controlling the relative
intensity of the R and B values (in RGB)

6. WHITE BALANCE - BLUE channel: see the point above
7. BRIGHTNESS: the black level of the picture, a pure offset of the intensity

level of each pixel coming from A/D converter
8. GAMMA: this parameter defines the function between incoming light level

and output picture level, see [3] for details
9. SHARPNESS: the camera can enhance, in a digital sense, the details of

edges; this is done by applying a mathematical formula across the image;
this is not of interest in the contest of this work

10. HUE: the phase of the color
11. SHUTTER: the opening time of the lens aperture; most webcam-level cam-

eras do not have a mechanical shutter; instead they use to act on the inte-
gration time of the incoming light, i.e. the exposure time

12. FOCUS: the lens focus control, most webcam-level cameras just have a me-
chanical lens focus handle, which is not under software control
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Fig. 1. The RGB cube and the 8 color codes relevant for the Robocup application

13. TEMPERATURE: the temperature inside the camera
14. TRIGGER: this is used to control the frame grabbing in applications which

require accurate synchronization, e.g. with stroboscopic light
15. ZOOM the lens zoom control, not available on most webcam-level cameras
16. PAN movement: the motion around a vertical axis, not available on most

webcam-level cameras
17. TILT movement: same as above, but referred to an horizontal axis, not

available on most webcam-level cameras
18. OPTICAL FILTER CONTROL: changes the optical filter of a camera, not

available on most webcam-level cameras

We propose a formalization of the task as an optimization problem, where the
independent variables are the camera parameters; the dependent variable has to
reflect the quality of the grabbed image, and, most important, the relationship
between the independent and the dependent variables is not known. Under a
pure theoretical point of view a complete model of image formation could be
developed. Apart the complexity of such a model, the intrinsic limit of an ap-
proach which would try to create a complete model of the image formation is
the difficulty and/or the un-accuracies in the determination of the values of the
model parameters. As an example consider the many different physical incarna-
tion of the playground, of the robot body, of the goal color, lights, etc. Therefore
we consider not applicable a classical operating research approach, where the
relationship dependent = f(independent) has to be known.

Our formalization of the problem starts with the observation that the color-
codes in Robocup are the vertexes of the so-called RGB cube, see Figure 1; this
includes the extremal conditions of minimum light (black) and maximum light
(white). Hence the task can be expressed as how to adjust the camera parameters
so that each image area of one color gets RGB values which are very near to the
corresponding vertex of the RGB cube. Here the vertexes are the human-defined
color, which, in the following, we will call color prototypes for short.

Suppose we have an image where some areas have been collected and classified
by a human operator and is taken as ground-truth, see Figure 2. We would
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Fig. 2. An example of ground truth for color prototypes selected by the operator

like to push/stretch each color toward its corresponding prototype by acting
on the acquisition parameters, ending up with pixel values (at least for the
selected areas) which are easy-to-discriminate into the set of color prototypes.
To perform this color space deformation in an automatic way, we first define an
evaluation function, aiming at capturing the distance of the cloud of points of
each color from its prototype and, after that, we seek the camera setting which
minimize such a function. Of course the camera will not be moved during the
whole optimization process.

Let GT c be the set of ground-truth pixels of color c, i.e. GT c = {p | declared
by the user to be of color c}. The prototype of color c is denoted by protc. The
evaluation function fc, i.e. computed with respect just to color c, is:

fc =
1

|GT c|
∑

∀p ∈GT c

‖p(r, g, b) − protc(r, g, b)‖ (1)

where by ‖A − B‖ we denoted a distance between two points A and B, in
the RGB color space, and by |Set| the cardinality of Set. Let p(x), x = r, g, b be
the r or b or g coordinate of a pixel, then Equation 1, if we choose the classic
Euclidean norm, translates into:

fc =
√ ∑

x=r,g,b

[pc(x) − protc(x)]2 (2)

where:

pc(x) =

⎛

⎝ 1
|GT c| ·

∑

∀p ∈GT c

p(x)

⎞

⎠ x = r, g, b. (3)
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If we consider pc(x), x = r, g, b as the r, g, b coordinates of the barycenter P
c

of GT c, Equation 2 can be written shortly as:

fc = ‖P
c − protc‖ (4)

Put as above, the problem is a minimization problem, i.e. the smaller the
evaluation function the better the solution. A relevant point is that this min-
imization has to be carried out for all the relevant colors at the same time.
Fulfilling the constraint for just one color is an easy, but not useful, task.

In the case of mid-size Robocup league we have the 8 distinct color prototypes
mentioned before; however the generality of the proposal is in its independency
on the number of color-codes, on their specific location in the color space, and, to
some extent, on the particular color space; this generality turns into applicability
in other domains.

To account for the multi-objective aim of the work, which is to minimize the
evaluation function for all the colors at the same time, we considered as the
evaluation function average the average of the evaluation function of the single
colors. So, let CC be the set of color codes, which in our example application
are:

CC = {white, black, yellow, blue, red, green, cyan, magenta}
the overall evaluation function for a given set of parameters could be:

fCC
ave =

1
|CC|

∑

∀c ∈CC

fc, (5)

however, this simple function turns out not to be capable to consistently reach
good results because its formulation inherently allows a compensation of very
good results for some colors with very bad ones for the others. Therefore, we
propose to use a different function, a sum of quadratic (i.e. squared) terms
(distances), which aims at weighting more large errors, so to drive the optimiza-
tion toward a more homogeneous treatment of all the colors. Homogeneous here
means forcing at the same time each color cloud towards each prototype.

fCC
SSD =

∑

∀c ∈CC

(fc)2. (6)

3 How to Solve the (Optimization) Problem

The search space of the optimization problem introduced in the previous section
is the space of the camera settings; the goal is to minimize an evaluation function
computed on few color characteristics of the image obtained from the camera.
However, it is not possible to face this optimization task with classical analytical
or numerical optimization techniques due to several reasons:
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– the absence of an analytical form for the relationship between the indepen-
dent variables and the measured values,

– the evaluation function is noisy,
– the evaluation function is not linear nor continuous

Due to the previous reasons and given that we have no clue about the con-
vexity of the problem, we propose to use a randomized algorithm to perform the
optimization, in particular we suggest to use a genetic meta-heuristic.

Genetic algorithms [4] have proved to be a powerful search tool when the
search space is large and multi-modal, and when it is not possible to write an
analytical form for the error function in such a space. In these applications, ge-
netic algorithms excel because they can simultaneously and thoroughly explore
many different parts of a large space seeking a suitable solution. At first, com-
pletely random solutions are tried and evaluated according to a fitness function,
and then the best ones are combined using specific operators. This gives the abil-

Algorithm 1 Sketch of Goldberg’s Simple Genetic Algorithm
Begin Simple Genetic Algorithm
Create a Population P with N Random Individuals
for all i ∈ P do

Evaluate(i)
end for
repeat

repeat
Select i1 and i2 according to their Fitness
with probability pcross

i′1, i
′
2 ← Cross(i1, i2)

otherwise {with probability 1 − pcross}
i′1 ← i1 and i′2 ← i2

end with probability
with probability pmut

i′′1 ← Mut(i′1)
otherwise {with probability 1 − pmut}

i′′1 ← i′1
end with probability
with probability pmut

i′′2 ← Mut(i′2)
otherwise {with probability 1 − pmut}

i′′2 ← i′2
end with probability
Add Individuals i′′1 and i′′2 to New Population

until (Created a new Population P ′)
for all i ∈ P ′ do

Evaluate(i)
end for

until (Stopping criterium met)
End Simple Genetic Algorithm
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ity to adequately explore possible solutions while, at the same time, preserving
from each solution the parts which work properly.

In Algorithm 1 we show the general scheme for the genetic algorithm we
used. The initial population is randomly initialized choosing, for each individ-
ual, a random vector of camera parameters; each parameter range is sampled
extracting a value out of a uniform distribution. After the definition of the first
population of random solutions, each individual is evaluated by computing its
fitness and ranked according to it. We evolve the population by selecting the
individuals according to their fitness and stochastically applying to them the
genetic operators crossover and mutation. Once a new offspring has been gener-
ated, the fitness of the new individuals is evaluated. This process continues until
a stopping criterium is met, e.g. a maximum number of generations.

The basic genetic algorithm used in our implementation is the Simple Genetic
Algorithm Goldberg describes in his book [4]. At each generation it creates an
entirely new population of individuals by selecting from the previous population,
and then mating them to produce the offspring for the new population. In all our
experiments we use elitism, meaning that the best individual from each genera-
tion is carried over to the next generation. By using elitism we ensure the algo-
rithm to be a monotonic any-time algorithm, meaning that the optimization pro-
cess can be stopped at any point while getting always a reasonably good solution.

Solution are coded in genotypes by means of integer valued strings; genetic
optimization is known to loose efficiency when individuals are coded by too long
genotypes, hence we did not use binary coding. Each position, i.e. allele, repre-
sents a camera parameter. The alleles assume values in a limited range according
to the camera specifications. We use uniform random initialization and classical
uniform crossover; for the mutation we use a Gaussian probability mutation to
select values in the neighbors of the actual value instead of a completely random
ones. The fitness function described in Algorithm 2 is used to evaluate each in-
dividual according to the problem definition of Section 2. Experimental practice
evidenced that changing the parameters takes effect after some time, so a couple
of fake images are grabbed before each individual evaluation.

Algorithm 2 Evaluation of the fitness of an individual
Begin Evaluate (Individual i)
Set the camera parameters according to the genotype
Grab a couple of images to make the new parameter set effective
fitness = 0
for all c ∈ CC do

Grab an image
Compute P

c
, the barycenter in the color space of pixels of color c

Compute the barycenter distance fc = ‖P
c − protc‖ from the c color prototype

Set fitness = fitness + (fc)2

end for
return fitness
End Evaluate
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4 Experimental Activity

We performed the experiments with one of the cameras in use on our robots;
it is a quite widespread camera in the Robocup community. It is, as mentioned
before, a webcam-level camera, with a single color CCD from Sony, progressive
scan, capable to provide, via the Firewire interface, 640x480 pixel, 24bpp at 15
frames/s. The builder is OrangeMicro and the model IBot. After some tweaking
we now have the camera reliably running onboard our goalkeeper. The camera
exports a limited subset of the 18 parameters in the IIDC specification, the others
being not software implemented or being related to physical feature which are
not present on the camera, e.g. the mechanical iris. The set of parameters for
our camera hence reduces to 8:

1. EXPOSURE, nominal range [0, 498]
2. IRIS, nominal range [0, ..., 4]
3. GAIN, nominal range [0, ..., 255]
4. SATURATION, nominal range [0, ..., 255]
5. WHITE BALANCE - RED channel, nominal range [0, ..., 255]
6. WHITE BALANCE - BLUE channel, nominal range [0, ..., 255]
7. BRIGHTNESS, nominal range is [0, ..., 511]
8. GAMMA, nominal range [0, 1]

It is possible to set EXPOSURE, WHITE BALANCE (both RED and BLUE),
and BRIGHTNESS to take a value decided by the camera internal algorithm.
Considering the nominal range of discrete values, the search space has a finite,
but quite large number of points. The time required by the fitness evaluation is
bounded by the image grabbing time: the camera gives out 15 frames/s, which
means a period of about 67ms. Considering that more than one image transfer
has to be awaited, in order to have the new settings operating, then the time
required by a brute-force approach would be about:

BruteForceT ime = 499 · 5 · 256 · 256 · 256 · 256 · 512 · 2 · 180 ms

= 65313835 years.

We call current praxis the situation where the manual-only parameters have
been set to their default values and the others have been set so that the camera
decides on them.

During the experimental activity we switched on all the lights, and obtained
what we call an intermediate level of light intensity, i.e. in the range [260, 370]
lux, which is quite homogeneous, in our opinion, although the light intensity is
not as high as it should be in Robocup mid-size. It is worthwhile to notice that
the conditions of this experiment are those where the current praxis is more
likely to give good results, because of the homogeneity of the light intensity.

Figure 4 reports the evolution of the fitness for the best individual in the
population compared to the fitness value of the image acquired with the current
praxis parameters. As it can be seen in the plot, the steady-state is reached
much before of the end of the process; the fitness value is lower than the one
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Fig. 3. Distribution of light in intermediate light conditions
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Fig. 4. An example of evolution of the fitness functions during the optimization

computed on an image grabbed with the current praxis, just after a very few
generations. This experiment uses pcross = 0.7, pmut = 0.2, and a population
of 20 individuals. These values have not been optimized and we feel that better
results could be obtained by a more accurate selection of them. In our prelimi-
nary experiments, aiming at demonstrating the convergence of the proposal, the
evolutionary process is terminated after a large number of generations; in the
move to on-line applications we will define different stopping criteria such as
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Table 1. Parameters for the current praxis and our best solution, with fitness

current praxis Evolved Parameters
EXPOSURE Auto (498) 485
IRIS 4 1
GAIN 87 175
SATURATION 105 227
WHITE BALANCE [RED] Auto (84) 128
WHITE BALANCE [BLUE] Auto (91) 102
BRIGHTNESS Auto (314) 201
GAMMA 1 0
Overall Fitness 16193 4636

maximum execution time, or permanence in a steady-state for a given number
of generations.

Table 1 compares the current praxis situation and the best solution found by
our approach. The values in the parentheses are the values given out by the cam-
era during auto functioning. We observed that such values, which coincide with
the default values of each parameter, do not change with the light conditions,
whilst they should. Therefore we consider that the onboard software replies with
just the default values; this supports our claim about the difficulties to discover
the internal functioning of the camera. Just to give an idea of the quality of the
results, notice the last row, where the fitness has been computed for the current
praxis case too.

In Figure 5 we present the image grabbed with the current praxis and with
our solution. Since the final aim of the work is to ease the color-classification
processing, it is worthwhile to evaluate how much our work eases this process-
ing. We therefore introduced a very simple color-classification scheme, which we
then applied to both solutions. This scheme classifies each pixel as the color of
the closest prototype, i.e. the separation surfaces cut the rgb-cube into 8 parts.
As it can be easily seen the performance of our approach outperforms the cur-
rent praxis: e.g. our approach turns the playground from mostly cyan to green,
removing the large amount of white points; also the yellow goal is less reddish
with our approach. This effects could be more easily observed in the rightmost
column with the classified images.

In order to support the effectiveness of the approach we present hereafter a
second experiment. In this experiment we reduced also the search space for some
parameters, according to subjective considerations about the effect on the images
obtained by changing (independently) each parameter, for instance in order to
avoid removing colors form the image. When we made this experiment we were
confident we had convincing reasons for such reductions of the search space.

In particular, we reduced the range to [200, 498] for EXPOSURE, to [80, 255]
for GAIN, to [100, 255] for SATURATION, to [80, 255] for WHITE BALANCE
(both RED and BLUE), to [100, 511] for BRIGHTNESS, and fixed GAMMA to
1 and IRIS to 4.
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(a) RGB image, current praxis (b) Dumb-classified, current praxis

(c) RGB image, our approach (d) Dumb-classified, our approach

Fig. 5. Images for current praxis (a, b), and our solution (c, d)

Table 2. Parameters for the current praxis and our solution, with fitness

current praxis Evolved Parameters
EXPOSURE Auto (498) 490
IRIS 4 4
GAIN 87 217
SATURATION 105 242
WHITE BALANCE [RED] Auto (84) 187
WHITE BALANCE [BLUE] Auto (91) 126
BRIGHTNESS Auto (314) 115
GAMMA 1 1
Overall Fitness 21655 8143

Table 2 compares the current praxis situation and the best solution found
by our approach. Again our approach gets a lower fitness with respect to cur-
rent praxis. However, the fitness is twice the fitness of the previous experiment
(light conditions were very similar, and the observer is in the blue, darker, goal).
According to us this is due to having reduced (improperly) the search space.
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(a) Current Praxis (b) Current Praxis Dumb Classification

(c) Optimized Image (d) Optimized Image Dumb Classification

Fig. 6. Image grabbed with current praxis (a)(b), and our solution (c)(d)

This again supports the approach of blind optimization we took, avoiding any
subjective interpretation of the parameters.

In Figure 6 we present the image grabbed with the current praxis and with
our solution for this second experiment. As it can be easily seen, even with a
sub-optimal solution, the performance of our approach is better than using the
current praxis.

5 Conclusions

In this work we propose an approach to set the camera parameters affecting the
image grabbing process, so to ease at the maximum extent the color classifica-
tion task. The problem is cast to a minimization problem which we propose to
optimize with a genetic meta-heuristic. An experimental activity is presented
which validates the proposal.

This work is just a first step toward an automatic tool for tracking light
changes. At the present stage it heavily depends on the training set to include
patches from different light conditions, in order to be able to find a globally
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good parameter setting. We are now working on automatic acquisition of the
ground-truth, which will allow to apply the approach to sequences of images,
taken in different parts of the field.

Acknowledgements

This work has been partially supported by the project P.R.I.N. 2003 “Tecnologie
software e modelli di conoscenza per progetto, sviluppo e sperimentazione di
sistemi robotici multi-agente in ambienti reali”, funded by M.I.U.R.

We thank the referees for their useful observations, which allowed us to im-
prove the quality of the work.

References

1. Technical Committee of the Midsize League for 2003: Rules for Robocup Mid-
size Competitions, year 2003. available at http://wwwradig.in.tum.de/MSL-2003/
(2003)

2. 1394 Trade Association: IIDC 1394-based Digital Camera Specification Version 1.30.
1394 Trade Association, Regency Plaza Suite 350, 2350 Mission College Blvd., Santa
Clara, California 95054, USA (2000) technical report id.: TA Document 1999023.

3. Poynton, C.A.: A technical introduction to digital video. Wiley (1996)
4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley Publishing Company, Inc., Reading, MA (1989)



Combining Exploration and Ad-Hoc Networking
in RoboCup Rescue

Martijn N. Rooker and Andreas Birk

School of Engineering and Science, International University Bremen,
Campus Ring 1, D-28759 Bremen, Germany

m.rooker@iu-bremen.de

Abstract. In challenging environments where the risk of loss of a robot
is high, robot teams are a natural choice. In many applications like for
example rescue missions there are two crucial tasks for the robots. First,
they have to efficiently and exhaustively explore the environment. Sec-
ond, they must keep up a network connection to the base-station to
transmit data to ensure timely arrival and secure storage of vital infor-
mation. When using wireless media, it is necessary to use robots from the
team as relay stations for this purpose. This paper deals with the prob-
lem to combine an efficient exploration of the environment with suited
motions of the robots to keep data transmissions stable.

1 Introduction

At the International University Bremen (IUB), a team is working since 2001
in the domain of rescue robots [1, 2, 3](Figure1). Like in many other challenging
domains for service robots, robot teams can be of huge benefit. As in many other
applications, there is one basic chore that is of highest importance, namely to
ensure the coverage of the entire environment by the robots. This task, commonly
known as exploration, can obviously benefit from using multiple robots jointly
working in a team. As the problem of exploration is a common one, there is
already a significant amount of contributions using multiple robots as discussed
in detail later on in section 2.

Another particular challenge is to ensure the transmission of data to an opera-
tors station. This is especially difficult when wireless media is used. Furthermore,
it can not be assumed that the robots return to the spot where they are deployed,
in contrary, their total loss during a mission is a likely risk. Therefore, they have
to deliver all crucial information, like victims and hazards found or map-data[6],
ideally on-line to an operators station, which is at a secured position. For this
purpose, the robots either have to be in direct contact with the base-station or
to use other robots as relays, i.e., to incorporate ad-hoc networking.

In this paper an approach is introduced that makes use of the Frontier-Based
exploration algorithm [7, 8], which requires no explicit planning for the robots.
This reactive approach for exploration has the disadvantage that all robots travel
further and further into the unknown territory, hence loosing the contact to the
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Fig. 1. Two of the IUB rescue robots at the RoboCup 2003 competition

base-station. We extend the Frontier-Based exploration such that exploration
takes place while the robots maintain a distributed network structure which
keeps them in contact with the base-station. This communicative exploration
algorithm is based on a utility function which weights the benefits of exploring
unknown territory versus the goal of keeping communication intact. In our exper-
iments, we show that the randomized algorithm yields results that are very close
to the theoretical upper bound of coverage while maintaining communication.

The rest of this paper is structured as follows. Section 2 discusses related
work. In section 3, the communicative exploration algorithm is introduced. Ex-
periments and results are presented in section 4. Section 5 concludes the paper.

2 Related Work

Different approaches have been introduced in the field of exploration. Zelinsky
[11] presents an algorithm where a quadtree data structure is used to model the
environment and the distance transform methodology is used to calculate paths
for the robots to execute. Makarenko et.al.[10] present an exploration strategy
which balances coverage, accuracy and the speed of exploration. They also intro-
duce a metric called localizability, that allows comparison of localization quality
at different locations.
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Another approach that is also used in this article is the Frontier-Based Ex-
ploration approach defined by Yamauchi [7, 8]. In this approach, a frontier is
defined as regions on the boundary between open space and unexplored space.
A robot moves to the nearest frontier, which is the nearest unknown area. By
moving to the frontier, the robot explores new parts of the environment. This
new explored region is added to the map that is created during the exploration.
In the multi-robot approach different robots are moving over the frontier. Bur-
gard et.al.[9] define a similar approach, but the difference is that the robots in
their approach coordinate their behaviors, so that multiple robots will not move
to the same position.

The other aspect that is tackled in this paper is Ad-Hoc Networking [12].
Ad-hoc networks are defined by Perkins as wireless, mobile networks that can
be set up anywhere and anytime. The concept of ad-hoc networks is applied
in different approaches in exploration. Howard [13] implements a deployment
algorithm whereby the robots are placed over the environment in a way that
they are able to explore the whole environment, but through the network are still
able to communicate with each other. Nguyen [14] describes a system exploring
a complex environment. The system consist out of four Pioneer robots that are
used as autonomous mobile relays, to maintain communication between a lead
robot and a remote operator. Some other examples where ad-hoc networking is
applied are habitat monitoring [15], medical sciences [16] and childcare [17].

3 Adding Communication to Exploration

The communicative exploration algorithm builds upon Frontier-Based approach
on the exploration side. The crucial aspect that has been added is the main-
tenance of communication. Before our new algorithm is introduced, the basic
Frontier-Based approach is shortly re-visited in the next subsection.

3.1 Frontier-Based Exploration and Its Extension

Frontier-Based Exploration is introduced by Yamauchi in [7, 8]. He defines fron-
tiers as regions on the boundary between explored and unexplored space. The
idea behind this exploration approach is motivated as follows: To gain as much
new information about the world, move to the boundary between open space and
uncharted territory. When a robot moves to a frontier, it can look into the un-
explored environment. By exploring the new environment, this data is added to
a map that is maintained by the robot. Every time a robot explored new parts
of the environment, the mapped region is expanded and the frontier moves over
the environment. Through the moving of the frontiers, the robot increases its
knowledge of the environment. The explored environment is represented by evi-
dence grids [18]. On this grid a graph is created that is used to plan a path over
the grid toward the nearest frontier.

Like the basic Frontier-based approach, the communicative exploration algo-
rithm also avoids complex planning. We are interested in a reactive approach
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Fig. 2. The 9 new possible new positions of a robot

of exploration. To supplement the basic approach, a value is assigned to every
movement of a robot, the so-called utility. The utility allows to penalize the loss
of communication while rewarding the exploration of unknown space. Based on
the utility, communicative exploration becomes an optimization problem.

3.2 The Utility of Robot Movements in Communicative
Exploration

Communicative exploration proceeds in time-steps t. At every time-step t each
robot has a position in the environment. The position of robot i at time t is
denoted by P [i](t) = (xi(t), yi(t)). The set of positions of all n robots in the
environment at time t is called a configuration, denoted as cfg(t):

cfg(t) = {(x1(t), y1(t)), (x2(t), y2(t)), · · · , (xn(t), yn(t))}

To calculate the Utility of a new configuration, the following algorithm is
applied. For every robot a new configuration is calculated. In total there are
9 different possibilities for a new configuration for 1 robot, including that the
robot stays at its position, as can be seen in figure 2.

So for n robots, there are 9n different configurations possible. Formally, a
configuration change at time t is defined as follows:

cfg c(t) = {m1(t), m2(t), · · · , mn(t)}

with mi(t) being the movement of robot i at time t, defined as:

mi(t) ∈ M = {N, NE, E, SE, S, SW, W, NW, R}

As mentioned, there are 9n different configurations for n robots. Some of these
configurations are not possible, like for example when multiple robots move to
the same position or if a robot moves into an obstacle.
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The exponential number of possible new configurations makes it impossible
to check all of them. Hence, we generate a limited number of random new con-
figurations per time-step and choose the one with the best utility. So, instead
of considering all the 9n new configuration, only k configurations are consid-
ered, with k << 9n. In the experiments presented here k is set to 50, giving an
extremely fast evaluation of the possible configurations.

This creates a set S(t) of k configuration changes:

S(t) = {cfg c1(t), cfg c2(t), · · · , cfg ck(t)}
wherein cfg ci(t) is a configuration change i for a set of robots. A configuration
change causes a robot to move to a new position P ′[i](t).

For the calculation of the utility of a configuration change, the different op-
tions where a robot can move to have to be defined. When a robot wants to
move to a new position, the following situations can occur:

– Impossible position: When one of the following situations occurs:
• Two or more robots want to move to the same position.
• A robot wants to move to a position that is occupied with an obstacle.

These locations should be avoided, therefor a negative, repulsive value is
assigned to those locations.

– Loss of communication: A robot wants to move to a location where there
is no communication possible with the base-station, directly or indirectly.
The process of checking if a robot is still in communication with the base-
station is described in section 3.3. Also here it is the case that these locations
need to be avoided, so once again a negative, repulsive value is assigned.

– Frontier cell: The location where the robot wants to move to is a location
on the frontier. The frontier cells are the locations in the world that need to
be explored, so a positive, attractive value is assigned to those locations.

– Other: The last option where a robot can move to is a location on the field
that has already been explored. It could also mean that a robot maintains
its position. This option is not optimal, but definitely not wrong as it avoids
obstacles, so therefor a “neutral” value is assigned to these locations.

The following return values are defined for the different situation:

U(P ′[i](t)) =

⎧
⎪⎪⎨

⎪⎪⎩

−100 if infeasible
−10 if loss of communication
1 if frontier cell
0 other

with 1 ≤ i ≤ n.
The whole Utility of a new configuration is then calculated as follow:

U(cfg ci(t)) =
n∑

i=1

U(P ′[i](t))

The configuration change with the highest utility value is then selected. After
all the robots have arrived at their new position, the whole process is repeated.
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(a) Direct communication. (b) Robot 1 communicates indirect
with robot 3 via robot 2 and vice
versa.

Fig. 3. Direct and indirect communication between robots

3.3 Detecting Communication

To properly determine the utility of a configuration, it is necessary that the
robots check whether communication is maintained or not. A robot is able to
directly communicate with another robot if it is within the communication range
of that other robot. If a robot i is not within communication range of another
robot j, the possibility still exist that robot i is able to communicate with robot
j. This is illustrated in figure 3.

As the robots are moving around in the environment, connections between
robots are broken and created. At a specific configuration cfgi a certain amount
of connections are possible. Through the locations of the robots and the con-
nections between the robots a connection graph CG = (V, E) is created, where
V = #robots + #base − station and E the set of communication connections
between robots and base-station. If there is a path between robot i and robot
j, than those robots can communicate with each other, i.e., we have a properly
connected network.

If two robots are (indirectly) connected to each other, than there has to be
a path between the two nodes in the graph. In our situation we are not only
interested in connections between robots, but in connections between all the
robots and the base-station. As the goal is to have to robots always in connection
with the base-station, there always has to be a path between every robot and
the base-station.

Of course, over a graph, different paths are possible. As it is ideal that the data
is delivered as fast as possible to the base-station, the shortest communication
path between a robot and the base-station has to be found. Shortest path in this
situation is defined as the communication path with as few hops as possible.
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This problem is now reduced to the well-known all-pairs shortest path prob-
lem [19]. To solve the problem, the Floyd-Warshall Algorithm [20] is used. This
algorithm returns two matrices, one containing the amount of hops on a path
and the other one containing the parent of a node. If the amount of hops between
node i and node j is negative and node i does not have a parent, there is no path
between these two nodes and thus there is no communication possible between
these two nodes.

4 Experiments and Results

The communicative exploration algorithm is tested in simulation. The robots
start at a fixed position near the base-station. From here the robots are cal-
culating new configurations and slowly start exploring the environment while
maintaining communication with the base-station. A snapshot of the start situ-
ation can be seen in figure 4. The red circles in the bottom center of the figure are
the robots. They are starting at the base-station. The grey squares are obstacles.

As can be seen in figure 5, the robots spread out nicely, while exploring the
environment and maintaining communication with the base-station.

From figure 5 it can be seen that the frontier between explored and unexplored
space is constantly connected. Only if an obstacle intersects the frontier it is not
connected at that point. Through this connected frontier, a continuous explored
space is created.

For the experiments the following measurements are taken. As one of the goals
of the experiments is to remain communication with the base-station, there is
a hard limit to the maximum explored space. The robots can move furthest
away from the base-station by forming a chain over which the communication
is relayed.

For n robots an upper limit mn for the space they can explore with working
communication can hence be calculated as follows:

Fig. 4. The start positions of the robots at the center bottom. The five grey areas are
obstacles
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(a) (b)

(c) (d)

Fig. 5. Exploration of the environment by 4 robots

mn = (π(r · n)2)/2

with r being the communication range of a robot.
This upper limit can be directly expressed in grid-cells:

mgn = mn/S(gc)

with mgn being the maximum amount of grid-cells that can be explored with n
robots and S(gc) being the surface of a grid-cell.

This upper limit is roughly speaking the area of a half-cycle around the base-
station with a radius of r ·n, i.e., the radius is achieved by chaining the robots at
the limit of their communication ranges together. Note that this is an upper limit
as there are several reasons why a smaller area is likely to be the real limit for
the explorable area. Obstacles for example can easily limit the maximum range.
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(a) 1 robot (b) 2 robots

(c) 3 robots (d) 4 robots

Fig. 6. Area coverage. With 1 and 2 robots the whole maximum possible area is covered.
With more robots it takes longer before the maximum possible area is covered

Based on this upper limit, the percentage of explored space while maintaining
communication can be calculated in experiments (figure 6). From the graphs it
can be seen that in the case of 1 and 2 robots, almost constantly 100% of the
upper limit is explored in all the runs. In the case of 3 or more robots, it appears
that not the whole upper limit is achieved. A reason for this is the influence of the
obstacles. Note that to make a guaranteed ”optimal” exploration, i.e., to cover
the largest possible area without communication loss, a proper motion-planning
for the aggregate of all n robots would have to be done in every step, which is for
complexity reasons infeasible. Our solution might ”waste” a few cells that might
have been reachable but that are not explored in the end. But this solution is
highly efficient and yields large and continuous explored areas.
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5 Conclusions

We presented the communicative exploration algorithm. It is an extension of the
Frontier-Based approach for exploration [7][8]. Communicative exploration deals
with the problem that in many real world applications, the robots have to be
a part of a wireless network. In the original algorithm, all robots operate at
the borderline to the unexplored space. They hence move further and further
away from the point where they were deployed. But this point of deployment is
typically an operator’s station to which the robots should transmit their data.
As they move away, all connections to the base-station get lost. Our extension of
the algorithm ensures that each robot explored parts of the environment that are
within the range of the robot’s communication cell. Therefore, the transmission
of data from all robots to the base-station can constantly be maintained.
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13. Andrew Howard, Maja J. Matarić and Gaurav S. Sukhatme. An Incremental Self-

Deployment Algorithm for Mobile Sensor Networks. In Autonomous Robots, special
issue on Intelligent Embedded System, G. Sukhatme, ed., 113-126, 2002

14. H. H. Nguyen, H. R. Everett, N. Manouk and A. Verma. Autonomous Mobile Com-
munication Relays. In SPIE Proc. 4715: Unmanned Ground Vehicle Technology
IV, Orlando, FL, April 1-5, 2002.

15. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton and J. Zhao. Habitat monitor-
ing: Application driver for wireless communications technology. In Proceedings of
the 2001 ACM SIGCOMM Workshop on Data Communications in Latin America
and the Caribbean, April 2001, 2001.

16. Loren Schwiebert, Sandeep K. S. Gupta and Jennifer Weinmann. Research chal-
lenges in wireless networks of biomedical sensors. In Mobile Computing and Net-
working, pages 151-165, 2001.

17. Mani B. Srivastava, Richard R. Muntz and Miodrag Potkonjak. Smart kinder-
garten: sensor-based wireless networks for smart development problem-solving en-
vironments. In Mobile Computing and Networking, pages 132-138, 2001.

18. H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Pro-
ceedings of the 1985 IEEE International Conference on Robotics and Automation,
(St. Louis, MO), pages 116-121, 1985.

19. http://www.nist.gov/dads/HTML/allpairsshrt.html
20. http://www.nist.gov/dads/HTML/floydWarshall.html



Robust Multi-robot Object Localization
Using Fuzzy Logic

Juan Pedro Cánovas1, Kevin LeBlanc2, and Alessandro Saffiotti2

1 Dept. of Information and Comm. Eng.,
University of Murcia, 30100 Murcia, Spain

juanpe@dif.um.es
2 AASS Mobile Robotics Lab, Dpt. Technology,
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Abstract. Cooperative localization of objects is an important challenge
in multi-robot systems. We propose a new approach to this problem
where we see each robot as an expert which shares unreliable informa-
tion about object locations. The information provided by different robots
is then combined using fuzzy logic techniques, in order to reach a consen-
sus between the robots. This contrasts with most current probabilistic
techniques, which average information from different robots in order to
obtain a tradeoff, and can thus incur well-known problems when infor-
mation is unreliable. In addition, our approach does not assume that the
robots have accurate self-localization. Instead, uncertainty in the pose of
the sensing robot is propagated to object position estimates. We present
experimental results obtained on a team of Sony AIBO robots, where we
share information about the location of the ball in the RoboCup domain.

1 Introduction

Cooperating robots can benefit in a number of ways from the exchange of infor-
mation about perceived objects. For example, a robot which does not directly
see an object can still get an estimate of its position. Also, an individual robot’s
estimate of an object position can be improved through information sharing.
This occurs when some robots have more accurate and/or more reliable po-
sition estimates for that object, which can happen due a number of things.
For example, a robot may be better localized, have a better view of the ob-
ject, or have more effective sensors. In many situations, it is even possible for
a group of robots, all having relatively poor estimates of an object’s position,
to obtain more accurate and reliable estimates through information sharing.
However this requires that the information sharing be performed in an effec-
tive way.

The problem of cooperative object localization is the problem of fusing infor-
mation from different sources in a way which produces agreement about object
positions; the agreed upon positions should also be as close as possible to the
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real object positions. However, information fusion can result in degradation of
information if it is not done carefully. For instance, if we combine a correct ob-
servation from a robot A with an incorrect observation from a robot B by simple
averaging (or even weighted averaging), the result will be worse than what A
would have established alone. This averaging problem occurs in many existing
approaches (e.g. [11], [14], [17], [18]), as is mentioned in the next section.

Another limitation of many current approaches (e.g. [6], [18]) is that they
assume that a robot has very little uncertainty about its own position. In reality,
however, this assumption is often not valid. Ignoring self-localization uncertainty
can severely restrict the applicability of these methods. For example, in the
mid-sized and four-legged leagues of RoboCup [8], robots often have poor self-
localization, due to the fact that the domain is highly dynamic, and also because
of frequent undetected collisions.

In this paper, we propose a new approach to the cooperative localization
problem, based on fuzzy logic. One distinctive point of our approach is that we
see each robot as an expert, which provides unreliable information about object
locations. We use fuzzy logic to fuse information provided by different sources
in order to reach a consensus about object positions. This contrasts with many
other methods, which yield a compromise between various data sources.

Moreover our method carefully takes into account different facets of uncer-
tainty, including unreliability in perceptual information and uncertainty in self-
localization. An important contribution of our method is that the uncertainty
in a robot’s own position is consistently propagated to its object position esti-
mates. One of the obvious advantages of doing this is that high self localization
accuracy is not required in order to get position estimates which reflect our
knowledge. Our method provides estimates which are consistent with our ob-
servations, while taking into account the uncertainty present in both perception
and in self-localization.

In the rest of this paper, we first describe some alternate approaches from the
literature; then we describe our technique and discuss how we have implemented
it on a team of Sony AIBO robots [5]; finally, we present experimental results
based on the RoboCup domain (four-legged league).

2 Related Work

There are many existing approaches to cooperative object localization. One sim-
ple approach is to use a switching strategy. For example, Roth et al [13] use such
a strategy for locating the ball in the four-legged league of RoboCup. In their
implementation each robot maintains a local world model and a shared world
model. A robot which has not seen the ball in some time selects the most probable
location estimate from those available in the shared world model. Unfortunately
it is fairly easy to select the wrong estimate, and even if the right estimate is
selected, the accuracy is no greater than that achieved by a single robot.

Several approaches fuse information from multiple sources using variations on
Kalman filtering techniques (e.g. [11], [14], [17]). Alternatively, Stroupe et al [18]
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represent observations as two-dimensional Gaussian distributions, and observa-
tions from different robots are merged by taking the average of the Gaussians.
In case of disagreement, the merged position estimate will typically be weighted
more heavily toward what the majority of robots believe. However, both these
methods fuse observations using weighted averages of some sort, and fail to pro-
vide a robust solution in the presence of false positives and outliers. Observations
which are incorrect, due to errors in perception or in self-localization, can make
the fused estimate worse than that of some of the individual robots. In general,
averaging produces a compromise between estimates. The method proposed in
this paper, by contrast, seeks a consensus between them.

These methods have been improved upon through the use of gating strate-
gies, which discard observations which are deemed invalid. Observations can be
deemed invalid if, for example, they are very different from current position es-
timates. One could also discard observations which do not correspond to what
the majority of robots believe. Marcelino et al [12] compare the method used
by Stroupe et al [18] with a fusion algorithm described in [7], which uses a gat-
ing strategy to discard observations thought to be inconsistent with previous
sensor readings. They show that the gating strategy improved performance and
robustness. However simple gating strategies are often not enough. When a tar-
get object is unobserved for a certain time, or when a target object moves very
rapidly, correct observations could be consistently disregarded since they may
no longer correspond with the current belief about the state of the world. Typi-
cally, the confidence in the current belief should eventually decrease below some
threshold, at which point valid observations would once again be accepted.

A more robust way to deal with outliers and false positives is to implement
a voting scheme, which encourages belief in observations which are consistent
with the majority opinion. Markov localization (e.g. [9]), which is widely used
for both individual and cooperative object (and self) localization, implements
such a voting scheme by maintaining a discrete, multi-modal probability distri-
bution for position estimates. In the individual robot case, it encourages belief in
positions which are consistent with previous and/or current sensor observations.
The cooperative case extends this by also encouraging belief in positions which
are consistent with information received from other robots. Markov localization
is quite robust, though in general its accuracy is less than that of other common
methods (e.g. Kalman filtering).

In [6] and [10], a hybrid method called Markov-Kalman localization (ML-
EKF) is described. This method uses a grid-based version of Markov localization
as a robust, low-resolution plausibility filter. It then uses an extended Kalman
filter to compute precise object positions based on the observations which were
deemed valid by the Markov process. This approach inherits the robustness
of Markov localization and the precision of Kalman filtering. It provides an
informed way of deciding which observations should be discarded, and yields
increased robustness with respect to more arbitrary gating strategies. However
it is still possible for false positives or outliers to affect the result, depending on
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how strict one is in tuning the plausibility filter. Moreover, this method assumes
that a robot has very little uncertainty about its own position.

The method we propose in this paper can also be seen as a sort of voting
scheme. However, there are two main differences with respect to other voting ap-
proaches. First, votes contain the full uncertainty in the agent’s self-localization;
second, this uncertainty can be multi-modal. One of the advantages of this care-
ful treatment of uncetainty is that high self-localization accuracy is not required
by our method.

A number of other methods for object localization using a single robot have
been described in the literature, such as particle filters and multiple hypothesis
tracking. However the cooperative aspects of these methods have not been thor-
oughly investigated. In [16], Schmitt et al describe an approach to cooperative
perception using multiple hypothesis tracking; but careful tuning of the pruning
parameters is required for this method to be effective.

3 Representing Location Information

3.1 Fuzzy Location Information

Location information may be affected by different types of uncertainty. Consider
a robot that needs to grasp a given object. This task requires that the position
of the object be known with a high degree of precision, as in the statement (a)
“The object is at position x = 81”. The statement (b) “The object is near the
center of the table” is vague, since it does not give a crisp position. The statement
(c) “The object is somewhere on the table” is imprecise, since it does not give
a point position. The statement (d) “The object is either at position x = 81
or at position x = 162” is ambiguous, since it gives multiple options. And the
statement (e) “The object was seen yesterday at position x = 81” is unreliable, as
the object may no longer be there. An ideal uncertainty representation formalism
should be able to represent all of these statements. Perhaps more importantly,
it should account for the differences between these statements, by representing
information at the level of detail at which it is available.

Fuzzy logic techniques are attractive in this respect [15]. We can represent
information about the location of an object by a fuzzy subset μ of the set X of all
possible positions [20, 21]. For any x ∈ X, we read the value of μ(x) as the degree
of possibility that the object is located at x given the available information. Fig. 1
shows some examples, taken in one dimension for graphical clarity. Cases (a–e),
correspond to the five items of information mentioned previously. Case (e) is
especially interesting: in order to account for unreliability, we include in the
distribution a uniform “bias” to indicate the possibility that the object could
also be located somewhere else. Total ignorance, in particular, can be represented
by the fuzzy set μ(x) = 1 for all x ∈ X; that is, all locations are possible. Finally,
case (f) shows a combination of the previous types of uncertainty.

Fuzzy positional information can be represented in a discretized format in a
position grid: a tessellation of the space in which each cell is associated with a
number in the range [0, 1], representing the degree of possibility that the object
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Fig. 1. Different types of fuzzy location information: (a) crisp, (b) vague, (c) imprecise,
(d) ambiguous, (e) unreliable, (f) mixed

is in that cell. A common choice is to use a 2-dimensional grid of square cells
with uniform size. A 3-D grid can be used if the orientation of the object is also
relevant. In the approach proposed in this paper we use 2-D fuzzy position grids
to represent our belief about the positions of objects, and a 3-D grid to represent
our belief about the robot’s own pose in the environment.

3.2 Fuzzy Information Fusion

An important component of a representation for uncertain information is how
information coming from different sources can be fused together. Fusion can be
used to combine the information provided by multiple robots, or by multiple
sensors in the same robot.

If location information is represented by fuzzy sets, fusion can be performed
by fuzzy intersection between these sets [1]. Let μ1 and μ2 be two fuzzy sets
representing the information about the position of a given object, provided by
sources 1 and 2, respectively. Then their combined information is given by the
fuzzy set μ12 = μ1 ∩ μ2 defined by

μ12(x) = μ1(x) ⊗ μ2(x), (1)

where ⊗ is a t-norm.1 Fig. 2 (a) illustrates fuzzy fusion. The result of the fusion
of μ1 and μ2 is indicated by the shadowed area.

There are two facts about fuzzy fusion that should be noticed. First, only
those locations which are regarded as possible by both sources are retained in
the result of the fusion. Intuitively, the resulting fuzzy set μ12 represents the
consensus between the two sources of information. This contrasts with standard

1 T-norms are the general operators used to perform intersection of fuzzy sets [19].
The most common examples of t-norms are minimum, product, and the �Lukasiewitz
operator max(0, a + b − 1). In this work, we use the product t-norm.
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Fig. 3. Discounting unreliable information in fuzzy fusion. Information μ1 is unreliable,
as indicated by the high bias, and therefore only has a small impact on the result

probabilistic techniques, in which information fusion is typically performed by
some sort of weighted average, representing a tradeoff between sources. Fig. 2 (b)
shows how two pieces of information similar to the ones in Fig. 2 (a) might
be fused in a probabilistic setting, by combining Gaussians. Notice that with
fuzzy fusion the peak of the resulting distribution μ12 coincides with the peak
of μ2, since this is compatible with the peak of μ1; it lies in between those
peaks when using probabilistic fusion. As we mentioned earlier, averaging is
often not the best solution when combining location information from multi-
ple robots.

The second fact to note is that fuzzy fusion automatically discounts unreliable
information. Consider the next example shown in Fig. 3. The information repre-
sented by μ1 includes a high bias (0.8) to indicate that it is fairly unreliable, while
the information represented by μ2 only has a small bias (0.1). Correspondingly,
the result of the fusion mostly reflects μ2 and it is only marginally influenced
by μ1. In practice, this means that fuzzy fusion allows us to discard unreliable
information, provided that this unreliability is correctly represented.

We sometimes need to extract a point estimate from the location information
represented by a fuzzy set μ, e.g., to be used in other navigation modules. A
common way to do this is by computing the center of gravity (CoG) of μ:

x̂ =

∫
x∈X

xμ(x) dx∫
x∈X

μ(x) dx
. (2)
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Fig. 4. Schema of our cooperative localization technique

4 Sharing Location Information

Fuzzy location information can be shared in order to get a common view of the
environment. The key point here is to see each robot as a source of unreliable
information. This information is represented and fused using the techniques de-
scribed in the previous section. The diagram in Fig. 4 summarizes our fusion
schema in the case of two robots. The extension to n robots is straightforward.

We use three fuzzy position grids in each robot. The “self grid” contains
the information μr about the robot’s self location. The “object grid” contains
the information μo about the global location of the target object, derived from
perceptual observations. The “fusion grid” contains the result of the fusion of lo-
cation information computed by different robots. This grid is kept separate from
the object grid in order to avoid circular dependencies. A final defuzzification
step obtains a point estimate, if needed, using formula (2). Temporal aspects
aside, the robots should end up with identical object position estimates.

4.1 From the Self Grid to the Object Grid

In order to simplify the exchange of location information, we assume that all
robots use a common global reference system Fg. Each robot r, however, acquires
perceptual data from its own point of view, and it estimates the positions of
objects in its local reference frame Fr. In order to represent this information
in the global frame Fg, we need to apply a coordinate transformation function
T g

r : Fr → Fg.
Assume that the robot has observed an object at polar coordinates (ρ, φ) with

respect to its own reference frame Fr — see Fig. 5. If we knew the robot’s pose
(xr, yr, θr) in the global frame Fg, then the computation of the global coordinates
(xo, yo) of the object would be straightforward. In our case, however, the robot’s
pose is not known with certainty, but is represented by a fuzzy set μr in Fg.
Accordingly, the object’s global position is given by a fuzzy set μo(p) defined
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Fig. 5. Transforming local (observed) coordinates into global ones in the crisp case

as follows: for any p = (x, y), the degree of possibility μo(p) that the object is
located at the global position p is given by

μo(p) = sup{μr(q, θ) | d(pq) = ρ and � (pq) = φ+θ}, (3)

where q = (x′, y′) is any 2-D position, and d(pq) and � (pq) respectively denote
the length and the orientation of the segment pq. Intuitively, this says that the
object can be at location p as long as there is some possible pose (q, θ) for the
robot such that, if observed from that pose, the location p would appear at
distance ρ and angle φ.

It should be emphasized that the above transformation preserves the full self-
localization uncertainty contained in the fuzzy set μr. In particular, if the robot
is highly uncertain about its own position, then many poses (q, θ) will have a
high value in the fuzzy set μr. Correspondingly, there will also be many possible
positions for the object, which will then have a high value in μo. In this respect,
our approach is different from most existing approaches, in which the global po-
sition of the object is computed by assuming a point estimate for the location of
the robot, and uncertainty is added after the transformation. These approaches
do not correctly propagate the uncertainty in the robot’s pose, since they do
not take into account the non-linearities in the local-to-global coordinate trans-
formation. Moreover, they cannot deal with a multi-modal distribution in the
robot’s self-localization. Our transformation (3) addresses both of these issues.

In a discretized position grid, the transformation (3) can be computed by the
following algorithm.

foreach cell p
μo(p) := 1 - reliability(observation)
foreach cell q such that dist(p, q) = ρ

μo(p) := max{μo(p), μr(q, (� (p, q) − φ))}
end

(4)

In general, the μo distribution computed through this algorithm contains a
“bias”; that is, its minimum value β is strictly positive. This indicates some
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unreliability in the position of the observed object, as discussed in section 3.1,
and illustrated in Fig. 1 (c). This unreliability can originate from two sources: (i)
unreliability in perceptual information, represented by ’reliability(observation)’
in the algorithm; and (ii) unreliability in the self-localization of the robot, rep-
resented by the bias in μr which is propagated to μo. This bias is instrumental
in discounting unreliable information in our fuzzy fusion scheme.

The behavior of our transformation is illustrated in Fig. 6. The picture shows
the individual self and object grids for two robots during information sharing, as
well as the result of the fusion. Darker cells indicate higher degrees of possibility.
The triangles represent the robot’s estimates of their own positions. The circle
in the object and fusion grids indicates the real position of the object. In this
example, the object is a ball in a soccer field in the RoboCup domain. Both
robots can see the ball.

The self-localization grid of Robot 1 shows that this robot has a fairly good
estimate of its own position. The corresponding object grid indicates a larger
uncertainty in the position of the ball. The reason for this is that the uncertainty
in the ball location is affected by the uncertainty both in the (x, y) position of
the robot and in its orientation (not shown in the self-grid for graphical clarity).
The effect of the non-linearity in the coordinate transformation (3) is clearly
visible. Robot 2 has just observed a landmark after a long time during which
no observation was made, hence the distribution μr is concentrated around a
circle at a given distance from the landmark. The low quality of the current
self-location estimate for Robot 2 is reflected in the high bias, which appears as
a uniform gray background in the grid. The corresponding object grid provides
a very rough estimate of the location of the ball.

4.2 From the Object Grids to the Fusion Grid

Fusion of information from different robots is performed by fuzzy intersection of
their distributions according to equation (1). We use a non-idempotent t-norm
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operator ⊗, like the product operator, in order to reinforce object positions which
are possible according to all robots. Recall that the bias acts as a reliability filter
in fuzzy fusion: information with high bias has a small impact on the result of the
fusion. Thus information coming from robots which have poor self-localization
or poor perceptual information (and know it) is automatically discounted. In
particular, if a robot has no current perceptual information about an object, all
the cells in the corresponding object grid will have values close to 1; these values
will not (significantly) affect the result of the fusion.

The last grids in Fig. 6 show the result of the fusion. Fuzzy intersection
has produced a distribution that reflects the agreement between the two robots
about the position of the object, and it is significantly better than the individual
distributions. The result has been mostly influenced by the information provided
by Robot 1 since this has a lower bias, reflecting higher reliability.

The above schema assumes that the full object location grids are exchanged
between robots. This may be an expensive operation in terms of time and com-
munication bandwidth. As reported below, we have used some devices in our
implementation in order to reduce complexity. With these devices, we were able
to run information sharing among four Sony AIBO robots in real time, using the
limited on-board computational resources of this platform, and using the limited
bandwidth allowed by the rules of RoboCup.

5 Experiments

We have tested our method in the RoboCup domain using a team of Sony AIBO
legged robots. This is a challenging, highly dynamic domain, characterized by:
(i) imprecise sensor information, since the main sensor available to each robot is
a color camera with limited resolution and a limited field of view; and (ii) high
localization uncertainty, since legged locomotion and poor perception make the
self-localization problem difficult.

5.1 Implementation

We have implemented the schema described in the previous section using, in
each robot, a 3-D fuzzy position grid to represent self-localization, and a 2-D
position grid to represent the ball position.2

The computation of the global ball position from observations is done ac-
cording to an optimized version of algorithm (4). We exploit the fact that for
every cell p in the ball grid we only need to look at the cells q in the self
grid at a distance ρ from p. This is equivalent to saying that we only need
to evaluate the cells in the circle with center p and radius ρ. To do so, we
use an adaptation of Bresenham’s algorithm for plotting 2D circles in a digital
grid [2].

2 The self-localization grid is actually implemented using a 2 1
2 -D grid to allow for

efficient real-time computation, as detailed in [3].
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Fig. 7. Four examples of cooperative object localization in the RoboCup domain. The
arrows show the individual position estimates produced by the two robots (est1, est2)
and the fused estimate. The four cases are described in the text

The other expensive element of our schema is the transmission of the ball
grids between robots. In order to preserve bandwidth, we convert each cell value
to one byte and treat the grid as a gray-scale image. We then compress the
grid using a simple run length encoding scheme. The ball grid is sent only
if it contains information which is newer or of better quality than the one
last sent.

5.2 Static Robots

A first set of experiments were performed to assess the quality of our fusion tech-
nique under static conditions. In these experiments, we used two robots standing
at fixed positions and we put the ball at various known locations in order to eval-
uate the accuracy of object localization. The robots were alternatively looking
at the landmarks in the field in order to self-localize, and at the ball in order to
assess its position.

Two sample cases taken from these experiments are shown in Fig. 7 (a,b).
The figure shows the fused object position grid resulting from the fusion of the
two individual object grids (not shown). The three small circles represent the
point estimates of the ball position according to each robot alone (marked ’est1’
and ’est2’) and as a result of the fusion (marked ’fused’).
Case 1 (Fig. 7 a). Both robots can see the ball, and have accurate self-localization.
Both the individual estimates and the fused estimate are very close to the real
position of the ball (see quantitative data below).
Case 2 (Fig. 7 b). Both robots can see the ball, but while robot 1 is well localized,
robot 2 is not. The result of the fusion in this case is almost identical to the
information provided by robot 1, while the information provided by robot 2 is
discounted since it is unreliable due to poor self-localization. This is similar to
the case illustrated in Fig. 6.
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5.3 Moving Robots

When robots move during a real game, self-localization may become very poor
due to several factors: legged locomotion is poorly modeled; the tilting and rolling
of the robot’s body introduces inaccuracies in perception; and the robots are busy
tracking the ball, and may note see the field landmarks very often. We performed
a second set of experiments in which we used two constantly moving robots, and
we placed the ball at various known positions. The following is a sample case
taken from these experiments.

Case 3 (Fig. 7 c). Both robots have rather poor self-localization. Because of this,
the estimates of the ball position are very inaccurate and quite different from
each other. When intersecting the corresponding fuzzy position grids, however,
we obtain a fairly accurate fused estimate of the ball position. Note that this
position does not lie between the two individual estimates, and hence could not
have been obtained by averaging (e.g. using a Kalman filter).

5.4 Blind Robot

In a last set of experiments we tested the ability of robots which do not see the
ball to use information provided by other robots. The following case illustrates
a typical situation taken from these experiments.

Case 4 (Fig. 7 d). The ball is behind robot 1, so only robot 2 can see it. In ad-
dition, the self-localization of both robots is rather poor. The fused information
is similar to that provided by robot 2 alone. While this information suffers from
poor self-localization, it is still made available to robot 1, who would otherwise
have no knowledge of the ball position.

5.5 Results

In each experiment we have measured five quantities: the error in the self-location
estimate for each robot, denoted by Δ1

self and Δ2
self ; the error in the ball position

estimate produced by each robot individually, denoted by Δ1
ball and Δ2

ball; and
the error in the ball position estimate obtained by our fusion technique, denoted
by Δfuzzy

ball . Errors were measured by comparing the center of gravity of the fuzzy
location sets with the ground truth. The results for the above four cases are
summarized in the following table. All errors are given in mm.3

Case Δ1
self Δ2

self Δ1
ball Δ2

ball Δfuzzy
ball

1 110 230 78 103 85
2 186 439 117 609 106
3 n/a n/a 940 502 180
4 312 566 n/a 842 862

3 When the robots are moving (case 3) a source of ground truth of the robot positions
was not available.
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These results show that the estimates obtained by our fusion approach are,
in practice, at least as good as the best individual estimate. When both robots
gave good estimates (case 1) the fused estimate was as good as these. When
one robot had a bad estimate due to localization errors (case 2), that robot’s
estimate was discounted in the fusion process, and the result was mostly in-
fluenced by the other robot’s estimate. When both robots suffered from large
localization errors (case 3), the fused estimate was at least as good as the in-
dividual estimates, and it was sometimes much better. When only one robot
could see the object (case 4) the fused estimate was similar to the one from
that robot.

The next table compares the error obtained by our fuzzy fusion technique
with the error obtained by taking a simple average or a weighted average of the
individual estimates (denoted by Δavg

ball and Δwavg
ball , respectively). The weights

in the latter case were given by the respective measure of reliability in self-
localization. The errors refer to Case 3, above. As it can be seen, fuzzy fusion
substantially outperformed averaging techniques in this situation.

Δ1
ball Δ2

ball Δavg
ball Δwavg

ball Δfuzzy
ball

940 502 339 354 180

6 Conclusions

Our technique for multi-robot cooperative object localization has a number of
advantages: it provides each robot with estimates which are, in practice, at least
as good as the best ones available to any individual robot; it can effectively
discount unreliable information; and there are no parameters to tune. The dis-
tinctive points of our approach are:

– The use of a sound technique to propagate the uncertainty in the self-
localization of each robot to the uncertainty in object locations, and

– The use of an agreement seeking (fuzzy) operator instead of an averag-
ing (e.g. probabilistic) operator to fuse the information provided by dif-
ferent robots.

We are currently using this technique in our RoboCup team [4]. Sharing
ball information greatly improves the performance of robots in this domain. All
robots can know the position of the ball if at least one member of the team sees
it. Moreover, the fact that all the robots in the team have the same information
about the ball position makes team coordination easier and more effective. The
experiments reported here show that our technique produces useful results, even
in the presence of high uncertainty. We are currently running a more systematic
experimental evaluation of our approach, which includes empirical comparisons
with other techniques.

Our future work is aimed at improving several aspects of our technique. First,
our current approach is relatively demanding in terms of computation and band-
width. Although we can run our algorithms in real time on the AIBO robots and
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using the limited bandwidth allowed by the RoboCup rules, it might be interest-
ing to devise approximations of our technique which reduce the computational
burden and/or the amount of information exchanged. Second, we would like to
extend our technique to include sharing of information about multiple objects
(e.g. opponent robots). Finally, we plan to investigate the extension of our ap-
proach to include cooperative self-localization, by merging the self-location grid
of each robot with position grids from observing robots.
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Abstract. Robot recognition is a very important point for further im-
provements in game-play in RoboCup middle size league. In this paper
we present a neural recognition method we developed to find robots us-
ing different visual information. Two algorithms are introduced to detect
possible robot areas in an image and a subsequent recognition method
with two combined multi-layer perceptrons is used to classify this areas
regarding different features. The presented results indicate a very good
overall performance of this approach.

1 Introduction

Due to the huge variety of robot shapes and designs in RoboCup middle size
league vision based robot detection is a challenging task. A robot recognition
method has to be very flexible to identify all the different robots but at the
same time highly specific, in order not to misclassify similar objects outside of
the playing field (e.g. black dressed children). Therefor many teams still recognize
robots in their sensor data only as obstacles for collision avoidance.

At the same time, a good performance in RoboCup depends more and more
on complex team behaviour. It is no longer sufficient, for a robot to localize itself
on the playing field and behave autistically without taking care of other team
robots. Is is rather necessary that the robots act as and interact within a team.
Furthermore, recognizing and tracking of opponent robots becomes desirable to
improve the team strategy.

Robot interaction is definitively only possible if the relative position of the
partner is known exactly. Otherwise e.g. a pass may fail and an opponent robot
can take possession of the ball. Regarding the bad experiences of past RoboCup
competitions, it is also risky, if the robots solely base their decision on the shared
and communicated absolute position on the field, because the communication
may fail or the robot doesn’t know its own position exactly (or even may be
totally wrong). With respect to this, it is quite clear, that it is necessary for a
robot to detect and recognize other players by himself without sharing position
information explicitly. Whereas this might be bypassed with better selflocaliza-
tion and a fault tolerant communication equipment, there are other tasks like for
example to dribble around opponent robots and to plan a path without colliding

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 262–273, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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with any obstacle along this path. There is no way to do so without any kind of
detection of opponent robots.

A visual robot detection method for the RoboCup environment has to weight
carefully two opposing goals. It has to be reliable and computationally inexpen-
sive at the same time. This requires on the one hand the use of good, significant
features, on the other hand the computational complexity that is needed to cal-
culate these features needs to be low. To detect the robots during a game, the
whole recognition task lasting from recording the image to the last decision step
mustn’t take any longer than a few milliseconds.

In contrast to the classical object recognition problems, there are only little
restrictions about the robots shape and spatial dimensions. Every team have
their own, sometimes very different robots, ranging from large and heavy almost
quadratic cubes to highly dynamic, small and fragile ones. So there is need for a
highly flexible, yet fast method to find in a first step the possible robot positions
within the image, because it is only computational maintainable to process a
subset of each image. Another important point is, that the method has to be
fast and easily adaptable to new and unknown robot shapes.

In this paper we present a robot detection system using neural networks
which extracts (possibly multiple) robots from a recorded image. To be able
to handle the special requirements of the robot recognition in RoboCup the
algorithm is split up into three independent subtasks. The first task is finding
the possible robot positions in the original image (i.e. defining one or multiple
region of interests (ROI)). The next step is to extract the features from these
ROIs for further classification. The final classification decision is then performed
on the basis of the extracted features by two neural networks. The first two
steps are always the same (means they are not adapted to specific robots or
environments). Only the neural network may be adapted on the current situation
(e.g. a completely other robot shape) if required. It may even be possible to do
this adaption within shortest time e.g. on-site before competitions.

The paper is organized as follows: Section 2 first explains the robot detection
task as a whole. After a small introduction into the RoboCup scenario in 2.1 the
following subsections 2.2–2.5 explain the individual steps in detail. Experiments
and results are presented in section 3. In section 4 this paper is discussed in the
context of related work. Finally section 5 draws conclusions.

2 Method

In this section the individual steps of the presented robot recognition method
are explained in more detail. The itemization of the different steps is as follows:
1. Detect the region of interest,
2. extract the features from the RIOs,
3. classification by two neural networks,
4. arbitration of the classification results.

Figure 1 illustrates the data flow up to the end result. The first step (1) shows
the detection of the regions of interest. We present two alternative methods
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Fig. 1. Data-flow from image to recognition result

for finding them, one time a color-edge based one, the other time a color-blob
based algorithm. Potential robot positions are searched here. For every possible
area a data vector is calculated which includes orientation histograms and other,
simpler features (2). These vectors are submitted to two artificial neural networks
(3) and the results are then passed over to a final arbitration instance (4).

These are clearly separated tasks, so if there are robots that are not recog-
nized well enough a customization of one of the networks (using the orientation
histogram) can be applied. The second network only uses features described and
predetermined by the RoboCup rules. As it is very important that the whole
task is fast enough to process the images in ”real time” (i.e. in an adequately
short time) and is flexible enough to be adaptable to different opponents from
game to game, in the following, each step is examined with respect to this.

2.1 The RoboCup Scenario

For those of the readers not familiar with the RoboCup scenario we first want to
give you a short introduction. In the RoboCup middle size league four robots
(three field player plus one goal keeper) playing soccer again four other ones.
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All relevant objects on the field are strictly color coded: the ball is orange, the
floor is green with white lines on it, the goals are yellow and blue, corner posts
are blue and yellow colored and robots are mostly black with magenta or cyan
color markers on it. During RoboCup championships there are also spectators
around the field that can be seen from the robots.

There are also constraints about the robots size. Robots are allowed to have a
maximal height of 80cm and a maximal width (resp. depth) of 50cm. Additional
shape constraints and technical and practical limitations further restrict the
possible robot appearances.

The game itself is highly dynamic. Some of the robots can drive up to 3
meters per second and accelerate the ball even higher. To play reasonably well
within this environment at least 10–15 frames must be processed per second.

2.2 Region of Interest Detection

The first step is to direct the robots attention to possible regions within the
recorded images. This is necessary because the feature calculation might be
computational expensive and most time, large areas of the taken pictures are
not of any interest. On the other hand, only a robot that stay within one of
detected regions of interest can therefor be recognized later because all subse-
quent processing steps rely on this decision. So this attention control has to be
as sound and complete as possible, to get all potential robot positions and not
having to examine too much uninteresting areas. Two different algorithms are
presented for this task each having its own quirks and peculiarities that score
differentially in terms of speed and selectivity, so depending on the available
computing power one of them may be used, or both may be mixed up in some
way. Both methods rely on assertions made on the robots color and shape (as
described in section 2.1) and therefore are rather specialized in the RoboCup
scenario.

Histogram Method. The first approach examines all black areas within the
picture. As it is currently save to assume, that each object on the playing field
resides on the floor, we can calculate the size of the found regions easily. Regard-
ing the already mention fact, that the robot size is restricted to a maximal size
and that for now all robots in RoboCup middle size league are at least 30cm
wide, all regions that do not achieve these restrictions are filtered out.

The blob detection is based on vertical and horizontal color histograms. To
get the right position and size of an black blob we split the image in deliberate
sub-images because one occurrence histogram of the black color for each direction
may be not well-defined. By subdivision of the original picture to several areas
it is easy to manage a detection of the interesting areas. Figure 2 shows the
problem with histograms for several large areas.

The used image splitting is shown in Figure 3. It is assumed that all robots
stand on the floor so the sub-images describe nearly the dimensions of the robots.
Finally the histograms of the sub-images are subsequently searched for potential
robots.
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Fig. 2. Problems with the position-detection of color-blobs

Fig. 3. Sub-images to check for black blobs

Color Edge Method. The second algorithm looks for black/green transitions
within the picture starting at the bottom of the image, that indicate edges be-
tween (black) robots and the (green) floor. After calculating the real width of
these lines and again filtering them with the minimal and maximal size con-
straints, the team color-makers above this lines are searched. This method al-
ready recognizes most robots reliably and selectively as long as they stand alone.
Also, due to the high selectivity this method is much less robust against partially
occlusions.

2.3 Feature Calculation

In the second step different features are calculated for the defined regions of
interest. The different features describe different attributes of the robot. As the
robot form cannot be predicted exactly, the features must be general enough to
be applicable for different robot shapes, on the other hand specific enough to
mask out uninteresting objects reliably. Beside that, the overall object detection
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is done with a combination of all used features as explained in section 2.4. The
features used are the following:

– Size of the black/green transition lines.
– Percentages of black (robot) and cyan/magenta (team-marker) color.
– Entropy.
– Orientation histograms.

The features are calculated from the original picture and from a segmented
image. The segmented image is created by assigning each real color to a color
class describing one of the above mentioned (section 2.1) object classes on the
playing field or to a catch-all class that is not mentioned further on (described
in detail in [1]). The first three feature types mostly check attributes asserted
by the rules (e.g. size, color, color-marker). However the orientation histograms
contain indirect details on the shape of the robot in a rather flexible way, but are
strongly dependent on the right selected region. If the window is too large, not
only the orientation of the robot but also of the background is calculated and
examined. Vice versa, if the window is too small, we may overlock important
parts of the robot.

The size of the black/green transition line shows the visible robot size near the
floor or the width of the ROI depending on the used attention control method.

Fig. 4. Nine orientation histograms for one robot
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The percentages of colors tells the team membership (team-maker) of a robot. A
more general feature is the entropy. It is a indicator for the disorder within the
area. A robot area is more disordered than a picture of the floor regarding the
gray-scale values. Also a picture with the whole field is more disordered than a
robot picture.

In Figure 4 the orientation histograms for one robot is shown. The histogram
is made by accumulate the gradients in x and y direction detected by two Sobel
filters on a grey image weighted by their quantity. The histogram is discretized
into (in our case) eight chunks. Note that the histograms is calculated indepen-
dently for nine sub-images, where the individual areas overlap of around 25%.
This way, the orientation histograms are more specific for different prevailing
edges within different parts of the image. In histogram number eight you can
see e.g. the dominating vertical edge within the sub-image represented by the
peak in orientation zero. In opposite, the horizontal bottom line of the robot
is represented by another peak with orientation 90 degree in histogram number
six. So the orientation histograms are a very flexible way to specify the robots
shape within the region of interest.

2.4 Neuronal Networks Classification

Two neural networks do the actual classification in the whole robot recognition
task. The networks are standard multi-layer perceptrons that are trained with
a backpropagation algorithm as proposed e.g. in [2]. Both networks contain one
hidden layer and a single output neuron. The first network gets only the data
from the orientation histogram, the second one is fed with the other features.
Both networks produce a probability value that describe its certainty of seeing
a robot regarding the given input vector. To gain continuous output signals,
sigmoidal functions are used in the output layer. The error function used for
the backpropagation algorithm is the sum over the squared differences between
the actual output value and the desired teaching pattern. Splitting the networks
proved to be necessary, as otherwise the pure amount of orientation values sup-
press and outperform the other, simpler measurements.

The results in section 3 are generated with a training set of different pictures
with and without robots. The resulting regions of interest are labeled manually
to produce the best possible performance.

2.5 Arbitration

The final classification decision is made from a combination of the outputs of
the two neural networks. Because every network only works on a subset of the
features, it is important to get an assessment as high as possible from each
individual network. Of course a positive feedback is easy, if both network deliver
an assessment of nearly 100%. But in real life, this is only rarely the case. So the
network outputs are rated that way, that only if both networks give a probability
value bigger than 75%, it is assumed that a robot is found within the region of
interest.
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3 Experimental Results

In this section the results of the individual steps of the robot recognition task
are described and discussed in detail. All tests are made using a training set of
about 88 images. The size of the images is always PAL/4, i.e. 384×288 pixels.
The images are taken with 3 different robots, containing 99 occurrences of them.
The robots are recorded from different perspectives and from different distances.
The teacher signal for training the neural network (i.e. the resulting bounding
box around the found robot) is added by hand to assure the best possible perfor-
mance. After the training phase the networks are able to calculate a classification
from ”robot” to ”no robot” in the sense of a probability measure between zero
and one.

The first two sections compare the different methods to calculate the regions
of interest for the robots within the recorded images. After that, the overall
performance is evaluated and finally the adaptation on new robots is discussed.

Because computational complexity and therefore the needed calculation time
is very important in such a dynamic environment like the RoboCup, we mea-
sured the time needed for the individual processing steps on a 1.6 GHz Pentium4
mobile processor. These values are certainly highly implementation dependent,
but may give an impression about how fast the whole object recognition task
can be done.

3.1 Blob-Detection Method

The blob-detection method uses a more universal approach and detects all black
areas within the picture. In our case, blob detection is simply performed by
computing occurrence histograms in both vertical and horizontal direction for the
color class of interest. Resulting blobs are then filtered with the size constraints
found in the RoboCup rules. No further restrictions are taken into account apart
from the size of the robots and the black color. As a result, this method detects
more potential robot positions which implies more work in the subsequent two
processing steps. On the other hand this method recognize all whole robots
and more of the covered ones. The lower left image in Figure 5 shows, that
overlapping objects have less influence on the detection performance than for
the other described method. In the upper left image a false prediction can be
seen (note the second white square in contrast to the upper right image).

This attention control method finds 93% (i.e. 92 of 99) of the robots within
the images correctly. Additional 57 positions are found that do not contain a
robot, but several other black objects. All robots which are not covered by other
objects are detected.The accuracy of the robot detection is sometimes better
compared to the other method as can be seen in the lower row of Figure 5.

On an average the method needs less then 1 ms to examine the whole picture
and to detect all the possible robot positions. As a drawback of its flexibility,
the following processing steps may take significantly more time than with the
below mentioned attention control process due to the many false positives.
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3.2 Black/Green Transition Detection Method

Using the attention control algorithm searching for black/green transitions within
the image, the robots have to be ”rule-conform” to be detected, otherwise they
aren’t selected or filtered out by the heuristics of this method. In the lower right
image in Figure 5 you can see the consequence, if the robots size is determined
by its bottom line only. If it is partially masked by another object, only parts of
the robot may be used as region of interest or even filtered out because of the
applied size assumptions.

This attention control method finds 92% of the robots within the images
correctly. This means that 91 of the 99 robots are recognized that way, that a
human expert marked them as sufficient. Additional 14 positions are found that
do not contain a robot, but several other black objects. Again all robots which
are not covered by other objects are detected. Missed robots are mostly far away
and are hard to recognize in the image even for the human expert.

The advantage of this method is its speed and the low amount of wrong false
classified areas, which again saves time in subsequent processing steps. On an
average the method needs clearly less then 0.5 ms to examine the whole picture
and to set the regions of interest.

3.3 Feature Calculation and Neural Processing

The time needed for the calculation of all features depends on the amount of
found regions, as well as the implementation of the filters themselves. The used

Fig. 5. Results using the different attention control algorithms
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algorithms need around 174–223 ms depending on the size of the found region.
Nevertheless the first attention control mechanism using the green/black transi-
tion needs significantly less overall processing time compared to the other, blob-
based method because of the less false positives found. A preliminary, highly op-
timized version for the calculation of the orientation histogram (which consumes
clearly the most time of the whole processing step) needs about 23 millisecond
if applied to the whole (384×288 pixels) image.

The artificial neural networks are trained with around 200 feature vectors,
about 40% of them contained data from real robots, the others are randomly
chosen regions from the image. The final result of the neural networks again
depend on the results delivered by the used attention control mechanism. Us-
ing the green/black transition method the overall correct robot recognition is
about 95.3% regarding the delivered ROIs. When using the other (blob-based)
algorithm, the result slightly decrease to 94.8%. This evaluation of the neural
networks again is quite fast and uses clearly less than a millisecond.

3.4 Adaption and Retraining

If playing against robots with a totally different shape than that, used in the
present training set, the network for the orientation histograms are likely to need
adaption to the new situation. For this new training of the network, images of
the new robots are needed. It is important to use images from different points
of view and different distances. As the used learning algorithm is a supervised
training method, the images have to be prepared so the precise robot positions
are known. Now the network can be retrained for the orientation histogram.
After a short time (around 1–2 minutes), the network is again ready to work.

Future work will focus on automating the training phase at the beginning of
a game. Before a game-start only robots should be on the playing field, so every
robot of the own team could take some pictures of the opponents which should
fulfill the desired variety in orientation angle and distance. Herewith a reliable
extraction should be possible and the learning of the new robot shape may be
fully autonomous.

4 Related Work

Object detection is a well known problem in current literature. There are many
approaches to find and classify objects within an image, e.g. from Kestler [3],
Simon [4] or Fay [5] to name just a few that are developed and investigated
within our department.

Within RoboCup the problems are rather less well defined then in their
scenarios and real-time performance is not an absolute prerequisite for them,
which may be the main reason that up to now there are only few workings are
published about more complex object detection methods in RoboCup. Most
of the participant within the RoboCup middle size league use a mostly color
based approach, like e.g. in [6][7][8]. One interesting exception is presented from
Zagal et. al. [9]. Although they still use color-blob information, they let the
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robot learn different parameters for the blob evaluation, like e.g. the width or
the height of the blob using genetic algorithms. Therewith they are able to even
train the robot to recognize multi-colored objects as used for the beacons on
both sides of the playing field (as used within the Sony legged league, which is
rather comparable to the middle size league).

One attempt to overcome the limitations of pure color based algorithms is
presented from Treptow et. al. [10] in which they trained an algorithm called
adaboost using small wavelet like feature detectors. They also attach importance
to let the method work reliably and with virtual real-time performance. Another
approach, that even don’t need a training phase at all is presented from Hanek
et. al. [11]. They use deformable models (snakes), which are fitted to known
objects within the images by an iterative refining process based on local image
statistics to find the ball.

5 Conclusions and Future Work

Considering all the mentioned boundary conditions, robot recognition in Robo-
Cup middle size league is a difficult task. We showed, that splitting the problem
into several subtasks can made the problem controllable. The combination of rel-
atively simple pre-processing steps in combination with a learned neural decision
entity results in a fast and high-quality robot recognition system.

We think, that the overall results can be even increased with a temporal in-
tegration of the robots position as we use it already for our self-localization [12]
and described by other teams [10][13]. So partially occluded robots can be de-
tected even if the robot is not detected in every single image. Future work is also
planned on the selected features. With highly optimized algorithms there is again
computing power left over, that can be used to increase the classification rate.

We collected a huge amount of real test images during a workshop with
the robot soccer team from Munich. So we will focus on doing a very detailed
investigation, how this method behave for all the extreme situations that can
happen in RoboCup, like e.g. occlusion, or robots at image boundaries. It’s
also of interest, how the neural networks behave, if they are confronted with
opponent robots not yet in the training images data base.
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Abstract. Humans process images with apparent ease, quickly filter-
ing out useless information and identifying objects based on their shape
and colour. However, the undertaking of visual processing and the imple-
mentation of object recognition systems on a robot can be a challenging
task. While many algorithms exist for machine vision, fewer have been
developed with the efficiency required to allow real-time operation on
a processor limited platform. This paper focuses on several efficient al-
gorithms designed to identify field landmarks and objects found in the
controlled environment of the RoboCup Four-Legged League.

1 Introduction

Robot vision systems are often required to identify landmarks relevant to the
robot’s operation. In autonomous robot soccer, situations arise where the robot
operates for extended periods without viewing critical landmarks on the field
such as goal posts and other objects. This lack of information leads to the robot
becoming disorientated and uncertain about its position.

In the past, methods used to alleviate this problem have mostly involved so-
called “active localisation”. Active localisation requires the robot to periodically
interrupt its normal operation to better determine its location. For example,
a robot may interrupt its gaze to search for a landmark before executing a
critical manoeuvre (such as kicking the ball). However, because of the time
critical nature of robot soccer, the use of active localisation can allow opposition
robots to pounce on the ball while the localising robot wastes time determining
its position and orientation. Identification of additional landmarks is therefore
beneficial as it reduces the need for active localisation.

Many vision algorithms developed in recent years are inappropriate for lim-
ited processor systems and real-time applications. In this paper, we present
some efficient algorithms to solve complex problems such as edge detection and
data association so commonly seen in both theoretical and practical problems.
While the solutions presented are in the context of the RoboCup Four-Legged
League [1], it is expected that some of the ideas and algorithms could be useful
in areas such as automation so commonly seen in industry.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 274–285, 2005.
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The objective of the methods described in this paper is to increase the number
of landmarks on the field that the vision system can recognise. By locating field
and sidelines in the image, it is possible to locate points such as the corners of
the penalty box, the centre circle and the intersection of the centre line with the
sideline (the “centre corner”).

The accuracy of measurements to objects detected by the vision system is
also of great importance. In the context of a soccer match and in many other
areas, obstructions can occur which impede both the identification of objects
and measurements to them. The practice of fitting circles to the ball provides
a robust mechanism through which accurate heading and distance information
can be determined, even in the presence of obstructions and despite the limited
processing power available.

2 Field and Sideline Detection

As discussed in the introduction the attainment of additional information from
which to localise is of paramount importance. One idea to increase the quantity
of objects identified by the vision system is to make use of the field and sideline
information. The following sections document the process and algorithm used
in identifying and determining the equation of the field and sidelines within the
image.

2.1 Line Detection

While existing techniques for edge detection, such as those of the German team,
have focused on examining the camera image (in YUV colour space) for a shift
in the Y component [2], this report focuses on the identification of field and
sidelines using a classified image. A classified image is one which has, through
the use of a look up table, been mapped to a set of colours identifiable by
the robot. Using the classified image, the key to determining the presence of
field and sidelines lies in the systems ability to discern field-green/boundary-
white and boundary-white/field-green transitions. These transitions identify the
boundary between the field and both field and side lines. For example, for a field
line to be present, a field-green/boundary-white transition and a correspond-
ing boundary-white/field-green transition must be found. These two transitions
mark the change from field to field-line and back to field again, ruling out the
possibility that the point was actually part of the sideline.

The algorithm searches a sparse grid structure over the entire image to dis-
cover the field and sideline transitions. While a complete scan of all pixels would
have provided more accurate data, line transitions are typically several pixels
wide and so are still identifiable when checking only the pixels located on grid-
lines. Under the current implementation, a grid with a spacing of 4 by 2 pixels
is used in the identification of field and sideline points. While this grid is consid-
ered fine, testing has revealed that should additional processor time be required,
the size of this grid may be increased without a serious negative effect on the
identification of points in the image.
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Fig. 1. Identification of field (blue) and side (red) line points

The points identified as field and sideline can be seen in Figure 1. The red line
present in this image represents the horizon line, which is used to identify those
parts of the image which should be scanned and those which can be ignored. This
technique obviously reduces the area to be scanned and hence the processing load
in many images. Further detail on the generation of the horizon line can be found
in [2, 3].

2.2 Field and Sideline Identification

Having acquired the transitions in the image believed to be part of a field or
sideline, the problem of associating points with individual lines offers a further
challenge to be investigated. The sideline case is trivial, in that sidelines are
always separated horizontally in the image. However, multiple field lines may
appear stacked, a fact illustrated by Figure 1.

The data association problem for field lines was solved using a simple cluster-
ing algorithm such that if the distance of a point from any previously generated
line is too great then a new line will be formed. Points are always processed
from left to right. Once all points have been allocated to a line, the start and
end points of each line are compared with other lines identified. This step deter-
mines whether the two lines actually represent a continuous field line broken in
two due to a corner. Any pair of lines found to be continuous are merged. It is
for this reason that the points are always processed from left to right: By placing
an ordering on the initial line formation step, longer lines tend to generated and
therefore less merging must be performed later.

For example, in Figure 1 the clustering algorithm results in three field lines.
The first field line is obvious and represents the four points identified in the
goalmouth, while the second and third lines are not so obvious and represent
the two components of the penalty box. The presence of the corner forces the
points to be split in two as in processing the points from left to right, the distance
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of the points from the end of the generated line eventually becomes too great
forcing a new line to be formed. In this example, the two lines that form the
corner due to the proximity of their ends will be determined to be part of the
same field line and will be merged.

Upon successful discovery of a fixed number of points believed to be part
of the same line, the principle of Least Squares Line Fitting can be used to
determine the equation of the line in the image. The algorithm may also be used
to filter outliers based on their distance from the generated line thus increasing
the tolerance of the system to noisy input data.

3 Landmark Identification Using Field and Sidelines

This following sections document the way in which field and sideline data iden-
tified is used to locate landmarks on the field useful for robot localisation. The
landmarks identified by the algorithms presented in the following sections are
shown in Figure 2.

Fig. 2. Landmarks identified in the following sections

3.1 Penalty Box Corner Detection

While a number of approaches were trialled for the identification of penalty box
corners, many of these proved too time consuming or error prone for use in
a soccer game. The solution described below was successful in identifying cor-
ners both accurately and quickly, although it has the caveat of being unable
to recognise the rare situation where multiple corners are present in a single
line. This technique was inspired in part by the well known split and merge al-
gorithm [4]. The first step is to identify the point furthest from the line fitted
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Fig. 3. The split and fit algorithm

through the start and end points of the data set. The Split and Merge algorithm
then splits the data set into smaller and smaller line segments in an attempt to
find an accurate equation for the line. In contrast, we use a simple Hill Climbing
algorithm to search in the direction that minimises the residual of the fitting of
two lines to the points either side of a candidate split point. The algorithm stops
when the point identified is such that residual of the line fitting operations is
minimised and no further improvements can be made. The corner point itself is
taken as the intersection of the two lines fitted to the data set. This last step
of taking the intersection point of the two lines minimises the risk of taking
a point identified incorrectly in the original transition discovery phase due to
misclassification or obstruction.

As can be seen in the example, the algorithm operates using a simple hill
climbing process. The steps used can be described as follows:

a) Fit a line through the two extreme points of the dataset and find the point
most distant to this line. This point defines the starting point of the search

b) Split the data set in two and calculate (using least squares) the residual of
the two lines fitted either side of the centre point found

c) Take the first point to the right of the centre point and refit the two lines.
Note that in this example the error of the system increases, indicating a
move away from the corner
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d) Take the first point to the left of the centre point and refit the two lines.
Note that this decreases the error of the system and hence a move towards
the corner

e) The algorithm continues to search in the direction that minimises the error of
the system. In this case, the error has increased by searching left indicating
that the corner point has already been passed.

f) Two lines are fitted through the point that minimises the error of the system
and the intersection of these lines taken as the corner point. Despite the bad
point in the example, the algorithm correctly identifies the true corner.

While the point identified in the first step is often the corner point, the
additional steps have proved to give reliable and robust determination of the
corner point even in situations where significant amounts of noise are present
in the system. This algorithm has proved an extremely efficient solution to the
problem of finding a corner in a system of ordered points, easily executed in
real-time on the robot.

3.2 Centre Circle Detection

As the centre circle closely resembles a field line, it made sense that the de-
tection of the centre circle should somehow be related to the detection of field
lines within the image. This was achieved by observing that the centre circle
provided a special case when present, in that from most angles three sets of
field-green/border-white/field-green transitions occurred in the same column.
The presence of the centre circle is therefore determined by the existence of
three or more sets of field line transitions in the same column (referred to as a
triple). An example of this situation can be seen in Figure 4.

Fig. 4. Centre circle
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The parameters of the centre circle are determined from the sets of triples
identified in the image. Using the sets of triples, the centre of the circle was
defined by the point that bisected the line fitted through the two triples most
separated in the image.

Although the discovery of the centre circle is only possible from certain angles
upon the field, it does provide a foundation from which further work can be
performed. Future work may include research into the fitting of circles or ellipses
to determine accurately the presence and parameters of the circle.

3.3 Centre Corner Point Detection

Another area in which field and side line information is used, is in the identifica-
tion of the two points where the centre field line intersects with the sideline. An
example of the point considered the centre corner point can be seen in Figure 5.

Fig. 5. Centre corner point

The detection of these landmarks requires the detection of a field line inter-
secting with a sideline. This condition is satisfied at the goal mouth as well as
at the centre corner point, so an additional constraint to reduce the number of
false positives is that the goal must not be present in the image. On checking
that the end of a field line is sufficiently close to the sideline, the intersection of
the field and sideline is taken as the centre corner point.

4 Circle Fitting to the Ball

A commonly used method for object recognition in the Four-Legged League is
to find a rectangular blob around all colour objects within the image. The size
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of the blob determines the distance to the object. While this is convenient to
code and can be extremely efficient, it also results in an overall reduction of
information and introduces error that makes the perceived location of objects
less precise. This problem is most evident in the recognition of the ball due to its
circular shape (other notable objects on the soccer field are roughly rectangular).

In ball recognition, it was decided that points located on the perimeter of the
ball should be identified and a circle fitted through these points. It was hoped
that this method would make the system more tolerant of obstructions in front
of the ball, such as another robot or the edge of the image. For example, consider
the situation shown in Figure 6(a) where the lower part of the ball is obstructed
by the robots leg.

Fig. 6. (a) Obstruction caused by a robot. (b) Point determination after blob formation

The result is a blob smaller than the actual size of the ball and a resultant
distance much greater than the actual distance to the ball. Fitting a circle us-
ing points on the perimeter helps overcome this problem, resulting in a better
approximation for the radius of the ball.

4.1 Determining Fitted Points

In fitting a circle to the ball, it is necessary to know those points (coordinates
in the image) which define the perimeter. The technique identified for locating
perimeter points, involved the recovery of information lost during the identifi-
cation of the ball. This algorithm performs a horizontal search from the edge of
the circle blob towards the centre, recording the first pixel found to match the
colour of the object (i.e. orange). In using this algorithm, the pixels searched are
those shadowed by the blob identified as the ball, which are not orange. Specific
knowledge of the point’s location is used to exclude certain points from the set,
such as points located on the edge of the image, which are not genuinely on the
perimeter of the ball. Future work in this area may include the use of a Convex
Hull to filter points incorrectly identified within the ball. Figure 6(b) shows the
points determined by the algorithm presented above.



282 C.J. Seysener, C.L. Murch and R.H. Middleton

4.2 Least Squares Fitting to the Ball

Although techniques such as fitting a circle through three points were tested,
the method of shape fitting using Least Squares Fitting (LSF) proved the most
successful. Whilst this algorithm is slightly more computationally expensive, the
algorithm generates the most accurate fit, especially in cases where obstruction
of the ball occurs. It was also noted that as the algorithm uses a higher number
of points the generated result is more tolerant of noisy data.

Whilst many different papers have been written about the Least Squares
Fitting of circles through a set of points, the paper used as the primary reference
for this research was that by Chernov and Lesort [6], which discusses the various
strengths, weaknesses and efficiencies of several commonly used circle fitting
algorithms. The concept of Least Squares Fitting of circles is based on minimising
the mean square distances from the fitted circle to the data points used. Given
n points (xi, yi), 1 ≤ i ≤ n, the objective function is defined by

F =
n∑

i=1

d2
i (1)

where di is the Euclidian (geometric) distance from the circle to the data
points. If the circle satisfies the equation

(x − a)2 + (y − b)2 = R2 (2)

where (a, b) is the centre and R is the radius, then

di =
√

(xi − a)2 + (yi − b)2 − R (3)

The minimisation of the objection function min{F} for a, b, R > 0) is a
non-linear problem with no closed form solution. For this reason, there is no
algorithm for computing the minimum of F with all known algorithms being
either iterative and computationally expensive or approximate. It was therefore
important that the correct algorithm be chosen for implementation on the robot
to minimise the load placed on both processor and memory.

Having reviewed the results in [6] it was decided that a combination of both
geometric and algebraic methods be used. The Levenberg-Marquardt [5, 7, 8] ge-
ometric fit method was selected above others, such as the Landau and Spath
algorithms, due to its efficiency. This algorithm is in essence a classical form of
the Gauss-Newton method but with a modification known as the Levenberg-
Marquardt correction. This algorithm has been shown to be stable, reliable
and under certain conditions rapidly convergent. The fitting of circles with the
Levenberg-Marquardt method is described in many papers.

It is commonly recognised that iterative algorithms for minimising non-linear
functions, such as the geometric circle-fitting algorithm above, are sensitive to
the choice of the initial guess. As a rule, an initial guess must be provided
which is close enough to the minimum of F to ensure rapid convergence. It has
been shown that if the set of data points is close to the fitting contour, then
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the convergence achieved is nearly quadratic. It was therefore required that in
order to minimise the CPU utilisation on the robot, an initial guess should be
provided by a fast and non-iterative procedure. After further research, it was
decided that the fast and non-iterative approximation to the LSF, provided by
algebraic fitting algorithms, seemed ideal for solving this problem.

Algebraic fitting algorithms are different from their geometric equivalents in
that they attempt to minimise the sum of the squares of the algebraic errors
rather than minimising the distances of the sum of the squares of the geometric
distances. If the above equations are considered.

F =
n∑

i=1

[(xi − a)2 + (yi − b)2 − R2]2 =
n∑

i=1

(x2
i + y2

i + Bxi + Cyi + D)2 (4)

where B = −2a, C = −2b and D = a2 +b2 −R2. Differentiating the equation
with respect to B, C and D yields the following system of linear equations

MxxB + MxyC + MxD = −Mxz (5)

MxyB + MyyC + MyD = −Myz (6)

MxB + MyC + nD = −Mz (7)

where Mxx, Mxy etc. define moments, for example Mxx =
∑n

i=1 x2
i and

Mxy =
∑n

i=1 xiyi. The system can be solved using Cholesky decomposition (or
any other method for solving a linear system of equations) to give B, C and D,
which in turn gives parameters a, b and R that define the circle. The algorithm
used on the robot varies slightly from this definition, in that it uses a gradient

Fig. 7. Circle fitting to the ball
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weighted [9, 10] form of the algorithm. This algorithm is commonly considered
a standard for the computer vision industry [11, 12, 13] due to its statistical op-
timality. An example of a circle fitted on the robot can be seen in Figure 7.
The circle fitted in the image is resilient to noise caused by the obstruction (the
edge of the image), which would have previously affected both the distance and
elevation values of the resultant ball.

4.3 Results

A comparison of the distances returned by examining the height of the object, the
new circle fitting method and the actual distances are shown below in Figure 8.
The ball is approximately 75% obstructed by the robot in each measurement.

Fig. 8. Comparison of ball distances with 75% obstruction

5 Summary

The implementation of real-time object recognition systems for use on a robot
is a complex task. It was observed throughout this project that while complex
algorithms exist for image processing, many of these are not appropriate for use
on a robot.

This study focussed on the development of edge detection and data associ-
ation techniques to identify field landmarks in a controlled environment. These
techniques were designed with efficiency as their key requirement so as to func-
tion effectively despite processor limitations. It has also been shown that a com-
mon method - circle fitting - can be scaled for use on a robot with a slow pro-
cessor. Additionally, the circle fitting algorithm is able to operate in conjunction
with existing Four-Legged League vision systems
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Hence while many conventional algorithms are unsuitable for use on the
robot, appropriate algorithms have been developed or adapted for real-time vi-
sual processing, greatly assisting in the identification of key objects and in turn
robot localisation.

Acknowledgements. We would like to thank all past and present members and
contributors to the University of Newcastle Legged League RoboCup team.
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Abstract. In competitive domains, the knowledge about the opponent
can give players a clear advantage. This idea lead us in the past to pro-
pose an approach to acquire models of opponents, based only on the
observation of their input-output behavior. If opponent outputs could
be accessed directly, a model can be constructed by feeding a machine
learning method with traces of the opponent. However, that is not the
case in the Robocup domain. To overcome this problem, in this paper
we present a three phases approach to model low-level behavior of in-
dividual opponent agents. First, we build a classifier to label opponent
actions based on observation. Second, our agent observes an opponent
and labels its actions using the previous classifier. From these observa-
tions, a model is constructed to predict the opponent actions. Finally,
the agent uses the model to anticipate opponent reactions. In this paper,
we have presented a proof-of-principle of our approach, termed OMBO
(Opponent Modeling Based on Observation), so that a striker agent can
anticipate a goalie. Results show that scores are significantly higher using
the acquired opponent’s model of actions.

1 Introduction

In competitive domains, the knowledge about the opponent can give players a
clear advantage. This idea lead us to propose an approach to acquire models of
other agents (i.e. opponents) based only on the observation of their input-output
behaviors, by means of a classification task [1]. A model of another agent was
built by using a classifier that would take the same inputs as the opponent and
would produce its predicted output. In a previous paper [2] we presented an
extension of this approach to the RoboCup [3].

The behavior of a player in the robosoccer can be understood in terms of
its inputs (sensors readings) and outputs (actions). Therefore, we can draw an
analogy with a classification task in which each input sensor reading of the
player will be represented as an attribute that can have as many values as the
corresponding input parameter. Also, we can define a class for each possible
output. Therefore, the task of acquiring the opponent model has been translated
into a classification task.

In previous papers we have presented results for agents whose outputs are
discrete [1], agents with continuous and discrete outputs [4], an implementation

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 286–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of the acquired model in order to test its accuracy [5], and we used the logs
produced by another team’s player to predict its actions using a hierarchical
learning scheme [2]. In that work, we considered that we had direct access to the
opponent’s inputs and outputs. In this work we extend our previous approach
in the simulated robosoccer domain by removing this assumption. To do so,
we have used machine learning to create a module that is able to infer the
opponent’s actions by means of observation. Then, this module can be used to
label opponent’s actions and learn a model of the opponent.

The remainder of the paper is organized as follows. Section 2 presents a
summary on our learning approach to modeling. Actual results are detailed in
Section 3. In Section 4 discusses the related work. The paper concludes with
some remarks and future work, Section 5.

2 Opponent Modeling Based on Observation (OMBO)

Our approach carries out the modeling task in two phases. First, we create a
generic module that is able to label the last action (and its parameters) per-
formed by any robosoccer opponent based on the observation of another agent
(Action Labeling Module - ALM). We need this module given that in a game
in the soccer simulator of the RoboCup, an agent does not have direct access to
the other agents inputs and outputs (what the other agent is really perceiving
through its sensor and the actions that it executes at each moment). This mod-
ule can be used for labeling later any other agents actions. Second, we create a
model of the other agent based on ALM data (Model Builder Module - MBM).

Action
Labeling
Module

Model
Builder
Module

action +
parameter
modeling

Phase I

B’ sensors
(inputs)

Agent A

Agent B

Environment

A’features +
environment 
features

parameters of A

Data of previous games

models

Agent B logs

Agent A logsAgent A actions

features about

features

Agent A +

environment

Agent B action

labeled action +

action

Reasoner
Module

m:model of
Agent A Phase II

Fig. 1. Architecture for opponent modeling
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Figure 1 shows a high level view of the general framework for opponent
modeling.

2.1 Action Labeling Module (ALM)

In order to predict the behavior of the opponent (Agent A), it is necessary to
obtain many instances of the form (Input Sensors, Output Actions), so that
they can be used for learning. However, in a real match, A’s inputs and outputs
are not directly accessible by the modeler agent (Agent B). Rather, A’s actions
(outputs) must be inferred by Agent B, by watching it. For instance, if Agent
A is besides the ball at time 1, and the ball is far away at time 2, it can be
concluded that A kicked the ball. Noise can make this task more difficult.

The purpose of the ALM module is to classify A’s actions based on ob-
servations of A made by B. This can also be seen as a classification task. In
this case, instances of the form (A’s observations from B,A’s actions) are re-
quired.

A general description of the action labeling module construction is shown
in Figure 2.

.

.

.

Sensors 
(inputs)

Sensors 
(inputs)

.

.

.

1, F, E, X
2, F, E, X

n, F, E, X

.

.

.

1, F, E, C
2, F, E, C

n, F, E, C

.

.

.

2 2 1 1 1 2

n n n−1 n−1 n−1 nAgent A

Agent B

1, C, X

F  , E  , F   , E   , C   , V,  C  

F  , E  , F   , E    ,C   , V,  C  

training 

logs

logs

2, C, X

n, C, X

F, E

C (action)

instances
generation

F: features about Agent A
E: environment variables
C: action of Agent A

X: other features

learning
hierarchical

models

instances

set
logs

previous
games

V: calculated attributes

data
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Fig. 2. Action Labeling Module creation

The detailed steps for building the Action Labeling Module (ALM) are as
follows:
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1. The Agent A plays against Agent B in several games. At every instant, data
about A, some environment variables calculated by B, and the actions of A
are logged to produce a trace of Agent A behavior from Agent B point of
view.

2. Each example I in the trace is made of three parts: a set of features about
Agent A, F , some environment features, E, and the action of Agent A, C,
in a given simulation step t, that is to say It = Ft + Et + Ct. From this
trace it is straightforward to obtain a set of examples D so that Agent B
can infer by machine learning techniques the action carried out by Agent
A using examples from two consecutive simulation steps. It is important to
remark that, sometimes, the soccer server does not provide with information
for two contiguous time steps. We ignore these situations.

3. Let D be the whole set of available examples from Agent A trace. Each
example di ∈ D is made of two parts: an n-dimensional vector representing
the attributes a(di) and a value c(di) representing the class it belongs to. In
more detail, a(di) = Ft, Et, Ft−1, Et−1, Ct−1, V and c(di) = Ct. V represents
attributes computed based on comparison of features differences between
different time steps. We use 24 calculated attributes (e.g. Agent A position
differences, ball position differences, etc).

4. When the actions c(di) in D are a combination of discrete and continuous
values (e.g. dash 100), we create a set of instances D̂ with only the discrete
part of the actions, and a set D̂j for each parameter of the action using
only the examples corresponding to the same action. That is, the name of
the action and the parameter of the action will be learned separately. For
instance, if the action executed by the player is “dash 100” only dash will
be part of D̂ and the value 100 will be in D̂dash with all the instances whose
class is dash.

5. The set D̂ is used to obtain a model of the action names (i.e. classify the
action that the Agent A carried out in a given simulation step). The D̂j

are used to generate the continuous values parameters associated to its cor-
responding action. We have called this way of learning the action and its
parameter separately hierarchical learning (see Figure 3).

6. Once all classifiers have been built, in order to label the action carried out by
Agent A, first the classifier that classifies the action is run in order to know
which action it performed. Second, the associated classifier that predicts the
value of the action parameter is executed. This set of classifiers constitutes
the Action Labeling Module (ALM).

As kick, dash, turn, etc are generic actions, and the simulator executes in
the same way the actions independently of the agent that executes them, this
classifier will be independent of Agent A, and could be used to infer the actions
of other agents as well. Also, the classifier has to be build just once.

2.2 Model Builder Module (MBM)

Our next goal is to learn a classifier to predict Agent A’s actions based on
observations of A from Agent B’s point of view. It will be obtained from instances
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Fig. 3. Hierarchical Learning used by the ALM and MBM

(Ft, Et, ALMt) recorded during the match, where ALMt is the action classified
by ALM from observations at t and t − 1. The aim of this classifier is to predict
Agent A behavior.

More specifically, data consists of tuples (I ′s) with features about Agent A,
some environment variables, and the action that B predicted the Agent A has
performed, together with its parameter (in this case, labeled by ALM). Instead of
using a single time step, we have considered several of them in the same learning
instance. Therefore, the learning tuples will have the form (It, It−1, ..., It−(w−1)),
where w is the window size. Like in ALM construction, we used calculated at-
tributes, V .

The detailed steps taken for obtaining the model of Agent A are as follows:

1. The ALM is incorporated into Agent B, so that it can label (infer) Agent
A’s actions.

2. Agent A plays against Agent B in different situations. At every instant,
Agent B obtains information about Agent A and the predicted action of
Agent A, labeled by ALM as well as its parameters. All this information is
logged to produce a trace of Agent A behavior.

3. Like in the ALM construction, every example I in the trace obtained is
made of three parts: a set of features about Agent A, F , some environment
variables, E, and the action of Agent A, C (labeled by ALM), at a given
simulation step t (It = Ft + Et + Ct). In this case, we want to predict the
action of Agent A in a given simulation step and we need information about
it from some simulation steps behind. The number of previous simulation
steps used to make an instance is denoted by w.

4. Let D be the whole set of instances available at a given simulation step. Each
instance di ∈ D is made of two parts: an n-dimensional vector representing
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the attributes a(di) and a value c(di) representing the class it belongs to. In
more detail, a(di)=(Ft, Et, Ft−1, Et−1Ct−1, ..., Ft−(w−1), Et−(w−1), Ct−(w−1), V)
and c(di) = Ct.

5. When the actions c(di) in D are a combination of discrete and continuous
values (e.g. dash 100), we create a set of instances D̂ with only the discrete
part of the actions, and a set D̂j for each parameter of the action using
only the examples corresponding to the same action. From here on, hierar-
chical learning is used, just like in ALM, to produce action and parameter
classifiers. They can be used later to predict the actions of Agent A.

Although the Model Builder Module could be used on-line, during the match,
the aim of the experiments in this paper is to show that the module can be built
and is accurate enough. Therefore, in our present case, learning occurs off-line.
On-line use is just a matter of the agent having some time for focusing its
computer effort on learning. Learning could happen, for instance, during the
half-time break, during dead times, or when the agent is not involved in a play.
Also, incremental algorithms could be used, so as not to overload the agent
process.

2.3 Using the Model

Predicting opponent actions is not enough. Predictions must be used somehow
by the agent modeler to anticipate and react to the opponent. For instance, in
an offensive situation, an agent may decide whether to shoot the ball to the goal
or not, based on the predictions about the opponent. The task of deciding when
to shoot has been addressed by other researchers. For instance, CMUnited-98 [6]
carried out this decision by using three different strategies: based on the distance
to the goal, based on the number of opponents between the ball and the goal,
and based on a decision tree. In CMUnited-99 [7], Stone et al. [8] considered the
opponent to be an ideal player, to perform this decision. Our approach in this
paper is similar to Stone’s work, except that we build an explicit model of the
actual opponent.

It is also important to remark that, at this point in our research, how to use
the model is programmed by hand. In the future we expect to develop techniques
so that the agent can learn how to use the model.

3 Experiments and Results

This section describes the experimental sequence and results obtained in the
process to determine whether the usefulness of using a learned knowledge gener-
ated by an Agent B by observing behavior of an Agent A, taken as a black box.
To do so we have carried out three phases: first a player of a soccer simulator
team (Agent A) plays against an Agent B to build the ALM; second, the model
m of Agent A is built; and third, the model is used by B against A.

For the experimental evaluation of the approach presented in this paper,
the player (Agent A) whose actions will be predicted is a member of the ORCA
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team [9], and the Agent B (modeler agent) is based on the CMUnited-99 code [7].
Agent A will act as a goalie and Agent B as a striker, that must make the
decision of shooting to the goal or continue advancing towards it, depending on
the predictions about the goalie.

The techniques to model Agent A actions have been, in both, ALM and
model construction, c4.5 [10] and m5 [11]. c4.5 generates rules and m5 generates
regression trees. The latter are also rules, whose then-part is a linear combination
of the values of the input parameters. c4.5 has been used to predict the discrete
actions (kick, dash, turn, etc.) and m5 to predict their continuous parameters
(kick and dash power, turn angle, etc.). C4.5 and M5 were chosen because we
intend to analyse the models obtained in the future, and decision trees regression
trees obtained by them are quite understandable.

3.1 ALM Construction

As it is detailed in the previous section, the data used to generate the ALM, is a
combination of the perception about Agent A from the point of view of Agent B
and the actual action carried out by Agent A. Once the data has been generated,
we use it to construct the set of classifiers that will be the ALM. Results are
displayed in Table1.

There are three rows in Table 1. The first one displays the prediction of the
action of Agent A, while the other two lines show the prediction of the numeric
parameters of two actions: turn and dash. As Agent A is a goalie, for experi-
mental purposes, we only considered relevant the parameters of these actions.
Columns represent: the number of instances used for learning, the number of
attributes, and the number of classes (continuous for the numeric attributes).
In the last column, accuracy results are shown. For the numeric parameters,
a correlation coefficient is displayed. These results have been obtained using a
ten-fold cross validation.

ALM obtains a 70% accuracy for the discrete classes, which is a good result,
considering that the simulator adds noise to the already noisy task of labeling
the performed action. On the other hand, the results obtained for the parameters
values are poor. Perhaps the techniques used to build the numerical model are
not the most appropriate. Or perhaps, better results could probably be achieved
by discretizing the continuous values. Usually, it is not necessary to predict
the numeric value with high accuracy; only a rough estimation is enough to take
advantage of the prediction. For instance, it would be enough to predict whether

Table 1. Results of ALM creation

Labeling task Instances Attributes Classes Accuracy
Action 5095 69 5 70.81%
Turn angle 913 69 Continuous 0.007 C.C.
Dash power 3711 69 Continuous 0.21 C.C.
C.C.: correlation coefficient
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the goalie will turn left or right, rather than the exact angle. For the purposes
of this paper, we will use only the main action to decide about when to shoot.

3.2 Model Construction

The ALM can now be used to label opponent actions and build a model, as ex-
plained in previous sections. c4.5 and m5 have been used again for this purpose.
Results are shown in Table 2.

Table 2. Model creation results

Predicting Instances Attributes Classes Accuracy
Action 5352 73 6 81.13%
Turn angle 836 73 Continuous 0.67 C.C.
Dash power 4261 73 Continuous 0.41 C.C.
C.C.: correlation coefficient

Table 2 shows that the main action will be perform by the opponent can be
predicted with high accuracy (more than a 80%).

3.3 Using the Model

Once the model m has been constructed and incorporated in-to the Agent B
architecture, it can be used to predict the actions of the opponent in any situ-
ation. The task selected to test the model acquired is when to shoot [8]. When
the striker player is approaching the goal, it must decide whether to shoot right
there, or to continue with the ball towards the goal. In our case, Agent B (the
striker) will make the decision based on a model of the opponent goalie.

When deciding to shoot, our agent (B) first selects a point inside the goal as a
shoot target. In this case, a point at the sides of the goal. The agent then considers
its own position and the opponent goalie position to select which point is the
shoot target. Once the agent is near the goal, it uses the opponent goalie model
to predict the goalie reaction and decides to shoot or not at a given simulation
step. For example, if the goalie is predicted to remain quiet, the striker advances
with the ball towards the goal.

In order to test the effectiveness of our modeling approach in a simulation soc-
cer game, we ran 100 simulations in which only two players take part. The Agent
A is an ORCA Team goalie and Agent B is a striker based on the CMUnited-99
architecture with ALM and the model of Agent A. For every simulation, the
striker and ball were placed in 30 different positions in the field randomly cho-
sen. This makes a total of 3000 goal opportunities. The goalie was placed near to
the goal. The task of the striker is to score a goal while the goalie must avoid it.

To test the model utility, we compare a striker that uses the model with a
striker that does not. In all situations, the striker leads the ball towards the goal
until deciding when to shoot. The striker that does not use the model decides
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Table 3. Simulation results

Striker Simulations Average of goals Average of Shots Outside
without model 100 4.65 11.18
with model 100 5.88 10.47

when to shoot based only on the distance to the goal, while the striker that uses
the model, considers this distance and the goalie predicted action.

The results of these simulations are shown in Table 3.
As results show, the average of goals using the model is higher than the

average of goals without the model. They could be summarized as that every 30
shots, one extra goal will be scored if the model is used. Shots outside the goal
are also reduced. We carried out a t-test to determine that these differences are
significant at α = 0.05, which they are. So, even with a simple way of using the
model, we can have a significant impact on results by using the learned model.

4 Related Work

Our approach follows Webb feature-based modeling [12] that has been used for
modeling user behavior. Webb’s work can be seen as a reaction against previous
work in student modeling, where they attempted to model the cognitive pro-
cessing of students, which cannot be observed. Instead, Webb’s work models the
user in terms of inputs and outputs, that can be directly seen.

There are several work related to opponent modeling in the RoboCup soccer
simulation. Most of them focus on the coaching problem (i.e. how the coach can
give effective advice to the team). Druecker et al. [13] use neural networks to
recognize team formation in order to select an appropriate counter-formation,
that is communicated to the players. Another example of formation recognition
is described in [14] that use a learning approach based on player positions. Re-
cently, Riley and Veloso [15] presented an approach that generate plans based
on opponent plans recognition and then communicates them to its teammates.
In this case, the coach has a set of “a priori” opponent models. Being based on
[16], Steffens [17] presents an opponent modeling framework in Multi-Agent Sys-
tems. In his work, he assumes that some features of the opponent that describe
its behavior can be extracted and formalized using an extension of the coach
language. In this way, when a team behavior is observed, it is matched with a
set of “a priori” opponent models. The main difference with all these previous
work is that in our work, we want to model opponent players in order to improve
low level skills of the agent modeler rather than modeling the high level behavior
of the whole team.

On the other hand, Stone et al. [8] propose a technique that uses opponent
optimal actions based on an ideal world model to model the opponent future
actions. This work was applied to improve the agent low level skills. Our work
addresses a similar situation, but we construct a real model based on observation



Predicting Opponent Actions by Observation 295

of an specific agent, while Stone’s work does not directly construct a model, being
his approach independent of the opponent.

In [18] Takahashi et al. present an approach that constructs a state transition
model about the opponent (the ”predictor”), that could be considered a model
of the opponent, and uses reinforcement learning on this model. They also learn
to change the robot’s policy by matching the actual opponent’s behaviour to
several opponent models, previously acquired. The difference with our work is
that we use machine learning techniques to build the opponent model and that
opponent actions are explicitely labelled from observation.

5 Conclusion and Future Work

In this paper we have presented and tested an approach to modeling low-level
behavior of individual opponent agents. Our approach follows three phases. First,
we build a general classifier to label opponent actions based on observations.
This classifier is constructed off-line once and for all future action labeling tasks.
Second, our agent observes an opponent and labels its actions using the classifier.
From these observations, a model is constructed to predict the opponent actions.
This can be done on-line. Finally, our agent takes advantage of the predictions
to anticipate the adversary. In this paper, we have given a proof-of-principle of
our approach by modeling a goalie, so that our striker gets as close to the goal
as possible, and shoots when the goalie is predicted to move. Our striker obtains
a higher score by using the model against a fixed strategy.

In the future, we would like to do on-line learning, using perhaps the game
breaks to learn the model. Moreover we intend to use the model for more complex
behaviors like deciding whether to dribble, to shoot, or to pass. In this paper,
how the agent uses the model has been programmed by hand. In future work, we
would like to automate this phase as well, so that the agent can learn to improve
its behavior by taking into account predictions offered by the model.
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Abstract. Despite efforts to design precise motor controllers, robot
joints do not always move exactly as desired. This paper introduces a
general model-based method for improving the accuracy of joint control.
First, a model that predicts the effects of joint requests is built based on
empirical data. Then this model is approximately inverted to determine
the control requests that will most closely lead to the desired movements.
We implement and validate this approach on a popular, commercially
available robot, the Sony Aibo ERS-210A.

Keywords: Sensor-Motor Control; Mobile Robots and Humanoids.

1 Introduction

Joint modeling is a useful tool for effective joint control. An accurate model of a
robotic system can be used to predict the outcome of a particular combination
of requests to the joints. However, there are many ways in which a joint may
not behave exactly as desired. For example, the movement of a joint could lag
behind the commands being sent to it, or it could have physical limitations that
are not mirrored in the control software.

In this paper, we consider the case in which a joint is controlled by repeatedly
specifying an angle that the joint then tries to move to (e.g. as is the case for
PID control1). These are the requested angles, and over time they comprise a
requested angle trajectory. Immediately after each request, one can record the
actual angle of the joint. These angles make up the actual angle trajectory.

This paper presents a solution to a common problem in robot joint control,
namely that the actual angle trajectory often differs significantly from the re-
quested trajectory. We develop a model of a joint that predicts how the actual
angle trajectory behaves as a function of the requested trajectory. Then, we use
the model to alter the requested trajectory so that the resulting actual trajec-
tory more effectively matches the desired trajectory, that is, the trajectory that
we would ultimately like the joint to follow.

At a high level, our proposed approach is to:

1 http://www.expertune.com/tutor.html

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 297–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1. Determine the various features of the joint that need to be taken into account
by the model.

2. By experimenting with the joint and the various ways to combine these
features, establish a mathematical model for the joint whose behavior mimics
that of the joint when given the same input sequence.

3. Use the model to compute a series of requests that yields a close approxima-
tion to the desired trajectory. If the model is accurate, then these requests
will cause the joint to behave as desired.

For expository purposes, we demonstrate the use of this technique on the Sony
Aibo ERS-210A robot,2 whose motors use PID control. However, this general
methodology is potentially applicable to any situation in which robotic joints
do not behave exactly as requested. We present empirical results comparing the
direct approach of setting the requested angles equal to the desired angles against
an approach in which the requested angles are set to a trajectory motivated by
knowledge of the joint model.

The remainder of this paper is organized as follows. Section 2 relates our work
to previous approaches. Section 3 introduces the Aibo robot and our model of its
joint motion. Section 4 describes the process of inverting this model. Section 5
presents the empirical results validating our approach, and Section 6 concludes.

2 Related Work

One common approach to model-based joint control is to determine the complete
physical dynamics of the system, which can in turn be used to construct a model-
predictive control scheme. For example, Bilodeau and Papadopoulos empirically
determine the dynamics of a hydraulic manipulator [1]. While this is a valuable
technique, it is only applicable in situations where the physical parameters of
the relevant joints can be ascertained. However, in many robotic systems, deter-
mining accurate values for these parameters can be very difficult or impossible.
Another potential difficulty is that the low-level joint control policy is unattain-
able. This is the case for the Aibo; although we know that the joints are controlled
by a PID mechanism, there is no information available about how the angle re-
quests are converted to motor currents, nor about the motor specifications for the
Aibo’s joints. Our approach circumvents these problems by experimentally mod-
eling the behavior of each joint as a function of the high-level angular requests
that it receives. Furthermore, our approach extends beyond the construction and
testing of a model to using the model to motivate more effective joint requests.

Although others have previously looked at the problem of correcting for joint
errors, to our knowledge the approach proposed here has not been used. English
and Maciejewski track the effects of joint failures in Euclidean space, but focus on
joints locking up or breaking rather than correcting for routine inaccuracies [2].
An alternative approach to robot joint control is presented by Kapoor, Cetin, and

2 http://www.aibo.com
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Tesar [3]. They propose a system for choosing between multiple solutions to the
inverse kinematics based on multiple criteria. Their approach differs from ours
in that it is designed for robotic systems with more manipulator redundancy.
Our approach is better suited to situations in which the inverse kinematics has
a unique solution, but in which the joints do not behave exactly as requested.

3 Developing a Model

The Aibo robot has four legs that each have three joints known as the rotator,
abductor, and knee. The robot architecture allows each joint to receive a request
for an angle once every eight milliseconds. For all experiments reported in this
paper, we request angles at that maximum frequency. The Aibo also reports the
actual angles of the joints at this frequency.

Although we only have direct control over the angles of the three joints, it
is often desirable to reason about the location of the robot’s foot. The process
of converting the foot’s location in space into the corresponding joint angles
for the leg is known as inverse kinematics. Since inverse kinematics converts a
point in space to a combination of angles, it also converts a trajectory of points
in space to an angle trajectory for each joint. We have previously solved the
inverse kinematics problem for the legs of the ERS-210A robot [4].
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Fig. 1. Desired and actual spatial
trajectory of the robot’s foot. Only
two of the three spatial dimensions
are depicted here

As our primary test case for this
project, we use a spatial trajectory for
the foot that is derived from the walking
routine of an entry in the 2003 RoboCup
robot soccer competitions [5]. This tra-
jectory is based on a half ellipse, and it
is shown in Figure 1. The details of the
trajectory and walking routine are given
in [4]. The high-level motivation for this
research is to enable more direct tuning
of the legs’ trajectories while walking.

In an actualwalkingsituation,the ground
exerts significant and unpredictable forces
on the Aibo’s leg. In order to isolate the
behavior of the joints unaffected by external forces, we perform all the experi-
ments for this project with the robot held in the air, so that there is no inter-
ference with the leg’s motion.

The most natural approach to trying to produce a desired trajectory for the foot
is to convert the desired foot locations into joint angles by inverse kinematics, and
then to set the requested joint angles equal to the resulting desired angles. To eval-
uate this method one can record the actual angle values of the leg’s joints, convert
them into an actual spatial trajectory with forward kinematics, and compare the
desired spatial trajectory to the actual one. This comparison is shown in Figure 1.

The difference between these two trajectories is best understood in terms of
the behaviors of the specific joints. We temporarily restrict our attention to only
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the rotator joint and determine the facets of the difference between its trajectory
and the desired trajectory.

The goal of the joint model is to take as its input a sequence of requested
angles and return a sequence of angles that mimics as closely as possible the
angles that would actually be attained by the robot joint. We denote the sequence
of requests by R(t), where values of R are given in degrees, and the units for t is
the amount of time between consecutive requests (eight milliseconds in our case).
Furthermore, we restrict our attention to a period of time lasting the length of
an Aibo step. We call this length of time tstep, which is 88 in our units (i.e. each
step takes 88 · 8 = 704 milliseconds). During all of our experiments, we let the
Aibo run through many steps continuously, so that an equilibrium is reached
before measurements are taken.

-80

-60

-40

-20

 0

 20

 40

 60

 0  10  20  30  40  50  60  70  80

R
ot

at
or

 J
oi

nt
 A

ng
le

 (
de

gr
ee

s)

Time (8 msec cycles)

Actual Angle Trajectory

Requested Angle Trajectory R(t)
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ported by the robot at each time.
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To construct a model of how the joint re-
sponds to different requests, we observe the
behavior of the joint as a result of various re-
quested trajectories. Figure 2 shows how the
joint responds to the sequence of requests
that equal our desired angles for it. From
this, we can start to infer the properties that
our model needs to capture.

First, the actual angle lags behind the
requests in time. Second, there appears to
be a maximum slope by which the actual
angle can change. This would amount to a
physical limit on the angular velocity of the
joint. Finally, the joint’s velocity appears to
be unable to change very quickly. In order
to isolate these features so that they can
be quantified and more precisely character-
ized, we perform a series of experiments on
the joints.
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lar trajectory of the rotator joint in
test case with θtest = 40

For these experiments, we set R(t) to a
test trajectory given by

R(t) =

{
θtest if t <

tstep

2
0 if t ≥ tstep

2

(1)

Since the sequence of requests is contin-
uously repeated, this has the effect of alter-
nating between requesting angles of 0 and
θtest. A graph of R(t) with θtest equal to 40
and the resulting actual angle is shown in
Figure 3.

This figure identifies a number of important facets that a model of the joint
must have. First, when the requested angle suddenly changes by 40◦, there is
a period of time before the joint responds at all. We denote this lag time by l.



A Model-Based Approach to Robot Joint Control 301

Then, after the lag time has elapsed, there is a period of time during which the
joint accelerates toward its new set point. This acceleration time is denoted by
a. After this, the joint’s angular speed appears to plateau. We postulate that
this maximum angular speed is the physical limit of the joint’s speed, and we
denote it by vmax.

At this point, two questions need to be answered. First, will a larger angle
difference induce an angular speed greater than vmax, or is vmax really the joint’s
top speed? Second, is the acceleration time best modeled as a limit on the joint’s
angular acceleration, or as a constant acceleration time? These questions can
both be answered by performing the same test but with θtest equal to 110 degrees.
The results of this test are shown in Figure 4.
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lar trajectory of the rotator joint in
test case with θtest = 110

In this situation, the joint has the same
maximum angular speed as in Figure 3.
This confirms that the joint cannot rotate
faster than vmax, regardless of the differ-
ence between the requested and actual an-
gles. Meanwhile, this test disproves the hy-
pothesis that the acceleration time is due
to a constant limit on the angular acceler-
ation of the joint. This is because the joint
takes the same amount of time to acceler-
ate from angular velocity 0 to −vmax in
Figure 3 as it does to go from vmax to
−vmax in Figure 4. A constant accelera-
tion limit hypothesis would predict that the second acceleration would take
twice as long as the first one.

Although the joint’s angular velocity is bounded by vmax, it is still the case
that, within a certain range of differences between the requested and actual
angle, the higher that difference is, the faster the joint will tend to rotate. This
suggests the use of a function f defined as:
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f(x) =

⎧
⎨

⎩

vmax if x ≥ θ0

x · vmax
θ0

if − θ0 < x < θ0

−vmax if x ≤ −θ0

(2)

where θ0 is a constant that denotes the size of the dif-
ference between the requested and actual angle that is
needed for the joint to move at its maximum angular
speed. Figure 5 depicts the function f .

In order to capture the effect of an acceleration time,
we set our model’s velocity to an average of a values of f .
The model’s values for the joint angle, which we denote by MR(t), are defined by:

MR(t) = MR(t − 1) +
1
a

l+a∑

i=l+1

f(R(t − i) − MR(t − 1)) (3)
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Table 1. Model Parameters

Parameter Description Value
vmax Maximum Angular Speed 2.5 degrees/tu

θ0 Angle Difference Threshold 7.0 degrees
l Lag Time 4 tu

a Acceleration Time 6 tu

where R(t) is the sequence of requested angles. Since the most recent value of R
that is included in this definition is R(t − l − 1), the model captures the notion
that any request takes a lag of l time steps before it begins to affect the joint.
Finally, since the model’s velocity is the average of a values of f , and f ’s absolute
value is bounded by vmax, the model captures the fact that the joint never moves
at a speed greater than vmax.

Although the model and its parameters were determined using only the re-
quest trajectories in Equation (1), it is highly accurate under a wide range of
circumstances. Measurements of the fidelity of the model in our experiments are
given in Section 5.

Table 1 summarizes the model’s parameters and their values, as determined
experimentally, for the Aibo. We use tu to denote our eight millisecond unit
of time.

It is worth noting that although the Aibo’s joints are PID controlled, the
features captured by the model are not predicted by that fact. PID control
does not predict a maximum angular speed, and it does not explain the lag
between the requests and their effects. This suggests that for the purposes of
joint modeling, it is not particularly helpful to think of the Aibo joints as being
PID controlled.

4 Inverting the Model

In order to compel the joint to move in our desired trajectory, which we call D(t),
we need to be able to convert it into a set of requests I(t) such that when the
values given by I are sent to the joint, the resulting behavior of the joint matches
D(t) as closely as possible. In terms of the model, given D(t) we would like to
find I(t) such that MI(t) = D(t). This is the process of inverting the model.

4.1 Inverting the Model Explicitly

The first problem we encounter when trying to invert the model is that by the
model, regardless of I(t), the joint’s angular speed is bounded by vmax. That is,
|MI(t)−MI(t−1)| ≤ vmax. If D(t) violates this constraint, it is not in the range of
the model, and there are no requests I(t) such that MI(t) = D(t). In fact, many
of the angular trajectories we get from inverse kinematics violate this constraint.
It is theoretically impossible for the model to return these trajectories exactly.
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Even when we know it is impossible to invert the model on a particular
trajectory, one possibility is to try to construct an approximation to D(t) that is
in the range of the model and invert the model on that instead. However, doing
so in general is complicated by the fact that f is not invertible, and in the range
that it is invertible, there are points with infinitely many inverses.
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tion. Note that the approximation
diverges from the desired trajectory
on the left side due to the slope re-
striction on the linear segments

We circumvent this problem by restrict-
ing our approximation of D(t) to be a piece-
wise linear trajectory, which we call P (t),
with the property that the slope of each line
segment is less than or equal to vmax in ab-
solute value. Note that since P (t) is a trajec-
tory of joint angles, these segments represent
an angle that varies linearly with respect to
time (i.e. with a constant angular velocity).
An example piecewise linear approximation
is shown in Figure 6. One may be able to au-
tomate this approximation, even subject to
the restriction on minimum and maximum
angular velocity. However, for the purposes
of this paper the approximations are con-
structed manually.

Although P (t) is not invertible in the model (due to instantaneous velocity
changes), we can invert the mathematical model on the component line seg-
ments. Recombining these inverse line segments appropriately yields a series of
requests, R(t), such that the result of applying the model to it, MR(t), is a close
approximation to P (t), which is in turn a close approximation to D(t).

4.2 Inverting Lines

Our proposed method relies on being able to determine the inverses of lines
according to the model. That is, given a particular linear trajectory, what angles
should be requested so that the given trajectory is actually achieved by the joint?
The answer is a linear trajectory that has the same slope as the desired line but
differs from it by a constant that depends on its slope. This is only possible when
our line’s slope corresponds to an angular velocity that is actually attainable, so
we will restrict our attention to the case where the absolute value of the slope
of the line is less than or equal to vmax.

Consider a linear series of requests, L(t). We say that L(t) has slope m, where
m is L(t) − L(t − 1) for all t. We temporarily restrict our attention to the case
where |m| < vmax and furthermore assume without loss of generality that m ≥ 0.
We will determine the image of L(t) in the model, ML(t). Since this will turn
out to be a line of the same slope, it will enable us to compute the inverse of
any line whose slope is in range.

We would like to be able to reason about the angular distance between points
on the requested line and those on the resulting line according to the model, and
specifically how that distance changes over time. Thus we denote the angular
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distance L(t) − ML(t) by δ(t). First, however, we must understand how ML(t)
changes as a function of δ(t). This can be seen by plugging L into Equation (3)
(for R):

ML(t) = ML(t − 1) +
1
a

l+a∑

i=l+1

f(L(t − i) − ML(t − 1)) (4)

Taking advantage of the fact that L is linear, we replace L(t − i) with L(t −
1)−m(i−1). Thus L(t−i)−ML(t−1) is equal to L(t−1)−ML(t−1)−m(i−1),
or δ(t − 1) − m(i − 1). This enables us to rewrite Equation (4) as:

ML(t) = ML(t − 1) +
1
a

l+a∑

i=l+1

f(δ(t − 1) − m(i − 1)) (5)

This equation tells us how the the model’s value for the angle varies as a
function of the angular distance δ(t). In order to capture this relationship more
concisely, we define the function S to be:

S(x) =
1
a

l+a∑

i=l+1

f(x − m(i − 1)) (6)

Thus we can characterize the relationship between ML and δ as ML(t) =
ML(t − 1) + S(δ(t − 1)). Now that we understand how δ influences ML, it is
useful to analyze how δ(t) changes over time. We can isolate this effect by using
the definition of δ(t) to replace ML(t) with L(t) − δ(t). This gives us:

L(t) − δ(t) = L(t − 1) − δ(t − 1) + S(δ(t − 1)) (7)

Then, since L(t) = L(t − 1) + m, we can rearrange as:

δ(t) = δ(t − 1) + m − S(δ(t − 1)) (8)

This equation indicates that as time progresses, δ(t) approaches an equilib-
rium where S(δ(t)) = m. That is, δ(t) approaches a constant, which we denote
by Cm, such that S(Cm) = m. Since ML(t) = L(t)−δ(t), this means that ML(t)
approaches L(t) − Cm.

Given a desired linear angular trajectory, DL(t), with slope m, Cm is the
amount that must be added to DL to get a sequence of requests such that the
actual joint angles will approach our desired trajectory. Thus inverting each of
our component line segments involves computing Cm for m equal to the slope
of that segment. Unfortunately, calculating Cm in terms of m explicitly is not
straightforward. Since S is defined as the average of a instances of the function
f , we would need to determine which case in the definition of f is appropriate
in each of those a instances. Nonetheless, we are able to approximate Cm quite
accurately by approximating the sum in Equation (6) with an integral. The
computation of Cm and an overview of its derivation are in the appendix.
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In the case where m = vmax, Cm is not well defined, since S(x) = vmax for
any sufficiently large value of x. In fact, if f(x − vmax(l + a)) ≥ vmax, then all
of the values of f being averaged in the definition of S take on the value of
vmax, and thus S(x) equals vmax. This occurs when x ≥ θ0 + vmax(l + a). In
this situation, L(t) and ML(t) will both keep increasing at a rate of vmax, so
the distance between them will not change. Thus we use the threshold value of
θ0 + (l + a)vmax for Cm and rely on switching between the inverses of the line
segments at the right time to ensure that the actual angle trajectory stays close
to the desired line.

4.3 Combining Inverted Line Segments

Our piecewise linear approximation, P (t), is comprised of line segments DL(t)
with slopes m. For any one of these line segments, we know that by requesting
values of DL(t) + Cm, the joint angle will closely approximate DL(t). For the
joint to follow P (t) to a close approximation the whole way through, we must
transition between these lines at the appropriate times.

After the requests switch from one inverted linear trajectory to another,
how long will it take for the joint to switch between the corresponding desired
trajectories? According to the model, there is a lag time, l, before any effect
of the change will be observed. After that, the joint will accelerate from one
linear trajectory to the other over the course of an acceleration time of length
a. Ideally then, the desired piecewise linear trajectory, P (t), would transition
between components in the middle of this acceleration period. In order to achieve
this, we transition between inverted line segments l + a

2 time units before the
transition between desired line segments. This completes the specification of our
approach.

The whole process takes a desired angle trajectory, constructs a piecewise
linear approximation to it, and formulates requests to the joint based on that
approximation. These three trajectories and the resulting actual trajectory are
shown in Figure 7. Notably, the actual trajectory runs very close to the piecewise
linear approximation.

5 Experimental Results

The goal of this process is for the robot to move each joint so that it follows
a desired trajectory as closely as possible. We can evaluate the success of the
method by calculating the angular distance between the desired trajectory and
the actual one (as depicted in Figure 7).

Although we have described our approach thus far using the Aibo’s rotator
joint as an example, we have implemented it on all three of the joints of an Aibo
leg. Interestingly, we found the parameters of our model to be exactly the same
for all three of the leg’s joints. We analyze the method’s success on all three
joints.
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Fig. 7. This graph depicts the orig-
inal desired angle trajectory, the
piecewise linear approximation, the
requests that are derived from that
approximation, and the actual an-
gle trajectory that results from this
process

We treat an angle trajectory as a tstep-
dimensional vector, where tstep is the num-
ber of requests that comprise one Aibo step
(88 in our case), and calculate the L2 and
L∞ norms between the vectors correspond-
ing to two trajectories. We consider distances
between four different trajectories for each
joint: Des, the desired trajectory, Dir, the
actual angles under the direct method of set-
ting the requests equal to the desired an-
gles, Pwl, the piecewise linear approxima-
tion, and MB (Model-Based), the actual an-
gle trajectory achieved by the our approach.
Since these distances can vary from one Aibo
step to the next, the numbers given in Ta-
ble 2 are averages and standard deviations
taken over 20 steps.
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The actual angles achieved by our method
come much closer to our desired angle tra-
jectories than the ones obtained by setting
the requested angles equal to the desired an-
gles, as shown in the two bold rows. The very
small distances between Pwl and MB indi-
cate the strength of the fidelity of the model.

We also compare the attained spatial tra-
jectory of the Aibo’s foot to the desired spa-
tial trajectory (see Figure 8). Here we mea-
sure the improvement in the Euclidean dis-
tance between the desired and attained foot
trajectories. We calculate the distance be-
tween the desired and actual foot location at
each time and apply the L2 and L∞ norms
to these distances. The direct method yields
an L2 distance of 3.23 ± 0.01 cm and L∞
of 4.61 ± 0.05 cm. Our model-based method
gives us an L2 of 1.21 ± 0.04 cm and an L∞
of 2.34 ± 0.12 cm.

Finally, we compare our method to the following process. For any value of k,
consider setting requested angles R(t) equal to D(t+k). That is, let the requests
be exactly the same as the desired angles, but offset by a fixed amount of time.
For each of the tstep possible values of k, we can compute the distance between
the resulting actual angle trajectory and the desired one. The minimum of these
distances with respect to k provides a measure of how much of our improvement
can be attributed to modeling the lag in the joints. The distances returned by
this approach were an L2 of 1.55 ± 0.04 cm and an L∞ of 3.57 ± 0.08 cm.
These distances are smaller than those achieved by the direct method, but still
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Table 2. Distances between angle trajectories

Comparison Rotator Abductor Knee
L2(Des, Dir) 31.0(±0.2) 29.0(±0.2) 20.1(±0.1)
L∞(Des, Dir) 57.2(±0.3) 59.5(±0.5) 42.6(±0.3)

L2(Des, MB) 9.1(±0.2) 10.4(±0.1) 5.6(±0.2)
L∞(Des, MB) 29.4(±0.8) 24.5(±0.7) 11.1(±0.5)
L2(Pwl, MB) 2.7(±0.4) 2.7(±0.3) 2.6(±0.2)

L∞(Pwl, MB) 6.4(±0.6) 6.0(±0.4) 6.2(±0.7)

significantly greater than the distances attained by our model-based method.
This result indicates that the success of our approach is due to more than its
ability to model lag in the joint.

6 Conclusion and Future Work

This paper demonstrates the development of a detailed joint model of a popu-
lar, commercially available robotic research platform. We show all the steps of
the derivation of this model using a generally applicable methodology. We then
approximately invert the model to determine control requests that cause the
robot’s joints to move in a desired trajectory. Using this approach, we success-
fully bring the robot’s actual motions significantly closer to the desired motions
than they were previously.

The high-level motivation for this research is to enable direct tuning of the
legs’ trajectories while walking. In addition to applying the proposed approach
towards that task, there are three main ways in which the work can be extended
in future research. First, since the experiments reported in this paper were per-
formed with the robot held in the air, we have a model of how the joints behave
when the external torques being exerted on them are relatively small. An ex-
tension of this work would be to model how the joints respond to significant
external torques, e.g. the torques that are exerted when a robot walks on the
ground. Second, our approach could also be extended by implementing it on
other platforms. Doing so will help elucidate the class of robotic problems on
which these techniques are effective. Third, a possibility for future work is for
the robot to learn the model of its joints automatically from experience based
on its knowledge of the joint requests and actual angles over time. This would
have the benefit that the robot could adjust its model over time to compensate
for changing properties of the joints. While it would be challenging to learn a
model of arbitrary functional form, we surmise that tuning the parameters of a
model, such as l and a in our case, would be relatively straightforward. In this
regard, one contribution of the research reported here is an identification of a
class of functions that could be used as the space of models to explore during
the learning process.
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Appendix

This appendix describes the computation of Cm from m and gives an overview
of the derivation. As discussed in Section 4.2, Cm is the amount that must be
added to a line of slope m to get its inverse, and we are considering the case
where mε[0, vmax). The definition of Cm is that m = S(Cm), where S is defined
in Equation (6). The first step is to replace the sum in that definition with the
corresponding integral, so that m = S(Cm) becomes:

m =
1
a

∫ l+a

l

f(Cm − mi) di (9)

Next, since the definition of f is split into cases based on whether its argument
is greater than −θ0, and θ0, important thresholds in the analysis of Equation (9)
are values of i for which Cm − mi = −θ0, and θ0. We then divide our analysis
into cases based on where these two thresholds fall with respect to our limits of
integration (e.g. less than both, between them, or greater than both).

This results in three cases, each of which can be analyzed independently. Due
to the particular parameters in our model, this analysis reduces to two cases.
Finally, Cm is computed as follows. First, determine whether or not the following
inequality holds:

m

(
θ0

vmax
+

a

2

)
< θ0 (10)

If it does, Cm is given by the equation:

Cm = m

(
θ0

vmax
+ l +

a

2

)
(11)

If not, it is instead given by:

Cm = θ0 + m

⎛

⎝l + a −
√

2θ0

m
· a(vmax − m)

vmax

⎞

⎠ (12)

This computation of q relies on two numerical facts regarding the parameters
of our model. These are:

θ0 > vmax and 4θ0 > vmaxa (13)

If these are not true, there may be more cases involved in the computation
of Cm.
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Evolutionary Gait-Optimization Using a Fitness
Function Based on Proprioception�
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Center for Computing Technology (TZI), FB 3, Universität Bremen
roefer@tzi.de

Abstract. This paper presents a new approach to optimize gait param-
eter sets using evolutionary algorithms. It separates the crossover-step
of the evolutionary algorithm into an interpolating step and an extrapo-
lating step, which allows for solving optimization problems with a small
population, which is an essential for robotics applications. In contrast
to other approaches, odometry is used to assess the quality of a gait.
Thereby, omni-directional gaits can be evolved. Some experiments with
the Sony Aibo models ERS-210 and ERS-7 prove the performance of the
approach including the fastest gait found so far for the Aibo ERS-210.

1 Introduction

In the Sony Four-Legged Robot League, two teams of four Sony Aibos each
compete on a field of approximately 4.2 m × 2.7 m. For 2004, the two models
allowed to be used are the ERS-210 and the ERS-7 (cf. Fig. 1a). As in all
RoboCup leagues, speed is an essential factor in the game. Therefore, quite a
lot of work has been done to optimize the gait of the Aibo using a variety
of different approaches. In [3], a stationary state evolutionary algorithm was
used to optimize the gait of the Aibo ERS-110, based on research done with
Aibo’s predecessor [4]. Thereby, a maximum speed of 100 mm/s was reached.
On the ERS-210, Powell’s method for multidimensional minimization was used
to optimize the gait parameters [5]. The maximum speed reached was 270 mm/s.
With an evolutionary hill climbing with line search approach, a parameter set
resulting in a maximum speed of 296.5 mm/s was found [7]. In both latter
works, the shapes of the foot trajectories were optimized. Using a variation of
standard policy gradient reinforcement learning techniques, a maximum speed
of 291 mm/s was reached, using a static, half-elliptical foot trajectory shape. In
that paper it was also argued that the shapes of the foot trajectories sent to the
robot significantly differ from the shapes actually performed, and therefore the
adaptation of the shape of the locus is not necessarily important.

The typical training setup used in [4, 3, 5, 7, 6] was as follows: the robot walks
from one side of the field the other one, then it turns on the spot and walks

� The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 310–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a) b)

Fig. 1. a) The Aibos ERS-210 and ERS-7. b) A leg of an ERS-210 (modified from [6])

back to the first side, and so on. For orientation, it uses two beacons placed on
both sides of the field (or color stripes in a pen in [4, 3]). The beacons are used
to measure the speed of the walk as well as when to stop and to turn around.
While in [4, 3, 5, 7] single robots are used, [6] trained three robots at once, thereby
reducing the learning time by factor three. In [4, 3, 5, 7], the optimization was
done on-board the robot. In contrast, [6] used an off-board computer for learning
that controls the three robots used for evaluating different walk parameter sets.

2 Experimental Setup

The major drawback of the approaches described in the previous section is that
they only optimize the gait for walking straight ahead with a more or less steady
head. However, in most situations in actual RoboCup games, the robots have
to perform different motions, especially when following the ball. They have to
turn left and right while walking, move sideways and sometimes backwards. All
these dynamic elements required for games cannot be learned when the robot
only walks from beacon to beacon. Therefore, a more flexible scheme is required.

2.1 Measuring Robot Motion

So it must be possible to measure omni-directional robot motion. On the one
hand, it is necessary to measure how good the motion performed matches the
motion that was desired, on the other hand, the scheme must be simple enough
to be performed at the actual competition site, because the carpet used there
can differ from the carpet the robot was originally trained with in the laboratory.

Using a Self-Localization Method. All RoboCup teams have already im-
plemented some kind of metric self-localization for their robots. They are either
based on particle filters [10] or on extended Kalman filters [12]. However, both
methods are based on an estimate of the actual motion of the robot, which is
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used to bridge the time between the recognition of external references such as
the beacons or the edges of the field [10]. This estimate is based on odome-
try. However, in contrast to wheeled motion, the four-legged robots typically
use forward-odometry, i. e., the actual motion of the robot is not measured, but
instead it is assumed that the motion requested is actually performed by the sys-
tem. In fact, the walking engine is manually calibrated to execute the requested
motions as precise as possible. Hence, forward-odometry just means to sum up
the requested speeds for forward, sideward, and rotational motion, because it
is assumed that this will also be the resulting motion. Although this assump-
tion is too optimistic anyway, it is quite obvious that it will certainly be false
if new walk parameters are tested. Therefore, using traditional self-localization
methods to judge the quality of a new gait will fail.

Using an External Sensing System. Another possibility would be to use
an external sensing system to measure the actual motion of the robot. This
can either be an overhead camera as used in the Small-Size League, or a laser
scanner, as used in [11]. However, both methods are not suitable for training
at the actual competition site, because there may be no possibility to mount a
camera above the Legged League field, and the fields cannot be reserved long
enough to be exclusively used for training with a laser scanner that must always
be able to see the robot.

Using Proprioception. The solution is to use real odometry. The Sony Aibo
robot is equipped with sensors that can detect whether a foot touches the ground
or not. In addition, it can measure the actual angles of all joints. Thus using
forward kinematics, the actual motion of the feet can be calculated, especially
the part of it, in which they have contact to the ground. If this is done for at
least two feet, the actual motion of the robot can be reconstructed, as long as
the feet do not skid over the ground. It is assumed that skidding feet will result
in an uneven walk, which can be detected by another proprioceptive system of
the Aibo: its acceleration sensors in x, y, and z direction.

2.2 Odometry

Since gaits using the typical PWalk-style originally introduced by the team from
the University of New South Wales [2] are state of the art, such a kind of walk
is also used for the work presented in this paper (cf. Fig. 3). This is important,
because with this kind of walk, only the contact sensors of the hind legs touch
the ground, and therefore, only these two sensors can be used for calculating the
motion of the robot. The current position of such a ground contact sensor can
easily be determined based on the measurements of the angles of the three joints
the Aibo has in each leg using forward kinematics. These angles are automati-
cally determined by the Aibo every 8 ms. The three-dimensional positions (cf.
Fig. 1b) for the left and right hind feet change over time with the motion of the
legs and can be computed relative to some origin in the body of the robot. How-
ever, for odometry, only their lengthwise and sideward components are required.
Therefore, pleft

t and pright
t are only two-dimensional vectors.
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a) b) c) d)

Fig. 2. Principle of treating legs as wheels [9]. Walking a) forwards, b) sideways. c)
Turning. d) Turning while walking forward

Fig. 3. The Aibo ERS-210 walking with 311 mm/s

The overall offset a hind leg h has walked during a period of time ta . . . tb can
be determined by summing up all the 2-D offsets between successive positions
at which the foot had contact to the ground:

dh
ta,tb

=
(

dxh
ta,tb

dyh
ta,tb

)
=

tb∑

t=ta+1

{
ph

t − ph
t−1 , if gh

t ∧ gh
t−1

0, , otherwise (1)

g just states whether the ground contact sensor of leg h was active at time t or
not. Since each leg has sometimes contact to the ground and sometimes not while
walking, it is important to always determine the distance with ground contact
for a complete step phase. Otherwise, the distances measured by the left and the
right feet are not comparable.
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For quadruped walking, the three requested motion speeds xr, yr, and θr are
overlaid to result in the actual xh and yh amplitudes of the legs. The walking
engine of the GermanTeam [9] uses the following equations for the two hind legs.
Please note that the feet move always in the opposite direction of the robot’s
body, so everything is negated (r is the radius to the body center):

xleft = −xr + rθr (2)
yleft = −yr + rθr (3)

xright = −xr − rθr (4)
yright = −yr + rθr (5)

For odometry, everything is the other way round. The foot motion is known,
and the speed components have to be calculated. By transforming the motion
equations, the measured walking speeds xm, ym, and θm can be calculated from
the measured ground contact distances dleft and dright. Please note that dx and
dy measure only half of a step phase (while the corresponding foot touches the
ground), so everything measured is multiplied by 2, i. e. all divisions by 2 are
missing:

xm
ta,tb

= −dxright
ta,tb

+ dxleft
ta,tb

tb − ta
(6)

ym
ta,tb

= −dyright
ta,tb

+ dyleft
ta,tb

+ dxright
ta,tb

− dxleft
ta,tb

tb − ta
(7)

θm
ta,tb

= −dxright
ta,tb

− dxleft
ta,tb

r(tb − ta)
(8)

3 Evolutionary Algorithm

In evolutionary algorithms, a population of individuals is used to find a solution
for a given problem. Each individual has a number of genes gi that represent
possible values for the variables of the problem. In each evolution step, the fitness
f is determined for each individual, i. e., the current values of its genes are used
to solve the problem and the solution is assessed by a so-called fitness function.
Then, based on the current population and the fitness of its individuals, a new
generation is created that replaces the current one. There are two major methods
to generate individuals for the next population that can be combined in a lot of
different ways: mutation and crossover. Mutation just adds noise to the genes of
an individual and thereby creates a new one. In the crossover, the genes of two
individuals are combined two a new one. There exist quite a lot of methods to
select individuals for mutation or crossover [1].

In the work presented here, the genes represent the parameters of a gait.
The fitness cannot directly be calculated, instead it has to be determined based
on measurements, i. e. the gait parameter set has to be tested by letting the
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robot actually walk with these parameters. Thus, the fitness for a certain set of
parameters has to be assumed to be noisy, so each time it will be measured it will
be slightly different. This is especially true for learning omni-directional walking,
because it is impossible to test all possible combinations of walking directions and
rotation speeds. Therefore, the selection of individuals is based on a probabilistic
approach. The ratio of an individual fitness to the overall fitness of the whole
population is interpreted as the probability that the parameter set represented
by this individual is the best one. So based on this interpretation, individuals
are drawn from a population to form a new one. For each individual in the new
population, two individuals are drawn from the previous one, and their genes
are crossed. If a new population consists to more than 50% of a single individual
from the previous population, every second individual is mutated.

The initial population is generated from a single individual (a hand-coded
gait parameter set) by mutation. In addition, whenever the battery of the robot
is empty, the best individual found so far is used to form the basis for the next
evolution run.

Mutation. The mutation performed is rather simple. For each gene (i. e. gait
parameter) a mutation radius is defined that has a reasonable size with respect
to the possible range of that parameter. The genes are then mutated by adding
random values within their mutation radius to them.

gnew
i = gold

i random−ri...ri
(9)

Crossover. As a new approach to evolutionary algorithms, there are two differ-
ent methods for crossover: the interpolation and the extrapolation. They are used
alternately, so one generation is created by interpolating between the individuals
of the previous one, and the next one results from an extrapolation between the
individuals of its predecessor. For the interpolating step, two individuals a and
b are selected based on their fitness f and a new one is created by a random
interpolation between their genes:

gnew
i = βga

i + (1 − β)gb
i

where α = random0...1

β = αfa

αfa+(1−α)fb

(10)

While the idea of the interpolating step is to find a solution that is between
two individuals, the extrapolating step shall find a solution that is outside. The
difference between the genes of two individuals is used to extrapolate to one or
the other side. The amount and direction of the extrapolation is again biased by
the fitness of the two individuals selected:

gnew
i =

{
gb

i + (1 − β)(ga
i − gb

i ) , if β < 1
ga

i + (β − 1)(gb
i − ga

i ) , otherwise
where α = random0...1

β = 2αfa

αfa+(1−α)fb

(11)
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That way, a solution can be found by alternately interpolating and
extrapolating—without disturbing mutations. However, if a single individual is
drawn too often, neither interpolation nor extrapolation can generate different
sets of genes. Therefore, mutation is applied in such a case.

3.1 Fitness Function

The fitness function assessing the individual gait parameter sets is the sum of
two values. On the one hand, it is determined, how good the motion performed
matches the motion requested, and on the other hand, the measurements of the
acceleration sensors are used to judge the smoothness of the gait.

Error Function. For each step, the motion actually performed is determined
based on the calculations described in Section 2.2. However, instead of just using
the odometry offset, a special kind of walk is forced by extending equation (1).
In addition to determining the offset a foot moved on the ground, also the offset
is calculated that the foot has moved while the other foot was on the ground.
This second offset is negated and the average of both is used as a replacement for
the original equation for the foot motion. This kind of fitness function enforces
that when one foot is on the ground, the other one will swing in the opposite
direction. Otherwise, the feet may waste time during their air phase by moving
in the wrong direction.

d′h
ta...tb

=
∑tb

t=ta+1

dh,h
t −d

h,other(h)
t

2

where dh,h′
t =

{
ph

t − ph
t−1 , if gh′

t ∧ gh′
t−1

0 , otherwise
(12)

d′ is used instead of d in the equations (6) to (8), resulting in the measured
walking speeds x′m, y′m, and θ′m. They are compared to the requested walking
speeds xr, yr, and θr. These are determined by summing up all the requested
speeds for the same whole step. The error w is determined as follows:

wta...tb
= |x′m

ta...tb
− xr

ta...tb
| + |y′m

ta...tb
− yr

ta...tb
| + α|θ′m

ta...tb
− θr

ta...tb
| (13)

α is a weight that relates errors made in translation to the deviations in rotation.
If more than one step is used for the assessment (which is normally the case),
the average error is used.

Vibration. The acceleration sensors ax, ay, and az of the Aibo measure accel-
erations along the x, y, and z axes of the robot. The amount of vibration during
a walk can easily be determined by calculating the standard deviation of the
measurements:

vta...tb
= stdv(ax

ta...tb
) + stdv(ay

ta...tb
) + stdv(az

ta...tb
) (14)
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Fitness of an Individual. The overall fitness of an individual can then be
computed as a sum of error and vibration. However, since small errors and few
vibrations are desired, both values have to be negated. In addition, they have to
be scaled to relate them to each other (by φ, β, and gamma):

fta...tb
= eφ−βwta...tb

−γvta...tb (15)

4 Results

Experiments were conducted both with the ERS-210 and the ERS-7. As the
ERS-210 was used as test bed in some recent work [5, 7, 6], a similar experiment
is described here in detail. However, as another walking engine was used, the 23
parameters evolved are different. In fact, 26 parameters were evolved, but three
of them are only relevant if the robot is also moving sideways or it is turning.
In the final experiment conducted with the ERS-7, they were also used.

As in [6], a fixed half-ellipsoidal locus shape was used. The parameters are:

– The relative positions of the fore/hind feet as (x, y, z) offsets
– The height of the steps performed by the fore and hind legs
– The tilt of the locus (cf. Fig. 1b) of the fore and hind feet
– The timing of a step. The overall duration of a step is separated into a

ground phase, a lift phase, an air phase, and a lowering phase. Since all
phases sum up to 1, one of them can be calculated from the others and is
left out. Please note that for the half-ellipsoidal shape of the locus used, the
lifting and lowering phases are just waiting positions for the feet. As it will
pointed out later, this does not mean that the feet actually stop during these
phases, because the actual motion of the feet is different from the motion
that they were requested for.

– The step size determines the amplitude of a step (here: only in x direction).
– The duration of a step (in seconds)
– The difference between the speed of the forefeet and the hind feed. In fact,

this value modifies the amplitudes of the motion of the hind feet, so it is
possible that the hind feet perform smaller steps that the front feet (here:
only for x speed).

– A phase shift between the fore and the hind feet
– A body shift in x and y direction. This shifting is synchronous to the phases

of walking, but also a phase shift can be defined. This allows the body to
swing back and forth and left to right while walking.

4.1 ERS-210

The ERS-210 was trained to walk forward as fast as possible. As in [6], a popu-
lation of 15 individuals was used. However, each parameter set was only tested
for five seconds, the last three seconds of which were used to assess the perfor-
mance of the resulting walk. The first two seconds were ignored to eliminate any
influence of (switching from) the previous gait parameter set. The robot walked
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Table 1. The parameters evolved for the ERS-210

Parameter Initial Best
Value Value

Front locus
z offset 76.85 58.97
y offset 78.1 67.24
x offset 55.88 63.26
step height 5.0 6.14
tilt -0.25 -0.48
ground phase 0.5 0.64
lift phase 0.06 0.04
lowering phase 0.06 0.12

Step
size 76.0 89.77
duration 0.64 0.512

Rear to Front offsets
x speed ratio 1.1 1.0
phase shift 0 -0.012

Parameter Initial Best
Value Value

Rear locus
z offset 108.72 111.54
y offset 76.95 58.09
x offset -45.216 -35.96
step height 24.0 27.27
tilt 0.05 0.12
ground phase 0.5 0.34
lift phase 0.06 0.19
lowering phase 0.06 -0.02

Body shift
x ratio 0 1.12
y ratio 0 -0.10
phase offset 0 0.35

from goal to goal and was turned manually. To avoid assessing the time when
the robot was picked up, learning was interrupted when the back switch of the
robot was pressed, and the assessment of the current individual was restarted
when the button was released. To match the conditions in the related work, the
robot’s head did not move.

Learning was started with a variation of the hand-tuned gait of the German-
Team 2003 [9]. The middle position of the hind feet was manually moved to the
front to let the foot sensors have contact to the ground. The initial values of all
parameters are given in Table 1. From this initial setup, the gait was learned
automatically. After about three hours, the fastest gait found by the robot had
a speed of 311±3 mm/s (13.5 s for 4.2 m from goal line to goal line on a Sony
Legged League field), which is also the fastest gait found so far for the Aibo
ERS-210. In addition, the gait is quite smooth, i. e. the head of the robot does
not shake significantly. Under [8] two videos can be downloaded showing the
Aibo walking from the front and from the side. Six images from the latter video
are depicted in Figure 3, showing a single step phase.

In addition, Figure 4 shows the trajectories of the feet and the knees of
the robot. Please note that for the front legs (on the right in both subfig-
ures), the robot is walking on its knees. Thus the feet never have contact to the
ground. In [5, 7] it is analyzed, which shape of a foot trajectory is optimal. How-
ever, the resulting trajectories of the feet were never investigated in that work.
Figure 4 shows that there is a severe difference between the shape of the locus
that was desired (half-elliptical), and the resulting shape. While the knees fol-
low the given trajectory quite well (in fact they never reach the maximum front
point and overshoot the maximum back point), the feet have very significant de-
viations. The resulting trajectory of the hind feet can be explained by over- and
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a) b)

Fig. 4. The motion of the legs when moving with 311 mm/s (the orientation of the
robot is the same as in Fig. 3). The dashed lines show a single snapshot of the positions
of the legs. The dotted curves depict the trajectory of the feet and the knees as sent to
the robot. The solid curves visualize the motion of the knees and the feet as measured
by the joint sensors. a) Trajectories of a picked-up robot. b) Trajectories when walking
on the ground. When ground contact was detected, the solid curve is drawn in gray

undershooting the given trajectory (it overshoots less when the robot is picked
up, cf. Fig. 4a), but the control system seems to have real problems in following
the desired loci of the forefeet.

4.2 ERS-7

All other experiments were conducted with the new Aibo model ERS-7, because
it will be used in RoboCup 2004. However, the results are preliminary, because
the experiments were only conducted with the beta version of the control soft-
ware at a stage in which also the porting of the code from the ERS-210 to the
ERS-7 was not completely finished. A major problem with the ERS-7 was that
it switched itself off if there was too much load on one of its legs, and that this
condition could easily be reached. These problems were only solved in the second
release of the final version of the operating system, which came to late to repeat
the experiments for this paper. So training the ERS-7 was a little bit compli-
cated, because sometimes it had to be restarted after a few minutes. However,
quite impressive results were achieved.

Walking Straight Ahead. The experiment conducted with the ERS-210 was
repeated with the ERS-7. The robot is much more powerful, so it was able to
reach 400±3 mm/s using a gait with 2.3 steps/s. The general appearance of the
gait is quite similar to the gait of the ERS-210.

Walking Straight Backward. Then, the ERS-7 was trained to walk straight
backward using the same experimental setup as before. The resulting gait per-
forms less steps per second (1.9) and the robot is significantly slower (294 mm/s).
In this walk, the robot still walks on the knees of the fore legs and the hind feet
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(which was more or less predefined by the hand-tuned walk that was used as a
start). The result shows that walking on the knees in walking direction is su-
perior to using the knees as hind legs (with respect to the walking direction).
However, the speed of a gait only walking on the four feet still has to be tested,
but the training may be complicated because such a gait it is less stable and the
robot may often fall down.

Following the Ball. As the main goal of this work was to be able to train a
gait under more realistic conditions, the ERS-7 was also trained while following
the ball. In this setup, the ball was moved manually and the normal go-to-ball
basic behavior from the GermanTeam’s code was used to follow the ball. Again,
each walking parameter set was switched every five seconds, and again, only
the last three seconds were assessed. Learning was only interrupted when the
motion requested by go-to-ball was too slow, because in such cases any kind
of walk parameter set would get a good assessment. The ball was moved in a
way that resulted in a good mixture between walking straight (less often) and
turning for the ball (more often, due to the small field). The gait parameters
were initialized with the ones from the fastest straight ahead gait of the ERS-7.
After about of three hours of training, the Aibo had learned a gait with 3.1
steps/s, a maximum forward speed of 331 mm/s, and a rotation speed of 195◦/s.
The sideward and backward speeds were low, because the go-to-ball behavior
seems not the use these motion directions. Due to the very high step frequency,
the gait is extremely reactive.

5 Conclusions and Future Work

This paper presented a new approach to optimize gait parameter sets using evo-
lutionary algorithms. On the one hand, it is the first method that is potentially
suitable to learn appropriate parameter sets for any motion required in RoboCup,
on the other hand, separating the crossover-step of the evolutionary algorithm
into interpolation and extrapolating proved to be a good means to optimize the
parameter sets. As a result, the fastest gait of the Aibo ERS-210 known so far
has been found, outperforming the runner-up by 5%. In addition, preliminary
experiments with the new Aibo ERS-7 also showed promising results.

However, as has already pointed out in [5], the more general a gait is, the less
fast it will be. Therefore, several parameter sets have to be combined, each for
a certain range of walking directions and rotations. This way, the gaits evolved
for the ERS-7 were combined and used by the Bremen Byters at the RoboCup
German Open 2004. They turned out to be the fastest gaits for forward mo-
tion, backward motion, and rotation in the whole competition, although other
teams had also experimented with evolutionary gait optimization. In addition,
the odometry calculation presented in this paper replaced the original forward
odometry, because it scales better with different walking speeds.
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However, since they were trained independently from each other, the tran-
sition between them is not guaranteed to be smooth, i. e. the robot may stum-
ble. For instance, although they have a different step frequency, switching be-
tween the fast forward gait and the ball follower gait of the ERS-7 seems to
work quite fine, while the transition between the ball follower (forward) gait
and the backward gait is uneven. Therefore, several parameter sets for differ-
ent directions/rotations have to be learned at once with interpolations between
neighboring sets. Thus the transitions between the sets should be smooth, but
it is still possible to have specialized sets for certain motions such as walking
straight ahead.
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Abstract. Generation of a sequence of behaviors is necessary for the
RoboCup Humanoid league to realize not simply an individual robot
performance but also cooperative ones between robots. A typical exam-
ple task is passing a ball between two humanoids, and the issues are:
(1) basic skill decomposition, (2) skill learning, and (3) planning to con-
nect the learned skills. This paper presents three methods for basic skill
learning (trapping, approaching to, and kicking a ball) based on optic
flow information by which a robot obtains sensorimotor mapping to re-
alize the desired skill, assuming that skill decomposition and planning
are given in advance. First, optic flow information of the ball is used
to predict the trapping point. Next, the flow information caused by the
self-motion is classified into the representative vectors, each of which is
connected to motor modules and their parameters. Finally, optical flow
for the environment caused by kicking motion is used to predict the ball
trajectory after kicking. The experimental results are shown and discus-
sion is given with future issues.

1 Introduction

Recent progresses of humanoid robots such as ASIMO [3], QRIO [6], HOAP
[8], and MORPH [2] have been attracting many people for their performances
of human like behaviors. However, they are still limited to very few behaviors
of individuals such as walking and so on. In order to extend the capability of
humanoids, various kinds of behaviors with objects or other agents should be
developed. RoboCup has been providing an excellent test-bed for such a task
domain, that is, ball operation and cooperation with teammates (competition
with opponents) [5]. Towards the final goal of RoboCupSoccer, the humanoid
league has been held since 2002 in Fukuoka, and several technical challenges such
as standing on one leg, walking, and PK have been attacked. However, the level
of the performance is still far from the roadmap to the final goal [4]. Further,
many teams developed humanoid behaviors based on the designers knowledge
on the environment, and therefore seem to be brittle against the environmental

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 323–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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changes. It is expected that a robot obtains the environmental model through
the interactions with its environment.

Optical flow has been used to learn the sensorimotor mapping for obstacle
avoidance planned by the learned forward model [7] or by finding obstacles that
show different flows from the environments using reinforcement learning [9]. In
addition, it is used for object recognition by active touching [1]. In these studies,
the number of DoFs is much fewer than humanoids; therefore, it seems difficult to
apply their methods to realize various kinds of humanoid behaviors. Especially,
generation of a sequence of behaviors is very hard but necessary for the RoboCup
Humanoid league to show not simply an individual robot performance but also
cooperative ones between two robots. In the latter case, the following issues
should be considered:

1. decomposition into basic skills,
2. basic skill learning, and
3. switching the learned skills to generate a sequence of behaviors.

A typical example task is passing a ball between two humanoids (face-to-face
pass). Since attacking all of these issues together is so difficult, we focus on the
second issue, and present three methods for basic skill learning (trapping, ap-
proaching to, and kicking a ball) based on optic flow information by which a
robot obtains sensorimotor mapping to realize the desired skill, assuming that
skill decomposition and planning are given in advance. First, optic flow informa-
tion of the ball is used to predict the trapping point. Next, the flow information
caused by the self-motion is classified into the representative vectors, each of
which is connected to motor modules and their parameters. Finally, optical flow
for the environment caused by kicking motion is used to predict the ball trajec-
tory after kicking. The experimental results are shown and discussion is given
with future issues.

2 Task, Robot, and Environment

2.1 Robots Used

Fig. 1 shows biped robots used in the experiments, HOAP-1, HOAP-2, and their
on-board views. HOAP-1 is 480 [mm] in height and about 6 [kg] in weight. It
has a one-link torso, two four-link arms, and two six-link legs. The other robot,
HOAP-2, is a successor of HOAP-1. It is 510 [mm] in height and about 7 [kg] in
weight. It has two more joints in neck and one more joint at waist. Both robots
have four force sensing registors (FSRs) in their foots to detect reaction force
from the floor and a CCD camera with a fish-eye lens or semi-fish-eye lens.

These robots detect objects in the environments by colors. In this experiment,
a ball is colored orange, and the knees of the opponent robot are colored yellow.
The centers of these colored regions in the images are recorded as the detected
position.
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Fig. 1. HOAP-1 with fish-eye lens and HOAP-2 with semi-fish-eye lens

2.2 Task and Assumptions

“Face-to-face pass” can be decomposed into a sequence of different behaviors:

– trapping a ball which is coming to the player,
– approaching to kick a trapped ball, and
– kicking a ball to the opponent.

All these basic behaviors need the appropriate relationship between motion
parameters and the environment changes. For example, to trap a ball appropri-
ately, the robots must estimate the arrival time and position of the coming ball.
To approach to a kicking position, the robot should know the causal relationship
between the walking parameters and the positional change of the objects in its
image. Further, to kick a ball to the opponent, the robot must know the causal
relationship between the kicking parameters and the direction the kicked ball
will go.

Environment

sensor

camera

approach

trap

wait

kick

policy select module

planning

sensori-mortor
      MAP

action

policy

stabilize
FSR

Fig. 2. A system overview
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Moreover, basic skills to realize these behaviors should be activated at the
appropriate situations. Here, the designer determines these situations to switch
the behaviors, and we focus on the skill learning based on optic flow information.
Fig. 2 shows an overview of our proposed system.

3 Skill Learning Based on Optic Flow Information

3.1 Ball Trapping

Fig. 4 shows the trapping motion by HOAP-1 acquired by the method described
below. In order to realize such a motion, the robot has to predict the position
and the arrival time of a ball from its optical flow captured in the robot view.
For that purpose, we use a neural network which learns the causal relationship
between the position and optical flow of the ball in visual image of a robot and
the arrival position and time of the coming ball. This neural network is trained
by the data in which a ball is thrown to a robot from the various positions. Fig. 3
shows several prediction results of the neural network after learning. Δx [pixel]
and Δt [sec] indicates the errors of the arrival position and the time predicted
at each point in the robot’s view. Based on this neural network, the robots can
activate the trapping motion module with the appropriate leg (right or left) at
the appropriate timing (Fig. 4).

 140

 120

 100

 80

 60

 40

 80  100  120  140  160  180  200  220  240

trial 1
trial 2
trial 3

x=3
t=0.01

x=3
t=0.03

x=1
t=0.01

x=2
t=0.29

x=1
t=0.12

x=4
t=0.02

x=2
t=0.01

x=16
t=0.19

x=0
t=0.01

x=6
t=0.06

T=1.45

T=0.96

T=1.43
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Fig. 4. An experimantal result of a trapping skill
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3.2 Ball Approaching

Approaching to a ball is the most difficult task among the three skills because
this task involves several motion modules each of which has parameters to be
determined. These motions yield various types of image flows depending on the
values of the parameters which change continuously. We make use of environ-
mental image flow pattern during various motions to approach to the ball.

Let the motion flow vector Δr at the position r in the robot’s view when a
robot takes a motion, a. The relationships between them can be written,

Δr = f(r, a), (1)
a = g(r, Δr). (2)

The latter is useful to determine the motion parameters after planning the mo-
tion path way in the image. However, it is difficult to determine one motion to
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Fig. 7. An example of an optic flow in the robot’s view

realize a certain motion flow because different motion modules can produce the
same image flow by adjusting motion parameters. Therefore, we separate the
description of the relationship between the motion and the image flow into the
relationship between the motion module and the image flow, and the relation-
ship between the motion parameters in each module and the image flow (Fig.
5), as follows.

mi = gm(r, Δr), (3)
a i = (pi

1, p
i
2)

T = gi
p(r, Δr) (4)

Δr = f i(r,a i), (5)

where mi is the index of the i-th motion module and a i = (pi1, pi2)T are the
motion parameter vector of the i-th motion module. In this study, the motion
modules related to this skill consists of 6 modules; straight walk (left and right),
curve walk (left and right), and side step (left and right). Each of the modules
has two parameters which have real values, as shown in Fig. 6.

Given the desired motion pathway in the robot’s view, we can select appropri-
ate module by gm, and determine the motion parameters of the selected motion
module by gi

p based on the learned relationships among the modules, their pa-
rameters, and flows. If the desired image flow yields several motion modules, the
preferred motion module is determined by value function.

Images are recorded every step and the image flow is calculated by block
matching between the current image and the previous one. The templates for
calculating flows are 24 blocks in one image as shown in Fig. 7.

gm. All of the data sets of the flow and its positional vector in the image,
(r, Δr), are classified by the self organizing map (SOM), which consists of 225
(15×15) representational vectors. After the organization, the indices of motion
modules are attributed to each representational vector. Fig. 8 shows the classified
image vector (the figure at the left side) and the distribution of each module in
SOM. This SOM outputs the index of appropriate motion module so that the
desired flow vector in the image is realized.
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Fig. 8. Distribution of motion modules on the SOM of optic flows

fi, gi
p. The forward and inverse functions that correlate the relationship between

the motion parameters in each module and the image flow, f i, gi
p, are realized

by a simple neural network. The neural network in each module is trained so
that it outputs the motion parameters when the flow vector and the positional
vector in the image are input.

Plannning and Evaluation Function. In this study, the desired optic flow
in the robot’s view for the ball and the receiver, sball,sre, are determined as a
vector from the current position of a ball to the desired position (kicking position)
in the robot’s view, and as the horizontal vector from the current position to
the vertical center line, respectively. The next desired optic flow of a ball to be
realized, s̃ball, is calculated based on these desired optic flows,

nstep = ‖sball‖/Δrmax, (6)
s̃ball = sball/nstep, (7)

where Δrmax is the maximum length of the experienced optical flow. This
reference vector is input to the module selector, gm, and the candidate modules
which can output the reference vector are activated. The motion parameters of
the selected module are determined by the function gi

p,

a i = gi
p(rball, s̃ball), (8)

where rball is the current ball position in the robot’s view. When the module se-
lector outputs several candidates of modules, the evaluation function depending
on the task, V (mi), determines the preferred module. In this study, our robots
have to not only approach to a ball but also take an appropriate position to kick
a ball to the other. For that, we set the evaluation function as follows,

selected module = arg min
i∈modules

[
‖s̃ball − f i(rball,a

i)‖ + k‖sre − nstepf
i(rre,a

i)‖
]
,

(9)
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(a) (b)

Fig. 9. Experimental results of approaching to a ball

where k is the constant value, and rre is the current position of the receiver in
the robot’s view.

Fig. 9 shows experimental results of approaching to a ball. A robot success-
fully approaches to a ball so that the hypothetical opponent (a pole) comes in
front of it.

3.3 Ball Kicking to the Opponent

It is necessary for our robots to kick a ball to the receiver very precisely because
they cannot sidestep quickly. We correlate the parameter of kicking motion with
the trace of the kicked ball in the robot’s view so that they can kick to each
other precisely. Fig. 10 shows a proposed controller for kicking.
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Fig. 10. The system for kicking skill



Optic Flow Based Skill Learning for a Humanoid to Trap 331

(a) Kick
parameter

θ4

COP

threshold

y

x

θ4−Δθ

(b) An overview of stabiliza-
tion of kick motion

-30

-25

-20

-15

-10

-5

 0

 0  1  2  3  4  5  6  7  8

po
si

tio
n 

of
 C

op
 [m

m
]

time [sec]

-30

-25

-20

-15

-10

-5

 0

 0  1  2  3  4  5  6  7  8

po
si

tio
n 

of
 C

op
 [m

m
]

time [sec]

without feedback with feedback

feedback threshold

(c) The trajectories of CoP of the support leg during
kicking motion

Fig. 11. The parameter and the stabilization of kicking
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Fig. 13. An experimental result of kicking a ball to the pole

The kicking parameter is the hip joint angle shown in Fig. 11(a). The quick
motion like kicking changes its dynamics depending on its motion parameter.
The sensor feedback from the floor reaction force sensors is used for stabilizing
the kicking motion. The displacement of the position of the center of pressure
(CoP) in the support leg is used as feedback to the angle of the ankle joint
of the support leg (see Fig. 11(b)). Fig. 11(c) shows the effectiveness of the
stabilization of the kicking motion. The initial ball position and the parameter
of the kicking motion affects sensitively the ball trace in the robot’s view. To
describe the relationship among them, we use a neural network, which is trained
in the environment where the pole (10 [cm]) is put about 1 [m] in front of
the robot (Fig. 13(a)). The trace of the ball (the effects of the self motion is
subtracted) is recorded every 100 [msec], and the weights in the neural network
are updated every one trial. Fig. 13(b) shows the time course of error distance
between target pole position and kicked ball in the robot’s view. It shows that
the error is reduced rapidly within 20 [pixel], which is the same size of the width
of the target pole. Fig. 13 shows the kicking performance of the robot.

4 Integration of the Skills for Face-to-Face Pass

To realize passing a ball between two humanoids, the basic skills described in
the previous chapter are integrated by the simple rule as shown in Fig. 14.

kick

wait

trap

approach

if kicked the ball

if the ball
moving here

if the ball is not
in front of foot

if the ball is
in front of foot

if missed kick

Fig. 14. The rule for integrating motion skills
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Fig. 15. An experimental result of passes between two humanoids

Fig. 15 shows the experimental result. Two humanoids with different body and
different camera lens realize the appropriatemotions for passing a ball to each other
based on their own sensorimotor mapping. The passing lasts more than 3 times.

5 Conclusions

In this paper, acquiring basic skills for passing a ball between two humanoids
is achieved. In each skill, optic flow information is correlated with the motion
parameters. Through this correlation, a humanoid robot can obtain the sensori-
motor mapping to realize the desired skills. The experimental results show that
a simple neural network quickly learns and models well the relationship between
optic flow information and motion parameters of each motion module. However,
there remain the harder problems we skip in this paper. First is skill decom-
position problem; it is concerning about how to determine what are the basic
skills for the given task. Second is planning, that is how to organize each motion
module to achieve the given task. In this paper, we assume skill decomposition
and planning are given in advance. Combining the learning in each skill level
with that in higher level is the next problem for us.
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Abstract. Kicking the ball with high power, short reaction time and accuracy 
are fundamental requirements for any soccer player. Human players acquire 
these fine low-level sensory motor coordination abilities trough extended 
training periods that might last for years. In RoboCup the problem has been 
addressed by engineering design and acceptable, probably sub-optimal, 
solutions have been found. To our knowledge the automatic development of 
these abilities has not been yet employed. Certainly no one is willing to damage 
a robot during an extended, and probably violent, evolutionary learning process 
in a real environment. In this work we present an approach for the automatic 
generation (from scratch) of ball-kick behaviors for legged robots. The 
approach relies on the use of UCHILSIM, a dynamically accurate simulator, 
and the Back to Reality paradigm to evolutionary robotics,  a recently proposed 
method for narrowing the difference between simulation and reality during 
robot behavior execution. After eight hours of simulations successful ball-kick 
behaviors emerged, being directly transferable to the real robot. 

1   Introduction 

Kicking the ball with high power, short reaction time and accuracy are fundamental 
requirements for any soccer player. Until now all the four-legged teams use more or 
less the same method for kicking the ball, which works as follows: “First localize the 
robot with respect to the ball and targets, and then trigger some of the recorded ball 
kicks”. We consider that this approach is quite restricted since first, it requires the ball 
to be placed relative to the robot into a discrete set of positions, the problem with this 
is that the robot should invest valuable time on repositioning itself; and second, there 
is only a discrete set of target directions to chose among. Human soccer players are 
able to kick the ball freely, i.e. from almost whatever relative position and with any 
target direction. Moreover within the four legged league we can notice a direct 
relation among the amount of ball-kicking alternatives of players and the team 
success in robot soccer. 

However, some basic requirements are needed before starting to think on applying 
non-constrained ball-kick behaviors. First robots should be able to estimate with 
accuracy the relative ball position at the right instant of ball impact, and second, 
robots should be able to arbitrarily control their limbs with precision. We consider 
that these two requirements are currently fulfilled, at least by the best half portion of 
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the teams competing in the league; therefore it is a good time for further exploring 
this approach. Even more, this ability will be of fundamental importance when 
playing soccer with humanoid robots. Hopefully, in a near future we will see very 
effective fast reactive behaviors, such as a robot in motion kicking the ball while it is 
also in motion or kicking the ball while it is on air, as human players do. 

Another important aspect that we aim to address here is learning. Human players 
acquire these fine low-level sensory motor coordination abilities trough extended 
training periods that might last for years. We believe that this type of reactive 
behavior can be derived from a tight interaction between the robot and the 
environment. There are several good examples in the literature of the successful 
generation of low level behaviors by learning from the real robot experience and 
practice [6][3][4]. However, learning to kick the ball with real legged robots seems to 
be an expensive and time-consuming task. We propose instead to use UCHILSIM, an 
accurate simulator, and the Back to Reality paradigm for combining virtual 
experiences with real ones. Our goal is to produce an optimal ball kick behavior for 
any given robot relative ball position and target direction that the robot might access 
without repositioning itself. 

The remainder of this paper is organized as follows. In section 2 a short overview 
of RoboCup work related to this task is presented. In section 3 the general learning 
architecture that we have used is outlined. In section 4 the learning to kick the ball 
methodology is described. In section 5 the experiments are presented, and finally in 
section 6 the conclusions and projections of this work are presented. 

2   Related Work 

Kicking the ball is a key problem in RoboCup, however it has been addressed mainly 
at a high level within the RoboCup literature. Most of the work is concentrated on 
how to approach the ball and on how to choose the action to be  triggered at the ball 
contact point. However some works are more related with low level behavior 
acquisition such as the work of Endo [1] in which a co-evolution of low level 
controller and morphology is proposed. The work of Hardt [2] surveys the role of 
motion dynamics in the design of control and stability of bipedal and quadrupeds 
robots. It is also related the work of Golubovic [5] which presents a software 
environment specially designed for gait generation and control design for AIBO 
robots. Certainly the work of Hornby [3] in the evolution of gaits for real legged 
robots is one important effort in order to produce low level behaviors from 
environmental interaction in a RoboCup directly related context. Beyond RoboCup 
the literature is quite rich in this subject, we recommend the reader to investigate 
further on the subject of evolutionary robotics [6].   

3   The Learning Architecture 

The experiments presented in this work are based on the recently proposed Back to 
Reality paradigm [7] to evolutionary robotics [6]. The main idea of this approach is to 
let the robots to behave both in their real environment and in a simulation of it. A 
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fitness measure which tells the degree in which certain task is accomplished is 
computed after behavior execution. The difference in fitness obtained in simulation 
versus reality is minimized trough a learning process in which the simulator is 
adapted to reality. In other words the robot continuously generates an internal 
representation of their environment while adapting the simulator. In this way, as 
figure 1 shows, the simulation parameters are continuously tuned narrowing the 
reality-gap along the behavior adaptation process. The adaptation of the simulator is 
dependent on the particular behavior that is executed, thus the behavior defines the 
way in which the world is sampled or observed. During adaptation three learning 
process are taking place, first learning of the robot controller in the simulator, second 
learning of the robot controller in the reality, and finally learning of the simulator 
from real experiences. When the robot learns in reality, the controller is structurally 
coupled to the environment, while it learns in simulations the controller is structurally 
coupled with the simulator. Given these two couplings of the robot controller, it is 
necessary to conceive the robot as the union of the controller, the body and the 
simulator.  

 
 

Fig. 1. How the reality-gap is narrowed by the Back to Reality paradigm (one iteration of the 
procedure is shown). The first/second curve shows the fitness curve f1/f2 over the controller 
parameter space in reality/simulation; the maximal value of fitness f1*/ f2*  corresponds to the 
C1/ C2 controller. The last graph illustrates how the difference between both curves is 
narrowed during the evolutionary process; the fitness curve of the simulator, defined by the 
simulator parameters, converges towards the (real) fitness curve of reality, using the difference 
between the obtained real and virtual fitness as adaptation parameter 

We will use UCHILSIM [8], a dynamically accurate simulator for performing the 
adaptation of the controller under a virtual environment. We use genetic algorithms 
for searching ball-kicks solutions over the space of controller parameters. A fitness 
measure f1/f2 will be used in order to measure the degree in which each individual 
solves the proposed task. Genetic algorithms will also be used for evolving the 
simulator parameters such that |f2-f1| is minimized during the learning process.   

4   Learning to Kick the Ball 

We aim at learning the best ball-kick behavior that the AIBO robot is able to execute 
while introducing a minimum of designer bias. As figure 2 (a) shows, the desired 
behavior should operate over a continuum of robot accessible ball positions and target 
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directions. We define a ball-kick behavior domain as a continuous three dimensional 
space composed by the dimensions of the starting ball distance d [14cm 18cm] 
measured from the robots neck, the robot relative ball angle β [0º 180º] measured 
from the robots right side and the ball target direction defined by an angle 
α [0º 180º] measured from the robots right side.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Illustration of the behavior domain defined by different robot relative ball positions and 
ball target angles. They are first shown (a) for the expected behavior to be generated and (b) for 
the discrete set of points that we consider for learning 

In order to generate an optimal kick for each point (task) in this domain we will 
consider a discrete set of points for learning, as figure 2 (b) shows; two ball distances 
{d1,d2}, three relative angles {β1,β2,β3} and five target angles {α1,α2,α3,α4,α5}, i.e. 
thirty  points in total. We have selected only the right half portion of the range of β 
since we expect solutions to be symmetric around β = 90º. For each one of these thirty 
points, a specific ball-kick behavior will be generated by means of learning the set of 
parameters that define the corresponding sequence of robots limb displacements given 
rise to a ball-kick. The final continuous behavior for an arbitrary point, i.e. ball 
position {d, β} and target angle {α}, will be obtained by interpolating, in parameter 
space, the solutions which are obtained at the neighboring points. In all cases the idea 
is to maximize the distance traveled by the ball while maintaining high accuracy in 
the resulting shooting direction.     

4.1   Parameterization of Ball Kick 

The way in which the ball-kick is parameterized might be a strong source of designer 
bias, therefore care must be taken in order to provide flexibility. We will present a 
ball-kick parameterization which aims at serving as a compromise among simplicity 
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for learning and flexibility for allowing several solutions. Under a physical 
perspective we should consider that a larger amount of energy might be transmitted to 
the ball when all the robot limbs are allowed to move. For example, the legs 
supporting the body can displace the torso and its resulting ground relative speed 
might be aggregated to the torso-relative speed of the limb extreme which finally 
kicks the ball. It is also important to provide freedom with respect to where on the ball 
surface the forces are applied. This freedom might allow the robot to discover, just as 
an example, that kicking the ball on its upper part is more efficient for gaining speed 
than doing that on their lower part (as it happens in the billiard game). Notice that the 
UCHILSIM simulator well suites for such high detail level. 

The configuration sate of a limb is defined by the angular state of their three joins  
{υ,ω,γ}. The trajectory of a limb during a ball-kick might be described using 
hundreds of points in joint space, however we are analyzing only the case of fast 
reactive ball-kicks where no ball repositioning is required prior to ball-kick. For this 
case we estimate that it is sufficiently good to consider just four extreme points of 
displacements for each limb, which are (1) the starting limb configuration, (2) a limb 
configuration where energy is accumulated, (3) the limb configuration at the ball 
contact instant and (4) the ending limb configuration. In this case we consider the 
ending configuration to be the same as the starting limb configuration.  Therefore for 
a given ball configuration and target angle a ball-kick correspond to the  subsequent 
execution of the following four stages, which are depicted on figure 3:  

Fig. 3. Example of the subsequent configurations which are taken by one of the robot limbs 
during the execution of a ball-kick behavior. The limb starts from an equilibrium configuration 
(1), second it passes to a energy accumulation configuration (2), third it triggers the ball-kick 
(3) and finally the robot returns to the starting equilibrium configuration (4). Notice that for 
simplicity this illustration covers the action of just one limb, however the displacement of the 
four legs is considered in the presented experiments 

(4)(3) 

(1) (2)
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1. The robot limbs are in their corresponding starting equilibrium configuration 
which we have selected to be the same as our walking equilibrium configuration. 

2. A transition is taken from the equilibrium configuration of each limb to their 
corresponding energy accumulation configuration {υi1,ωi1,γ i1}, with i=[1,...,4].  

3. Another transition is taken from the previous configuration to an energy 
liberation configuration (ball-kick instant configuration) {υi2,ω i2,γ i2}, with 
i=[1,...,4].   

4. Finally the robot limbs are returned to their starting equilibrium configuration. 

In this work 25 parameters should be obtained trough learning, they correspond to 
six parameters {υi1,ω i1,γ i1,υi2,ω i2,γ i2} for each one of the four robot legs, and one 
parameter which controls the speed of joints by incorporating certain amount of 
points in the trajectory which are passed as intermediate references to the joint servo 
motors. A larger amount of interpolation points makes slower the motion of legs. 

4.2   Simulator Parameters 

The robot simulator solves equations of motion derived from a Lagrange multiplier 
velocity based model [8]. We have selected a set of 12 parameters, which determine 
the simulator and robot model dynamics. These parameters include variables used for 
solving equations of rigid body dynamics and the PID controller constants used for 
modeling the leg joints. There are 4 parameters for the mass distribution in the robot: 
head mass, neck mass, torso mass and leg mass; 4 parameters of the dynamic model: 
friction constant, gravity constant, force dependent slip in two different directions; 
and finally 4 parameters for the joint leg model: proportional, integral and differential  
constants of the PID controller  and maximum joint torque. 

4.3   Genetic Search  

We use genetic algorithms for searching trough the spaces of controller parameters 
and simulator parameters. In the case of the controller the search will be conducted in 
order to maximize the controller fitness function. In the case of the simulator the 
search will be conducted in order to minimize the difference of fitness obtained for a 
given behavior in simulation versus reality. We represent each parameter as a 8 bit 
string. Therefore we generate chromosomes of length 8x25 for the controller and 
8x12 for the simulator. A range of variation is defined for each parameter ip , such 

that [ ]maxmin , iii ppp ∈ .  The algorithm used for evolution is a  fitness-proportionate 

selection genetic algorithm with linear scaling, no elitism scheme, two-point 
crossover with a crossover probability Pc=0.75 and mutation with a mutation rate of 
Pm=0.015 per bit.  

4.4   Definition of the Controller Fitness Function 

For a given ball position and target angle we aim at finding a ball-kick which 
maximizes the ball displacement while maintaining high accuracy in the resulting 
direction. Deriving a good fitness function for this purpose might appear quite straight 
forward, however some considerations must be taken.  
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Equation 1 corresponds to the first fitness function that we have used during our 
experiments, it correspond to the measured Euclidean distance among the final ball 
position and the robot neck’s position multiplied by the cosine of the error angle 
χ between the resulting direction vector and the target direction vector. This function 
is maximized when the error is zero.  

)cos(ψdfitness =  (1) 

However this function was shown to be useless for finding accurate ball-kick 
behaviors since genetic search first concentrates on finding individuals which are able 
to shoot the ball at large distances without having an accurate angle. The reason is 
that the cosine function is quite flat around zero. In order to solve this inconvenient 
we choose instead an exponential function as shown in equation 2. Using this function 
we observed that genetic search first concentrates on producing the right angle and 
then maximizes the distance.  

4.5   Combining Solutions in Parameter Space 

A different ball-kick behavior will be obtained for each one of the 30 points in the 
discrete behavior domain space. They will be obtained trough  genetic search over the  
space of the 25 controller parameters using the back to reality approach. However  the  

 

Fig. 4. Illustration of (a) the three dimensional behavior domain grid, each point in the grid 
represent the set of 25 parameters which are obtained trough genetic search, and (b) trilinear 
interpolation which is performed for obtaining the 25 parameters for an arbitrary point {d, β,,α} 
in the behavior domain 

2ψkdefitness −=  (2) 

(b) Trilinear interpolation 

Vαβδ = V000 (1 - α) (1 - β) (1 - δ) + 
V100 α (1 - β) (1 - δ) +  
V010 (1 - α) β  (1 - δ) +  
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V110 α β (1 - δ) +  
V111 α β δ  

(a) Discrete behavior domain grid 
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desired behavior should perform the right ball-kick for an arbitrary point {d, β,α} on 
the continuous behavior domain. For doing that we use trilinear interpolation over the 
obtained points. Figure  4 (a) shows an illustration of the three dimensional behavior 
domain grid which will be generated. Each corner in the grid contains the resulting 25 
parameters of the best obtained behavior for the particular point.  Figure 4 (b) shows 
the trilinear interpolation which is performed over each one of the 25 parameters in 
order to derive the corresponding interpolated value.  

A requirement of this procedure in order to work is that neighboring grid solutions 
should produce a similar set of limb configurations. Otherwise the resulting 
interpolated ball-kick will not make sense. We measure this similarity as the 
Euclidean distance of the parameter vectors.  

5   Experiments 

In this section we present the experiments which were performed with the 
methodology presented in 4. First we present some examples of the evolution of 
fitness and resulting behaviors when learning a single isolated point in the behavior 
domain space. Finally we present different results on learning the whole discrete 
behavior domain grid and deriving a final overall continuous behavior.  

5.1   Learning Isolated Points  

For learning a particular isolated ball-kick behavior we first randomly generated an 
initial population of controllers according to 4.3. A known initial solution was used 
for defining the set of 12 simulator parameters (this solution was obtained form 
previous experiments on learning to walk [7]). Then the process continues as follows: 

1. Each controller is tested on the simulator and fitness is computed according to 
equation 2.  The evolutionary process runs along 50 generations and then it 
stops triggering an alarm to the user. 

2. Human intervention is required in order to test a group of the resulting 10 best 
individuals in the real environment and to manually measure their 
corresponding fitness. Notice that this process can be automated, however it is 
not the main goal of this research.  

3. Then the evolution of the simulator stage takes place in order to minimize the 
average differences among fitness values which were obtained in reality versus 
those obtained in simulation. For this each tested behavior is repeatedly 
executed using different simulator parameters derived from a genetic search 
process. This stage runs each time along 10 generations. 

4. Once the simulator parameters have been updated the whole controller 
adaptation process continues going back to point 1. However the updates to the 
simulator are executed now every 100 generations instead of 50. 

We ran this process for the 30 different points of the behavior domain grid that we 
aim at constructing. The above mentioned process was performed along 500 
generations for each point. Figure 5 shows the evolution of fitness for the point 
{d=14cm, β=90º,α=90º}, i.e. the task was to kick the ball when it is placed at 14cm 
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right in front of the robot neck with a frontal target direction. The vertical lines 
represent the interruption stages where the simulator was adapted using as feedback 
the fitness measures of the resulting 10 best behaviors on the real environment. It can 
be seen how updates in the simulator produce differences in the maximal and average 
fitness along the controller adaptation process.  We observed that at the beginning of 
the adaptation process the behaviors obtained in the simulator where not directly 
transferable into reality, i.e. their corresponding fitness was quite different, however 
at the end of the process (beyond generation 300) the resulting behaviors where 
almost directly transferable to reality.  

Similar observations were done in most of the remaining 29 points of the behavior 
domain, however learning was not successfully accomplished in some points like 
{d=14cm, β=0º,α=180º}. Certainly it is hard to imagine the robot performing a kick 
to the ball being placed at its right side with a left side target direction!. Some few 
neighbors to this point neither exhibit good results during the learning process. We 
consider that this is a design problem which can be easily solved by restricting the 
behavior domain. For the presented experiment we replaced the neighboring good 
solutions in those points where solution was not found (just 4 cases).   

 

Fig. 5. Evolution of maximal and average fitness for the adaptation of the behavior domain 
point {d=14cm, β=90º,α=90º}, i.e. the task was to kick the ball when it is placed at 14cm right 
in front of the robot neck with a frontal target direction. The vertical lines represent the 
interruption stages where the simulator is adapted using the feedback obtained when measuring 
the fitness of resulting best behaviors on the real environment. It can be seen how updates in the 
simulator produce differences in the maximal and average fitness along the controller 
adaptation process 
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The resulting behaviors where quite interesting, even more if we consider that they 
were obtained from scratch. For example the robot learns that a way of shooting away 
the ball was to jump over it with its torso or with some legs as well. We obtained 
several behaviors were the concept of  “accumulating energy” was heavily exploited.  
Some resulting ball-kick behaviors don’t look very nice since the robot ends up in 
strange configurations, however they are really effective. Figure 6 shows a screenshot 
of UCHILSIM while learning a ball-kick behavior. 

 

Fig. 6. Illustration of using the UCHILSIM simulator for learning to kick the ball. It can be 
seen in this case a curios behavior where the robot first pushes its body forwards and then kicks 
the ball with its right leg 

5.2   Learning Combined Points 

From the resulting grid which was constructed in 5.1 one can directly generate a 
continuous behavior for any point {d, β,α} using trilinear interpolation as it is 
described in 4.5. Unfortunately there is no guaranty of the success of points different 
from the grid points. This is due to the great variety of solutions which where 
obtained. For example two neighboring points in the grid producing a similar 
behavior, one sends the ball at direction 0º and the other at 45º, however one uses the 
left leg while the other uses the right leg. Interpolating these two behaviors gives rise 
to a behavior which let the robot to just fall over without even touching the ball. 
Under this scenario we visualize three alternatives: (1) to manually select similar 
solutions for the behavior grid disregarding at some point their optimality, (2) guide 
the evolutionary process by contaminating populations with manually selected 
individuals from neighboring points and (3) enforce similarity during the learning 
process by redefining the fitness function. We have produced a sufficiently good 
continuous overall behavior by using the second methodology. Starting from the point 



 Learning to Kick the Ball Using Back to Reality 345 

 

presented in 5.1 we contaminated their neighbor’s populations with an 80% of 
individuals belonging to this successful point, and then we repeated the process over 
the complete domain. We really dislike this approach since it is quite time consuming 
and it goes against the philosophy of this learning approach, however it works well 
producing a continuous ball kick behavior over the entire domain.  

6   Conclusions and Projections 

It was presented a method for learning to kick the ball using virtual and real 
experience. The resulting behaviors are directly transferable from the simulator to the 
real robot. A few designer bias is introduced when (i) designing the ball-kick 
parameterization and (ii) when selecting some of the individuals for producing a 
continuum behavior. The resulting behavior allows kicking the ball with high power, 
short reaction time and accuracy over the entire domain. The employed method relies 
on the use of UCHILSIM, a dynamically realistic simulator, and the Back to Reality 
paradigm to evolutionary robotics. We remark that this method allowed us to learn 
from scratch a ball-kick which performs similarly as the most powerful ball-kick 
which is currently used in the league, i.e. when the robot leaves its body to fall over 
the ball (it was used for example by the German Team during the penalty definition 
against CMPack during RoboCup 2003). All independent ball kicks were obtained 
after just 8 hours of simulations. We should notice that the alternative is to let a 
student designing a ball-kick during a probably larger period of time. We are 
currently working on a method that automatically enforces similarity among 
behaviors in the grid. The fitness function contains a factor which depends on the 
Euclidean distance among the parameter vectors defining neighboring points. The key 
of this approach is to perform the search in parallel. That way allows us to maintain 
the 8 hours period of learning. Movies of some resulting behaviors, as well as a demo 
version of UCHILSIM are available at http://www.robocup.cl. 
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Cerebellar Augmented Joint Control for a
Humanoid Robot

Damien Kee and Gordon Wyeth

School of Information Technology and Electrical Engineering,
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Abstract. The joints of a humanoid robot experience disturbances of
markedly different magnitudes during the course of a walking gait. Con-
sequently, simple feedback control techniques poorly track desired joint
trajectories. This paper explores the addition of a control system in-
spired by the architecture of the cerebellum to improve system response.
This system learns to compensate the changes in load that occur dur-
ing a cycle of motion. The joint compensation scheme, called Trajectory
Error Learning, augments the existing feedback control loop on a hu-
manoid robot. The results from tests on the GuRoo platform show an
improvement in system response for the system when augmented with
the cerebellar compensator.

1 Introduction

Complex robots, with high degrees of freedom are becoming more common place
in todays society. Robots with multiple limbs such as humanoids and octopeds
are becoming more prominent in areas as varied as domestic robotics and all-
terrain exploration. Such systems are difficult to model mathematically and
hence analytical determination of feed forward dynamics for model based control
can be both a complicated and time consuming process. In addition to this, these
robots are progressively moving from a structured environment into regular so-
ciety. Contact with the real world and human interaction further complicates
the system loads.

Conversely, biological controllers do not use an accurate model of the system,
rather incremental adjustment of control parameters is performed, based on the
experience of the system. Initial response may be quite crude, but over time
appropriate control parameters are learnt. Neural networks hold some promise
in the field of trajectory control with the ability to learn system dynamic without
explicit representation of a robots configuration.

This paper uses Trajectory Error Learning (TEL) [1], based on a CMAC
neural network, to assist a conventional PI controller with trajectory tracking.
The GuRoo humanoid robot with its high degree of freedom and non-linear
dynamics forms a suitable platform to apply the system.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 347–357, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Previous Work

The use of a cerebellum models for motion control has been studied in the past.
Infants of approximately 5 months of age display multiple accelerations and
decelerations when moving an arm [2]. This series of sub-movements eventually
guides the arm to the desired position. Over time, and with more experience,
the child learns the required muscle movements to smoothly guide the arm. This
shows that the human body is not born with a perfect plant model, but in fact
learns it through experience.

Collins and Wyeth [3] used a CMAC to generate the required velocities
needed for a mobile robot to move to a waypoint. Significant sensory delay
was introduced that would cripple a traditional control system. The CMAC
was able to learn the system dynamics, compensate for this delay and produce
the required signals necessary to move to the waypoint with a smooth velocity
profile.

Fagg et al [4] implemented a CMAC control system on a 2 degree of free-
dom arm, actuated by three opposing sets of muscles. The CMAC is responsible
for the co-ordination of these three actuators to control the two joints. When
the CMAC does not bring the arm to the required position, an additional ex-
ternal CMAC was engaged that produces short sharp bursts of motor activity
until the target was reached. Once the desired position was reached, the trial
was terminated and a new trial initiated. Over time, the external CMAC was
made redundant as the original CMAC correctly learned the required muscle
commands.

1.2 Paper Overview

Section 2 describes The GuRoo, the humanoid platform constructed at the Uni-
versity of Queensland, on which the research is applied. Section 3 outlines the
CMAC neural network used as the basis for learning. Section 3 outlines the dif-
ficulty in using the current conventional control and described the application of
Trajectory Error Learning (TEL). Section 5 describes the crouching experiment
undertaken and presents results from before and after the implementation of
the system. The final section draws conclusions from these results and discusses
where these results may lead.

2 GuRoo Project

GuRoo is a fully autonomous humanoid robot (Figure 1) designed and built in
the University of Queensland Robotics Laboratory [5]. The robot stands 1.2 m
tall has a total mass of 34 kg, including on-board power and computation. GuRoo
is currently capable of a number of demonstration tasks including balancing,
walking, turning, crouching, shaking hands and waving.

The intended challenge for the robot is to play a game of soccer with or
against human players or other humanoid robots. GuRoo has been designed to
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Fig. 1. The GuRoo humanoid robot with a schematic showing the degrees of freedom.
In the cases where there are multiple degrees of freedom (for example, the hip) the
joints are implemented through short sequential links rather than as spherical joints

Table 1. Type and axis of each DoF. ”2 x” indicates a left and right side

Joint Type Axis No.
Head/Neck RC Servo Pitch + Yaw 2
Shoulder RC Servo Pitch + Roll 2x2
Elbow RC Servo Pitch 2x2
Spine DC Brushed Pitch + Roll + Yaw 3
Hip DC Brushed Pitch + Roll + Yaw 2x3
Knee DC Brushed Pitch 2x1
Ankle DC Brushed Pitch + Roll 2x2

TOTAL 23

mimic the human form and function to a degree, considering conflicting factors
of function, power, weight, cost and manufacturability.

2.1 Electro-Mechanical Design

The robot has 23 joints in total. The legs and spine contain 15 joints that
are required to produce significant mechanical power, most generally with large
torques and relatively low speeds. The other 8 joints drive the head and neck
assembly, and the arms with significantly less torque and speed requirements.
Table 1 outlines the type and axis of actuation of each motor. Due the high power
/ low velocity nature of these joints, large gearboxes are used which contribute
to the length of the actuators and hence the unnaturally wide legs. The centre of
gravity of each leg lies outside the line of the hip rotation, and as such, the legs
naturally swing inwards. The motors that drive the roll axis of the hip joints are
each supplemented by a spring with a spring constant of 1 Nm/degree. These
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Fig. 2. Block diagram of the distributed control system

springs serve to counteract the natural tendency of the legs to collide, and help
to generate the swaying motion that is critical to the success of the walking gait.

2.2 Distributed Control Network

A distributed control network controls the robot, with a central computing hub
that sets the goals for the robot, processes the sensor information, and provides
coordination targets for the joints. The joints have their own control processors
that act in groups to maintain global stability, while also operating individually
to provide local motor control. The distributed system is connected by a CAN
network. In addition, the robot requires various sensor amplifiers and power
conversion circuits.

2.3 Sensors

The GuRoo currently has encoders on each of the high powered DC motors, able
to provide rotational position to a resolution of 0.001 of a degree. An inertial
measurement unit consisting of 3 axis rate gyroscopes and 3 axis accelerometers
has been obtained that is currently being integrated into the system. Provision
has been made for the future inclusion of pressure sensors on the soles of the
feet and a stereo vision system.

2.4 Software

The software consists of four main entities: the global movement generation code,
the local motor control, the low-level code of the robot, and the simulator [6].
The software is organised to provide a standard interface to both the low-level
code on the robot and the simulator. This means that the software developed in
simulation can be simply re-compiled to operate on the real robot. Consequently,
the robot needs a number of standard interface calls that are used for both the
robot and the simulator.
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3 CMAC Neural Network

The Cerebellar Model Articulated Controller or CMAC, was first described by
Albus [7]. The CMAC network can be viewed as a number of lookup tables.
Each table, or Association Unit (AU), has the dimensions equal to the number
of input variables. Inputs to the system are quantized and scaled to create a
global lookup address.

This address is mapped to a coarser address space in each AU where a weight
is stored. The AUs are structured such that a single resolution change in one
input signal will result in only one different weight chosen. The output signal is
calculated by finding the sum of the weights of all AUs at this lookup address. As
the output result is the sum of all association units weights, a greater number
of association units results in a system that is better able to generalize the
input space.

The input space is dominated by hyperplanes of plausible input combinations,
with large empty spaces in each AU where real-life input combinations are not
physically possible. Hashing techniques are used to reduce the memory require-
ments by mapping the global address space to a smaller, virtual, address space.
The modulo function is the most simple way of achieving this. Hash collisions
occur when two or more global address hash to the same virtual address. This
is not necessarily fatal, as a large number of AUs will ensure the table weight in
question to have a minor effect on the overall output.

Table weights are updated using the following rule:

ωnew = ωold +
α

η
(θdes − θact) (1)

where:
ωnew : New weight value
ωold : Original weight value
α : Learning rate
η : Number of association units
θdes : Desired joint position
θact : Actual joint position

As the output of the response of the network is the sum of the selected table
weights, the change in weight between iterations is divided by the number of
association units to ensure the learning rate has the same effect regardless of the
number of AUs.

4 Trajectory Error Learning

Trajectory Error Learning (TEL) is a biologically inspired method of robot mo-
tion compensation where learning is driven from the difference between the in-
tended trajectory of the robot and the actual trajectory measured by the feed-
back sensor (possibly after some sensory delay) [1]. This section illustrates how
TEL can be applied to improve tracking performance in a humanoid robot.
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Fig. 3. Graph of the position error experienced in the left hip pitch joint over one
complete walking cycle. The sudden increase in error after 2 seconds relates to single
support phase of the gait

4.1 Joint Position Error

As can be seen in Figure 3, during the single support phase (2 < t < 4),
the joints are heavily loaded and experience significant position error. Con-
versely, during the swing phase each joint maintains positions adequately. It
is these significant variations in load that prevent the PI control loop imple-
mented on each of the GuRoos joints from obtaining a satisfactory response.
Tests with gain scheduling techniques have, as yet, to provide any improve-
ment in performance [8]. TEL uses a CMAC network to supply a compensat-
ing signal to eliminate this position error. As a typical walking gait of a hu-
manoid is periodic in nature any errors experienced by the robot are also typ-
ically cyclic in nature: for example, the joint error during the support phase.
By observing the gait phase, the CMAC learns which parts of the gait require
compensation.

Fig. 4. System diagram. The Desired Joint Position is time delayed when calculating
position error to account for sensor delay. Table weights are updated a set number
of control loops after being used. This delay is equal to the sensory delay inherent in
the system
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4.2 System Implementation

The method of compensating the joint error is illustrated in Figure 4. The tra-
jectory of the limb is expressed as a stream of desired joint positions which are
generated by the gait generator. As the motion of the robot is periodic, the state
of the trajectory can be expressed as the gait phase. The gait phase is imple-
mented as a periodic counter, incrementing every control loop and resetting at
the beginning of each motion cycle.

The desired joint position is augmented by the output of the CMAC, and
passed to the feedback joint controller. The inputs to the CMAC consist of the
gait phase and the measured joint position, where the measured joint position
will be subject to some delay with respect to the desired joint position. In this
form, the CMAC is used as a predictive modulator; seeking to eliminate the error
it expects to see based on the errors that it has already seen at the same point
in previous cycles. The sawtooth wave of the gait phase gives the CMAC the
point in the cycle that it is currently compensating, while the measured joint
position accounts for different disturbance conditions that may occur at that
point in time.

The error in joint position is used to train the CMAC network. A history of
previous desired position commands is kept to compensate for the sensory delay
experienced in the system. This history buffer also ensures weight updates are
performed with the correct time delayed error. The error signal used to train the
CMAC is as follows:

εk = θdes(k−t) − θact(t) (2)

where

εk = Error training signal( k )
θdes(k−t) = Desired Joint Position( k - t )
θact(k) = Actual Joint Position( k )
t = Sensory Delay

Thus weights are updated t control loops after they are used.

5 Crouching Experiment

The initial experiments that have been conducted using this method have been
based on a slow crouching motion run over a period of 12 seconds. The pitch axis
motors of the hip, knee and ankle joints follow a synchronised sinusoidal profile
with a magnitude of 16, 35 and 22 degrees respectively to reach the bottom
of the crouch position. This test exposes the joints to a range of dynamic and
static loads, and can be repeated many times without moving the robot around
the laboratory.

For this experiment, the following CMAC parameters were chosen. The num-
ber of receptive units and field width were chosen to provide the necessary dis-
crimination, while also providing local generalisation. The hashing ratio was
chosen to reduce memory requirements while still keeping a low probability of
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Table 2. CMAC Parameters used for learning during the crouching experiment

CMAC Parameter Value
Joint Position receptive units 9000
Gait Phase receptive units 1200

Field width (AU’s) 50
Global Address Spaces 216204
Virtual Address Spaces 10001

Learning rate 0.001

Fig. 5. Position error of the left hip pitch during a crouching motion. This signal is used
to drive the learning in the CMAC network. Note the larger magnitude of error during
the second half of the motion, as the robot accelerates itself upwards against gravity

hashing collisions. The learning rate was tuned to provide rapid learning of the
compensation, without learning from noise. The measured joint positions were
subject to a delay of 40 ms, which corresponds to a delay of 3 control cycles.

5.1 Existing Control

Each degree of freedom utilises a PI control loop on joint velocities which corre-
sponds to PD control in position. Both the Proportional and Integral constants
were determined by running a genetic algorithm, with a fitness function min-
imising trajectory error and maximising joint smoothness [8].

Without TEL, the hip pitch joint experiences the error in position seen in
Figure 5. As the crouching motion is cyclic, these errors experienced do not
change from cycle to cycle and are dependent on the current phase of gait, with
larger errors present in the second half of the cycle as the robot accelerates itself
upwards. This displays the inability of the existing control to provide a consistent
response over the whole motion cycle.

The position error is roughly cyclic, as similar errors occur at similar points
during the gait phase, where gait in the context of this experiment refers to
phase of the crouch. When the TEL network is enabled, position error is quickly
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Fig. 6. Figure 6: Position error for the left hip pitch during the crouching motion. With
the Joint Compensation system in place, the maximum error experienced by the joint
is reduced by 75%

Fig. 7. Compensation signal of the Left Hip Pitch. As the error signal decreases, the
rate of learning also decreases and the compensation signal takes on a constant peri-
odic form

minimised. Figure 6 and Figure 7 show the position error of the left hip pitch and
the compensating signal respectively. As the error signal reduces, the amount of

Table 3. Summary of peak error in position for all joints before and after learning

Joint Peak Before Peak After Reduction
Left Hip 0.4o 0.1o 75%
Right Hip 0.4o 0.1o 75%
Left Knee 0.6o 0.16o 73%
Right Knee 0.6o 0.14o 77%
Left Ankle 0.4o 0.1o 75%
Right Ankle 0.4o 0.1o 75%

learning also reduces, and the change in table weights decreases. The compen-
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sating signal then becomes cyclic in nature and does not change until additional
error develops. The error reduces from peak values of 0.4 degrees to the noise
floor with peaks of 0.1 degrees. Similar results were obtained from all pitch move-
ments involved in the crouching motion. Table 3 shows the increase in tracking
performance for each of the joints. It can be seen that a similar performance
increase was obtained on all six joints involved in the motion.

6 Conclusions

Feedback control techniques alone are unsuitable for control of a humanoid robot.
The extreme differences in load throughout the gait, and particularly during the
swing phase versus the single support phase, make feed-forward compensation
necessary. Modelling the plant dynamics of a mobile body with so many degrees
of freedom is a difficult task.

The simple crouching experiment demonstrates the existing control loop’s
inability to compensate for changes in load as a result of gravity. Using the error
signal generated from the desired joint position and the actual joint position,
the trajectory error, the cerebellar system is able to learn a response capable
of decreasing the peak error by 75%. The experiments were conducted with a
crouching motion on a real 23 degree of freedom humanoid and show marked re-
duction in position error of all joints with the implementation of the TEL system.

6.1 Further Work

In this implementation, suitable compensation of position error has been achieved
for a crouching motion. It can obviously be trialled on a walking gait for im-
provement of walking performance.

The TEL system used as the basis of this work is suited to any control problem
where a tracking error is present. Within a humanoid robot, there are many
trajectories that can be used to enhance stability. Torso inclination, location of
the Zero Moment Point and centre of foot pressure all follow a desired path.
Deviations to this path can be measured and a trajectory error calculated. This
error can be used to train a separate TEL structured CMAC to improve balance
and walking gaits.
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Abstract. Humanoid dynamic walk and kick are two main technical challenges 
for the current Humanoid League. In this paper, we conduct a research aiming 
at generating dynamically stable walking and kicking gait for humanoid soccer 
robots with consideration of different constraints. Two methods are presented. 
One is synthesizing gait based on constraint equations, which has formulated 
gait synthesis as an optimization problem with consideration of some 
constraints, e.g. zero-moment point (ZMP) constraints for dynamically stable 
locomotion, internal forces constraints for smooth transition, geometric 
constraints for walking on an uneven floor and etc. The other is generating 
feasible gait based on human kicking motion capture data (HKMCD), which 
uses periodic joint motion corrections at selected joints to approximately match 
the desired ZMP trajectory. The effectiveness of the proposed dynamically 
stable gait planning approach for humanoid walking on a sloping surface and 
humanoid kicking on an even floor has been successfully tested on our newly 
developed Robo-Erectus humanoid soccer robots, which won second place in 
the RoboCup 2002 Humanoid Walk competition and got first place in the 
RoboCup 2003 Humanoid Free Performance competition.  

1   Introduction 

Humanoid soccer robot league is a new international initiative to foster robotics and 
AI technologies using soccer games [7]. The Humanoid league (HL) has different 
challenges from other leagues. The main distinction is that the dynamic stability of 
the robots needs to be well maintained while the robots are walking, running, kicking 
and performing other tasks. Furthermore, the humanoid soccer robot will have to 
coordinate perceptions and biped locomotion, and be robust enough to deal with 
challenges from other players. Hence, how to generate a dynamically stable gait for 
the humanoid soccer robots is an important research area for the HL, especially for 
the new technical challenge – Balancing Challenge which will be commencing in the 
coming RoboCup 2004.  

The problem of gait planning for humanoid robots is fundamentally different from 
path planning for traditional fixed-base manipulator arms due to the inherent 
characteristics of legged locomotion – unilaterality and underactuation [3,11,12]. The 
humanoid locomotion gait planning methods can be classified into two main 
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categories [5]: one is online simplified model-based gait generation method; and the 
other is offline position based gait generation method. There are currently some ways 
for generating dynamically stable gaits, e.g., heuristic search approach, such as 
genetic algorithms (GAs) based gait synthesis [1];  problem optimisation method, 
such as optimal gradient method; model simplification with iteration [5], etc. 

To have continuous and repeatable gait, the postures at the beginning and the end 
of each step have to be identical. This requires the selection of specific initial 
conditions, constraint functions and their associated gait parameters. However, 
finding repeatable gait when the constraint equations involve higher order differential 
equations remains an unsolvable problem. So, a natural way to solve this problem is 
to resort to numerical methods, e.g. Fourier series expansion and time polynomial 
functions. One advantage of this technique is that extra constraints can be easily 
included by adding the coefficients to the polynomials. Disadvantages, however, 
include the facts that the computing load is high for large bipedal systems and the 
selection of the polynomials may impose undesirable features to the joint profiles, e.g. 
oscillation. Moreover, the planning gait may not be human-like. To accomplish a 
human-like motion, it is quite natural to attempt using the Human Kicking Motion 
Captured Data (HKMCD) to drive the robot. However, some researches show that the 
HKMCD cannot be applied directly to humanoid robot due to kinematic and dynamic 
inconsistencies between the human subject and the humanoid, which usually require 
kinematic corrections while calculating the joint angle trajectory [2]. 

The rest of this paper is organized as follows. We will briefly present some basic 
constraints for the dynamically stable gait in Section 2. The humanoid soccer robot to 
be used for the experiment is introduced in Section 3. Most of the research on 
humanoids has been actively working to make a robot capable of dynamic walking on 
even floor. However, for the new technical challenges of humanoid league the robot is 
required to walk on uneven terrain such as sloping surfaces and stairs. So, we plan a 
dynamically stable gait for ascending a sloping surface in Section 4. In Section 5, we 
describe how to make use of human kicking motion capture data to drive the 
humanoid to perform penalty kick.  Concluding remarks and some major technical 
challenges in this field are addressed in Section 5. 

2   Robo-Erectus: A Fully-Autonomous Humanoid Soccer Robot 

The Robo-Erectus (RE) project (www.robo-erectus.org) aims to develop a low-cost 
fully-autonomous humanoid platform so that educators and students are able to build 
humanoid robots quickly and cheaply, and to control the robots easily [16].  We have 
developed three generations humanoid soccer robots, namely RE40I, RE40II and 
RE40II (see Fig. 1). Our RE humanoid has participated in both the 1st and 2nd 
Humanoid League of RoboCup, won 2nd place in the Humanoid Walk competition at 
the RoboCup 2002 and got 1st place in the Humanoid Free Performance competition 
at the RoboCup 2003. The configuration of the hierarchical control system for the RE 
humanoid is shown in Fig. 2. We’ve also implemented reinforcement learning (see 
Fig. 3) to further improve the walking and kicking gait [14,15]. 
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Fig. 1. RE40I at RoboCup 2002 (left), RE40II at the RoboCup 2003 (centre), and the newly 
developed RE40III (right) 
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Fig. 2. Schematic diagram of the hierarchical control system for the RE humanoid robot 
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Fig. 3. Block diagram of the humanoid gait learning using two independent fuzzy reinforce- 
ment learning agents [15] 
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3   Dynamically Stable Gait 

Since a humanoid robot tips over easily, it is important to consider stability in 
planning its gait. Many methods have been proposed for synthesizing walking 
patterns based on the concept of the zero moment point (ZMP) [11, 12]. The ZMP is 
defined as the point on the ground about which the sum of the moments of all the 
active forces equals zero. If the ZMP is within the convex hull (support polygon) of 
all contact points between the feet and the ground, the bipedal robot can walk 
dynamically.  

Humanoid dynamics can be modelled using a multi-body system model consisting 
N chains involving the body parts, such as head, arms, trunk and pelvis. Each chain 
consists of in  links (i = 1, 2, …, N) interconnected with single DOF joints. The 
support-foot can only be controlled indirectly by ensuring the appropriate dynamics of 
the mechanism above the foot.  

The humanoid robot is a highly redundant system with many extra degrees of 
freedom (DOF). Its gait consists of large number of unknown parameters. This allows 
us to formulate constraint equations for synthesizing gait. In this paper we formulate 
an optimization problem to determine the unknown parameters of the gait to achieve 
dynamic locomotion, i.e. to obtain a good match between the actual and the desired 
ZMP trajectories as follows 

−
t

t

f

i

dttPtPMinimize d
zmpzmp

2
)()(  (1) 

subject to the boundary conditions of both )(tp and )(tp  at time it  and ft , where 

zmpP  is the actual ZMP, and d
zmpP  is the desired ZMP position.  

Due to the large number of the unknown parameters for the above optimization 
problem, we need to specify some constraints [2,4,8]. The following are some 
constraints that need to be considered. 

Sabilization of the gait (ZMP constraint): The control objective of the humanoid 
dynamically stable gait can be described as 

( ) SyxP zmpzmpzmp ∈= 0,,  (2) 

where ( 0,, zmpzmp yx ) is the coordinate of the ZMP with respect to O-XYZ.  S  is the 

support polygon. 

Smooth transition constraint: The equation of motion of the centre of the humanoid 
can be described as  

cm cm L R cmm a f f m g= + +  (3) 

Where cmm  and cma  are the mass of the robot and the acceleration of the COM, 

respectively. Rf  and Lf  represent the ground reaction forces at the right and left foot. 

During single-support phase, the foot force can be obtained from (3) as one of Rf  and 
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Lf  will be zero. However, during double-support phase, only the total of the ground 

reaction forces is known. Hence, how to resolve the leg reaction forces appropriately 
to minimize the internal force has to be considered. This can ensure a smooth 
transition of the internal forces during placement and take-off [2]. 

Geometrical constraints: The swing limb has to be lifted off the ground at the 
beginning of the step cycle and has to be landed back at the end of it. 

Maximum clearance of the swing limb: During swing phase, the foot of the swing 
limb has to stay clear off the ground to avoid accidental contact.  

Repeatability of the gait: The requirement for the repeatable gait demands that the 
initial posture and velocities be identical to those at the end of the step. 

Continuity of the gait: The horizontal displacements of the hip during the single and 
double support phases must be continuous. 

Minimization of the effect of impact: During locomotion, when the swing limb 
contacts the ground (heel strike), impact occurs, which contacts sudden changes in the 
joint angular velocities. By keeping the velocity of the foot of the swing limb zero 
before impact, the sudden jump in the joint angular velocities can be eliminated. 

4   Dynamic Walking Gait for Ascending Sloping Surfaces 

For RE humanoid, we have developed a gait planner which is able to generate gait for 
the robot walking on both plat and uneven terrain, such as stairs and sloping surfaces.  
Note that, one of the major problems in controlling humanoids is the difficulty in 
choosing proper gait for a particular terrain. 

 

Fig. 4. The humanoid and gait parameters and coordinate on the slope 

In this paper, we only consider how to generate a dynamically stable gait for 
humanoid ascending sloping surfaces, which will be a new technical challenge for 
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Humanoid League from 2004. To simply our analysis, we assume that the kth step 
begins with the heel of the right foot leaving the slop at t= k* cT , and ends with the 
heel of the right foot making the first contact with the slope at t= (k+1)* cT , as shown 
in Fig. 4. 

We prescribe some joint trajectories, e.g. both foot trajectories, and then derive all 
joint trajectories by inverse kinematics with consideration of the constraints discussed 
in Section 3. These constraints can ensure that the gait is dynamically stable and also 
satisfies some geometric and periodical requirements. We also need some more 
constraints for the sloping surface. Eqs (4) to (7) show some constraints on ankle and 
hip joints. 
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From the above via points and the constraints, the walking gait on sloping surface 
can be generated using the spline interpolation.  The gait is dynamically stable as the 
ZMP constraints (2) is applied. 

Based on the planned gait for ascending the sloping surface, we have conducted 
both simulation and experimental studies.   

Fig. 5(a) shows the horizontal displacements of the hip and both right and left 
ankle joints. It can be seen that the trajectories are smooth, i.e. the velocities are 
continuous for both single and double support phases. The horizontal displacement of 
the ZMP for different slope angles is shown in Fig. 5(b). One can see that the ZMP 
remains approximately at the centre of the stability region for the smaller slope 
angles, which ensures the largest stability margin and greatest stability. However, for 
bigger slope angle, e.g. 15 degrees, the dynamic stability cannot be guaranteed. In 
Figs. 5 (a) and (b), the angular velocities for both right ankle and right knee joints are 
given. It shown that the sudden changes in the angular velocities due to landing 
impact are reduced when the slope angle is smaller, e.g. less than 10 degrees. 
However, the landing impact is very obvious for the bigger slope angle.   
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Fig. 5. (a) Movements of the hip and ankle joints: (b) Comparison of the ZMP trajectories for 
different slope angles ( 0 ,5 ,10 ,15o o o o

sQ = ); (c) Right ankle joint angular velocities for 
different slope angles; (4) Right knee joint angular velocities for different slope angles  

 

Fig. 6.  RE40II ascending a sloping surface during the experiment 
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Fig. 6 shows the stick diagram of humanoid walking on the sloping surface. 
By considering the humanoid performance constraints, a fuzzy reinforcement 

learning agent [14,15,16] has been used to further improve the gait. Fig. 7 shows 
humanoid walking sequence on flat platform (after learning).  The turning sequence 
after learning is shown in Fig. 8.  We are currently working on further improving the 
gait for ascending slope using reinforcement learning. 

 

Fig. 7. The humanoid walking sequence (after learning) 

 

Fig. 8. The Humanoid turning sequence (after learning) 

5   Planning Dynamic Kicking Pattern Based on Human Kicking 
Motion Captured Data   

To plan humanoid kicking trajectory, we have to consider some kicking constraints 
[16], e.g. the Maximum Kicking Range (MaxKR), the Effective Kicking Range 
(EKR), the Minimum Kicking Moment (MinKM) and so on. The challenge for the 
humanoid dynamic kick is that the ZMP must stay in the support polygon, which is 
the stance foot, during the kicking phase. In our previous research [16], by 
considering all the kicking parameters, an initial kicking pattern was generated using 
Kicking Pattern Generator developed by our Humanoid Robotics Group. However, 
the kick is clearly not a human-like one. 

In this paper, we propose a new method to generate dynamically stable kicking 
pattern for humanoid soccer robot. To accomplish a human-like kick, it is quite 
natural to attempt using the Human Kicking Motion Captured Data (HKMCD) to 
drive the robot. However, by using human kicking data to prescribe the motion of the 
lower limbs, two immediate problems arise when using HKMCD directly. Firstly, a 
complex dynamic model is required. Secondly, the designer has no freedom to 
synthesize the joint profiles based on tangible gait characteristics such as walking 
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speed, step length and step elevation. Please also note that there are kinematic and 
dynamic inconsistencies between the human subject and the humanoid, which usually 
require kinematic corrections while calculating the joint angle trajectory [2]. 

The adaptation of the HMKCD for the humanoid soccer robot uses mainly periodic 
joint motion corrections at selected joints to approximately match the desired ZMP 
trajectory. By optimisation with constraints, we can maximize the dynamic stability 
against sliding during kicking.  

 

Fig. 9.  Human kicking motion captured data (the experiment was conducted in Prof. Stefan 
Schaal’s Computational Learning and Motor Control (CLMC) Lab at University of Southern 
California; and the data was captured by his PhD students Michael Mistry and Peyman 
Mohajerian)  

The HMKCD was collected in the Computational Learning and Motor Control 
(CLMC) Lab at University of Southern California. The Sarcos SenSuit 
simultaneously measures 35 degrees of freedom (DOF) of the human body. It can be 
used for real-time capturing of full body motion, as an advanced human-computer 
interface, or to control sophisticated robotic equipment. The complete SenSuit is worn 
like an exoskeleton which, for most movements, does not restrict the motion while an 
array of lightweight Hall-sensors reliably records the relative positions of all limbs. 
For the arms, we collect shoulder, elbow and wrist DOF, for the legs, hip, knee and 
ankle data is recorded. In addition, the Sensuit measures head as well as waist motion.  
The experiment setup and result is shown in Fig. 9. At left, it is joint trajectories for 
the kicking leg recorded from a fast kick demonstration. At right, it is the human 
kicker who wore the Sarcos Sensuit. 

By using optimization with ZMP constraints, we obtained the corrected joint 
trajectories which are shown in Fig. 10. The ZMP trajectories during humanoid kick 
are given in Fig. 11. It can be seen that by using the original HKMCD (left), the ZMP 
is out of the support polygon during the ending phase of the kick. From the ZMP 
constraints (2), it is clear that the original HKMCD cannot drive the robot to perform 
a stable kick. However, after correcting the HKMCD with ZMP constraints, the 
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corrected ZMP trajectory is always inside the support polygon so that the dynamically 
stable kicking gait can be obtained. We have also conducted an experiment of 
humanoid kick using the corrected HKMCD. The kicking sequence is shown in  
Fig. 11. The striker’s kicking posture is more or less “human-like”. 

 

Fig. 10. Corrected joint trajectories for humanoid kick (At left, it is the joint trajectories for 
kicking phase. At right, it is the joint trajectories for a complete kicking cycle) 

 

Fig. 11. Original and corrected ZMP trajectories (At left, the original ZMP trajectory is not 
always within the support polygon. At right, the corrected ZMP trajectory is always inside the 
support polygon so that the dynamic kicking gait is obtained) 

 

 

Fig. 12. The humanoid kicking sequence (using the corrected human kicking motion capture data) 
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6   Concluding Remarks 

Humanoid dynamic walk and kick are two main technical challenges for the current 
Humanoid League. In this paper, we conduct a research that aims at generating 
dynamically stable walking and kicking gait for humanoid soccer robots with 
consideration of different constraints using two methods. One is synthesizing gait 
based on constraint equations. The other is generating feasible gait based on human 
kicking motion capture data (HKMCD), which uses periodic joint motion corrections 
at selected joints to approximately match the desired ZMP trajectory. The 
effectiveness of the proposed dynamically stable gait planning approach for humanoid 
walking on a sloping surface and humanoid kicking on an even floor has been 
successfully tested on our newly developed Robo-Erectus humanoid soccer robots. 

The Robo-Erectus project aims to develop a low-cost humanoid platform so that 
educators and students are able to build humanoid robots quickly and cheaply, and to 
control the robots easily.  We are currently working to further develop this platform 
for educational robots, service robots and entertainment robots.  

By using the proposed fuzzy reinforcement learning approach, we also demonstrate 
that the robot is able to start walking from an initial gait generated from perception-
based information on human walking, and learn to further tune its walking and 
kicking behavior using reinforcement learning. Note that humans do not just learn a 
task by trial and error, rather they observe other people perform a similar task and 
then emulate them by perceptions. How to utilize perception-based information to 
assist imitation learning [9] will be a new challenge in this filed. We will also look at 
how to make use of human motion capture data to drive humanoid soccer robots to 
perform more soccer-playing tasks, e.g. passing, throwing, catching and so on. 
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Abstract. This paper proposes a new algorithm for the automatic segmenta-
tion of motion data from a humanoid soccer playing robot that allows feed-
forward neural networks to generalize and reproduce various kinematic patterns,
including walking, turning, and sidestepping. Data from a 20 degree-of-freedom
Fujitsu HOAP-1 robot is reduced to its intrinsic dimensionality, as determined
by the ISOMAP procedure, by means of nonlinear principal component analysis
(NLPCA). The proposed algorithm then automatically segments motion patterns
by incrementally generating periodic temporally-constrained nonlinear PCA neu-
ral networks and assigning data points to these networks in a conquer-and-divide
fashion, that is, each network’s ability to learn the data influences the data’s di-
vision among the networks. The learned networks abstract five out of six types
of motion without any prior information about the number or type of motion
patterns. The multiple decoding subnetworks that result can serve to generate
abstract actions for playing soccer and other complex tasks.

1 Introduction

The development of robots that can learn to imitate human behavior as they participate
in social activities is important both for understanding ourselves as a species and for
transforming society through the introduction of new technologies. A mimesis loop
[1] may be used to capture many aspects of this kind of imitative learning. This paper
addresses one aspect of the mimesis loop: the abstraction of a robot’s own kinematic
motions from its proprioceptive experience.

Figure 1 roughly outlines how a mimesis loop might be realized in a soccer play-
ing robot. Attentional mechanisms direct the robot’s sensors toward the body parts of
other players, and the robot maps successfully recognized body parts onto its own body
schema. This paper introduces a method to abstract the robot’s own kinematic patterns:
our segmentation algorithm allocates proprioceptive data among periodic temporally-
constrained nonlinear principal component neural networks (NLPCNNs) as they form
appropriate generalizations.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 370–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Bayesian-wavelet neural networks

Feature selection and classification

Activity of self and others

Dynamics compensation

Distributed regulators

Self-other visuo-kinematic mapping Periodic representations in phase space

Nonlinear PC neural networks(2)

(1)

(3)

(4)

Fig. 1. Periodic nonlinear principal component networks may characterize motion patterns in a
much larger system for recognizing, learning, and responding behavior

NLPCNNs, augmented with periodic and temporal constraints, provide an effective
means of characterizing many typical human motions. These networks may be used to
recognize, learn, and respond to behavior. A single network abstracts a particular type
of periodic motion from joint angles and other proprioceptive data. A different network
learns a different type of periodic motion until all the various kinds of motion have been
learned. Networks can also learn transitions between motion patterns.

The robot can use NLPCNNs to recognize the activities of other players, if the map-
ping from their bodies to its own has already been derived by some other method. Since
each network correspond to a particular type of motion in a proprioceptive phase space,
it can act as a protosymbol. Thus, the robot would be able to recognize the behavior of
others because it has grounded their behavior in terms of its own body.

Although periodic NLPCNNs may be used to generate motion patterns, the robot
must continuously respond to unexpected perturbations. There are a number of ap-
proaches to this control problem that do not require an explicit model. For example,
distributed regulators [2] could set up flow vectors around learned trajectories, thus,
converting them into basins of attraction in a phase space of possible actions.

This paper is organized as follows. Section 2 extends an NLPCNN with periodic
and temporal constraints. Section 3 presents a method of assigning observations to
NLPCNNs to segment proprioceptive data. Section 4 reports experimental results us-
ing NLPCNNs to characterize the behavior of a Fujitsu HOAP-1 humanoid robot that has
been developed to play RoboCup soccer.
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2 A Periodic Nonlinear Principal Component Neural Network

The human body has 244 degrees of freedom [3] and a vast array of proprioceptors. Ex-
cluding the hands, a humanoid robot generally has at least 20 degrees of freedom — and
far more dimensions are required to describe its dynamics precisely. However, many ap-
proaches to controlling the dynamics of a robot are only tractable when sensory data is
encoded in fewer dimensions (e.g., [4]). Fortunately, from the standpoint of a particular
activity, the effective dimensionality may be much lower.

Given a coding function f : R
N �→ R

P and decoding function g : R
P �→ R

N

that belong to the sets of continuous nonlinear functions C and D, respectively, where
P < N , nonlinear principle component networks minimize the error function E

‖x − g(f(x))‖2, x ∈ R
N

resulting in P principal components [y1 · · · yp] = f(x). Kramer [5] first solved this
problem by training a multilayer perceptron similar to the one shown in Figure 2 us-
ing the backpropagation of error, although a second order method such as conjugant
gradient analysis converges to a solution faster for many large data sets. Tatani and
Nakamura [6] were the first to apply an NLPCNN to human and humanoid motions,
though for dimensionality reduction only.

feature layer
nonlinear principle 
components

decoding

encoding

output layer

input layer

Fig. 2. Target values presented at the output layer of a nonlinear principal component neural
network are identical to input values. Nonlinear units comprise the encoding and decoding layers,
while either linear or nonlinear units comprise the feature and output layers

Nonlinear principal components analysis, unlike PCA (Karhunen-Loève expansion),
which is a special case where C and D are linear, does not have a unique solution, and
no known computational method is guaranteed to find any of the globally optimal solu-
tions.
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Nevertheless, for a 20-DoF humanoid robot, a hierarchically-constructed1 NLPCNN has
been shown to minimize error several times more than PCA when reducing to two-to-
five dimensions [6].

2.1 The Periodicity Constraint

Because the coding function f of an NLPCNN is continuous, (1) projections to a curve
or surface of lower dimensionality are suboptimal; (2) the curve or surface cannot inter-
sect itself (e.g., be elliptical or annular); and (3) projections do not accurately represent
discontinuities [7]. However, since the physical processes underlying motion data are
continuous, discontinuities do not need to be modelled. Discontinuities caused by op-
timal projections can create instabilities for control algorithms (e.g., they allow points
along the axis of symmetry of a parabola to be projected to either side of the parabola).
Moreover, an NLPCNN with a circular node [8][9] at the feature layer can learn self-
intersecting curves and surfaces.

Kirby and Miranda [10] constrained the activation values of a pair of nodes p and
q in the feature layer of an NLPCNN to fall on the unit circle, thus acting as a single
angular variable:

r =
√

y2
p + y2

q , yp ← yp/r, yq ← yq/r

The delta values for backpropagation of the circular node-pair are calculated by the
chain rule [10], resulting in the update rule

δp ← (δpyq − δqyp)yq/r3, δq ← (δqyp − δpyq)yp/r3

at the feature layer.
The hyperbolic tangent and other antisymmetric functions (i.e., ϕ(x) = −ϕ(x)) are

generally preferred to the logistic function as the sigmoid in part because they are com-
patible with standard optimizations [11].2 In addition, antisymmetric units can more
easily be replaced with linear or circular units in the feature layer, since these units can
produce negative activations. We propose using a slightly flatter antisymmetric func-
tion for the sigmoidal units with a similar response characteristic to tanh (see Fig. 3).
The advantage of this node is that it can be converted to a circular node-pair while still
making use of its perviously learned weights.

2.2 The Temporal Constraint

Neither linear nor nonlinear principal components analysis represent the time, relative
time, or order in which data are collected.3 This information, when available, can be

1 The joint encoder dimensionality of limbs is independently reduced, then the arms and the legs
are paired and their dimensionality further reduced, and then finally the dimensionality of the
entire body.

2 These include mean cancellation, linear decorrelation using the K-L expansion, and covariance
equalization.

3 Although a temporal dimension could be added to an autoassociative network, one drawback
for online learning is that this dimension would need to be continuously rescaled as more data
is collected to keep it within the activation range of the nodes.
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Fig. 3. The popular hyperbolic tangent activation function y ← 1.7159 tanh( 2
3y) can be approx-

imated by a pair of circular nodes where the activation of the second node yq is fixed at
√

1.9443
and the activation of the first node is calculated accordingly yp ← 1.7159yp/

√
y2

p + 1.9443

used to reduce the number of layers and free parameters (i.e., weights) in the network
and thereby its risk of converging slowly or settling into a solution that is only locally
optimal. Since the activations yp and yq of the circular node-pair in the feature layer
in effect represent a single free parameter, the angle θ, if θ is known, we can train the
encoding and decoding subnetworks separately by presenting k cos(θ) and k sin(θ) as
target output values for the encoding subnetwork and as input values for the decod-
ing network.4 Once a single period of data has been collected, temporal values can be
converted to angular values θ = 2π tk−t0

tn−t0
for data collected at any arbitrary time tk dur-

ing a period, starting at t0 and ending at tn. A network may similarly learn transitions
between periodic movements when using a linear or sigmoidal activation node in the
feature layer because these open-curve transitions do not restrict us to using nodes ca-
pable of forming a closed curve.5 NLPCNNs with a circular feature node remain useful
to identify the period of a motion pattern, especially when the pattern is irregular and,
thus, begins and ends at points that are somewhat far from each other.

3 Automatic Segmentation

We conceived of the automatic segmentation problem as the problem of uniquely as-
signing data points to nonlinear principal component neural networks. It is possible to
partition the points without reference to the predictions of the networks.6 However, for

4 k ≈ 1.7 for zero-mean data with variance equal to 1 based on principles discussed in [11].
5 ytarget = 2k( tk−t0

tn−t0
− 1

2 ), with k ≈ 1.4.
6 For example, data points may be partitioned at the point at which a trajectory most closely

doubles back on itself, if the distance between the two paths is within a certain threshold and
the paths then diverge beyond another threshold.
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A B

Fig. 4. The thick line shows the output of an NLPCNN and the thin line shows the underlying
distribution. The dots are data points. A. Before learning converges, allowing the network to learn
data points despite a high prediction error accelerates learning. B. However, after convergence, it
leads to segmentation errors

our method each network’s performance influences segmentation with more networks
assigned to regions that are difficult to learn.

As the robot begins to move, the first network is assigned some minimal number
of data points (e.g., joint-angle vectors), and its training begins with those points. This
gets the network’s learning started quickly and provides it with enough information
to determine the orientation and curvature of the trajectory. If the average prediction
error of the data points assigned to a network is below some threshold, the network is
assigned additional data points until that threshold has been reached. At that point, data
points will be assigned to another network, and a network will be created, if it does not
already exist. To avoid instabilities, only a single data point may shift its assignment
from one network to another after each training cycle.

j ← 1, bucket ← 1, E ← 0
∀xi {
train(networkj , xi)
Ei = ‖xi − g(f(xi))‖2, E ← E + Ei

if ( bucket > Bmax ∨
( learning?(networkj) ∧ E/bucket > Emax ) ∨
Ei > Ei+1 )
j ← j + 1, bucket ← 1, E ← 0 }

Listing 1. Pseudocode for segmentation

Since a network is allowed to learn more data points as long as its average prediction
error per point is low enough, it may learn most data points well but exhibit slack near
peripheral or recently learned data points. At the start of learning, the network should
be challenged to learn data points even when its prediction error is large (see Fig. 4A).
As learning converges, however, the slack leads to segmentation errors (see Fig. 4B).
Therefore, we alter the method of segmentation once the network nears convergence
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(as determined by Bayesian methods [12] or crossvalidation) so that a network may ac-
quire neighboring points if its prediction error for those points is lower that the network
currently assigned to those points.

4 Humanoid Experiments

This section shows the result of automatic segmentation and neural network learning.
We assess the accuracy of the result based on a manual segmentation of the data points
and an analysis of how they are allocated among the networks.

First, we recorded motion data while a HOAP-1 humanoid robot played soccer in
accordance with a hard-coded program [13]. Each data point is constituted by a 20-
dimensional vector of joint angles. A standard (noncircular) NLPCNN reduced the di-
mensionality of the data from 20 to 3, which was determined to be the intrinsic dimen-
sionality of the data by the ISOMAP procedure [14] We then applied our algorithm to
segment, generalize, and generate humanoid motion.

Our algorithm uniquely assigned the data points among a number of circularly-
constrained NLPCNNs. Each of the networks learned a periodic motion pattern by con-
jugate gradients. Our algorithm successfully generalized five out of six primary motion
patterns: walking forward, turning right or left, and side-stepping to the right or left.
It failed to generalize as a single periodic trajectory the kicking motion, which has a
highly irregular, self-intersecting shape. However, human subjects were also unable to
determine the kicking trajectory from the data points.

Figure 5 shows that the automatic segmentation algorithm successfully employed
circular NLPCNNs to separate and generalize five of the periodic motions. (The open-
curve segmentation of transitions between periodic motions are omitted for clarity.)
The periodic trajectories were generated by varying from 0 to 2π the angular parameter
θi at the bottleneck layer of each of the circularly-constrained networks and mapping
the result to the output layer for display. This demonstrates our method’s capacity to
generate periodic motions.

We calculated statistics based on running the automatic segmentation for 20 trails.
The algorithm resulted in five decoding subnetworks for 45% of the trials, which is the
most parsimonious solution. It resulted in six subnetworks for 50% of the trials, and
seven for the remaining 5%. In results published elsewhere [15, 16], we developed a
method resembling linear integration that consistently eliminated redundant networks
for this data set. If the area between the predicted curves of two networks is sufficiently
small, on network is removed and its data points are reassigned to the other network.7

Since the data was generated by the predefined behavior modules used by the Os-
aka University team in the 2003 RoboCup humanoid competition, each data point was
already labeled and could be segmented into the five types of motion that had been suc-
cessfully abstracted. To assess the accuracy of the automatic segmentation algorithm,
we manually assigned the data points corresponding to each type of motion to five pe-

7 The algorithms presented in [15] deviate from those presented here and in [17] in some minor
details, the most significant being that learning and segmentation occur sequentially rather
than simultaneously.
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Fig. 7. The allocation of data points to each network

riodic temporally constrained NLPCNNs. Figure 6 shows the average distance between
the prediction for each of these networks and each of the networks resulting from auto-
matic segmentation.

The lowest bar indicates which pattern the networks, numbered 1 to 6 best match
in terms of least average distance. Hence, the first network represents walking; the sec-
ond represents turning right; the third turning left; the fourth and fifth sidestepping
right; and the sixth sidestepping left. The fact that the fifth network is redundant, ab-
stracting the same type of motion as the fourth, does not prevent the abstracted actions
from supporting the mastery of soccer or some other task. Both networks can be used.
The algorithm’s capacity to reduce a vast amount of complex, raw data to just a few
states may help reinforcement learning approaches to finesse the curse of dimensional-
ity [18].

We counted the number of point belonging to each network. Figure 7 shows that
the first network captured 92% of the walking data, the second 95% of the turning
right data, the third 89% of the data for turning left and 3.6% for turning right, the
fourth captured 43% of the data for sidestepping right, and the fifth 84% of the data for
sidestepping left. The total number of point from each pattern allocated to the networks
is not 100% because the segmentation algorithm successfully excluded most outliers.

5 Conclusion

Our proposed algorithm abstracted five out of six types of humanoid motion through
a process that combines learning and data point assignment among multiple neural
networks. The networks perform periodic, temporally-constrained nonlinear principal
component analysis. The decoding subnetworks generate motion patterns that accu-
rately correspond to the five motions without including outliers caused by nondetermin-
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istic perturbations in the data. During 45% of training episodes, the algorithm generated
no redundant networks; a redundant network appeared in 50% of the training episodes,
and two appeared in 5% of them. The fourth and fifth networks represent the same type
of motion. Although they would symbolize a redundant state in the reinforcement learn-
ing paradigm, this does not prevent the learning of a complex task. In companion papers
[15, 16], we propose a method that successfully removes redundant networks according
to the proximity of their predictions. In future work, we will improve segmentation by
competitively reassigning temporally-adjacent data points to the network that predicts
the points with the least error.
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Abstract. This paper presents a method for planning three-dimensional walking 
patterns for biped robots in order to obtain stable smooth dynamic motion and 
also maximum velocity during walking. To determine the rotational trajectory 
for each actuator, there are some particular key points gained from natural hu-
man walking whose value is defined at the beginning, end and some intermedi-
ate or specific points of a motion cycle. The constraint equation of the motion 
between the key points will be then formulated in such a way to be compatible 
with geometrical constraints. This is first done in sagittal and then developed to 
lateral plane of motion. In order to reduce frequent switching due to discrete 
equations which is inevitable using coulomb dry friction law and also to have 
better similarity with the natural contact, a new contact model for dynamic 
simulation of foot ground interaction has been developed which makes the cyclic 
discrete equations continuous and can be better solved with ODE solvers. Finally, 
the advantages of the trajectory described are illustrated by simulation results. 

1   Introduction 

Today, humanoid robots have attracted the attention of many researchers all over the 
world and many studies have been focused on this subject. When biped robots are 
viewed as general dynamical mechanisms, there are several problems such as limited 
foot-ground interaction, discretely changing dynamics, naturally unstable dynamics 
and multi-variable dynamics, which make using distinctive methods inevitable in con-
trolling them and in planning trajectory for them [1]. 

Planning walking pattern is one of the most challenging parts. Recording human 
walking data aided Zerrugh to investigate human walking pattern [2]. Tad McGeer [3] 
developed the idea of using gravity as a main source of generating natural dynamic 
walking in the sagittal plane and Kuo [4] developed the stable walking in lateral motion. 

Huang and his team [5] planned the walking pattern for a planner biped robot by 
interpolating third order spline between some key points of motion cycle. In the pre-
sent study, we used this method to fulfill the trajectory for sagittal motion while also 
considering energy consumption optimization as well as geometrical consistency. 
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Proposing a smooth pattern for lateral motion, we used only two parameters such that 
making changes in them could generate all possible trajectories. 

Bipeds divide into two main categories: Static walkers, whose control is treated as 
a static control and that have very low speeds; and Dynamic walkers, which should be 
controlled dynamically and walk at relatively higher speeds. In the static case, the 
problem is solved as a static problem at each instant while in the dynamic case, differ-
ential equations should be solved at a time interval. 

To ensure that an arbitrary trajectory will satisfy the stability of a biped, a criterion 
should be used. The most acceptable one for dynamic walkers is zero moment point 
(ZMP) criterion of stability but center of gravity (COG) should be evaluated for sta-
bility of static walkers. In some studies [6, 7, 8], a suitable ZMP is first assumed and 
then a trajectory is found that can maintain it. Others find the desired ZMP among 
several smooth trajectories. The second method is more useful (see section 2.2). 
Based on previous work [5], two parameters were used to compute all possible sagit-
tal trajectories. We developed this method and added two parameters to cover all pos-
sible lateral trajectories. By executing a search algorithm for these trajectories and 
evaluating the ZMP criterion, stable walking trajectory is filtered out. Finally, the 
most stable trajectory was obtained by comparing different trajectories. The use of 
two parameters allowed us to overcome one of the biped problems. This will greatly 
reduce massive calculations that would be inevitable when dealing with several pa-
rameters. 

As said above, one of the biped problems is the discontinuity of the state equations 
which is due to following reasons: 

1. The dynamics of a bipedal walker changes as it transits from a single support 
to a double support and back to the single support. 

2. Because of the multiple state friction equations such as Coulomb model, the 
dynamic equation of the contact is discrete in each phase. 

To overcome this problem, we utilized a new contact model, which is more con-
tinuous and also has the advantage of being more similar to the real nature of the con-
tact. In order to consider elasticity as a material characteristic of surfaces of contact, 
Young modulus of elasticity was used in calculating ground normal force on foot. 

2   Three-Dimensional Walking Pattern Generation 

For a biped robot to be able to walk with stability, two approaches are generally avail-
able. One is playing back offline trajectory and the other is applying online control 
techniques. The latter uses heuristic methods that lead to a motion in which specific 
trajectories, precision, and repeatability are not important factors and the motion can 
be different in each step. The former implies a pre-recorded joint trajectory to a robot 
based on some desired stability criteria, leading to a precise repeatable motion. The 
online method is useful in environments with unexpected surface terrains while the 
offline one must be selected in unchangeable situations especially while the massive 
calculations during motion are to be avoided. Since the ground condition is not as-
sumed to change, the problem can be deled deeply and more accurate results will obtain. 
With these considerations in mind, the offline method was selected in the present study. 
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2.1   3D Kinematic of a Biped Motion 

A biped with two legs, two arms and a trunk is considered here as shown in Fig. 1. 
Each leg consists of six degrees of freedom (DOF), two DOFs for hip, three for ankle, 
and one for knee. Each arm is composed of 3 DOFs. Physical properties for each part 
of the robot can be found in Table I. 

The general motion of a biped consists of several sequential steps each composed of 
two phases: single support and double support. During the single support phase, one 
leg is on the ground and the other is in the swinging motion. The double support phase 
starts as soon as the swinging leg meets the ground and ends when the support leg 
leaves the ground. To be similar to human walking cycle, the period of this phase is 
considered to be 20% of the whole cycle. Tc and Ds are the duration and length of the 
whole cycle while Td represents duration of double support phase in the cycle. 

 

Fig. 1. Structure of the studied Biped 

Table 1. Physical properties of a robot 

Parameter Foot Shank Thigh Trunk 
Lab Lan Laf Lw Ls ab Lt ab Ltr H Length 

(m) 0.05 0.06 0.07 0.07 0.10 0.02 0.10 0.02 0.08 0.08 
Mf Ms Mt Mtr Mass 

(kg) 0.15 0.3 0.4 1.2 

It can be shown that having ankle and hip trajectories is sufficient to formulate the 
trajectories of all leg joints uniquely [5]. With this assumption but unlike most previous 
works, we planned the motion not only in sagittal but also in lateral plane of motion. 
Let (xa,ya,za) and (xh,yh,zh) denote the ankle and hip joint coordinates and ha θθ , to be 

their relative sagittal rotational angles and lθ to be the lateral rotational angle of the leg, 

All calculations are carried out for one leg but it can simply be repeated for the other 
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leg. Considering each joint's location at some specific points and interpolating them by 
a particular function that both matches human motion and is compatible with geomet-
rical and boundary conditions, we are able to plan walking patterns for the ankle and 
hip. The functions used here must behave smoothly. To satisfy this condition, the func-
tions must be differentiable and their second derivative must be continuous. For this 
purpose, polynomial, spline, and sinusoidal functions are used here that normally sat-
isfy these requirements. 

Building upon pervious works with sagittal motion, we also consider lateral motion 
and use the same method as used in Huang et al. [5] to fulfill the 3D trajectory plan-
ning in a comprehensive manner. 

 

Fig. 2. Walking cycle of a biped robot and the motion parameters 

Ankle Trajectory 

A fourth degree polynomial is used when the foot is in the swinging motion while a si-
nusoidal function is used for the interval of foot-ground contact. The use of the latter 
function makes the foot trajectory compatible with geometrical constraints.  

Applying transitional conditions (2), these two curves are joined smoothly as in 
Fig. 3. The resulting curves are illustrated in (1). In these trajectories, the foot angle is 
designed to vary in motion to better match human motion. If it is assumed to be al-
ways level with the ground, (like in most previous works), the biped speed will seri-
ously reduce. Tm is the instant in which xa and ya reach Lam and ham, respectively. F(t) 
and G(t) are 4th  and 5th order polynomial functions, respectively, and p is used for ad-
justing swing acceleration. 
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Fig. 3. The trajectory of ankle during walking simulated in Mathematica 
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Function Fk(t) and Gk(t) in the equation above are calculated using the constraints 
given below: 
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Hip Trajectory 

Hip trajectory is interpolated with third–order splines assuming to have its highest po-
sition midway in the single support phase and its lowest midway in the double support 
phase. This makes the body to consume the energy in an optimal way as it has the 
minimum height while it has maximum velocity and vice versa. This situation is rep-
resented in (3) and in the corresponding curves in Fig. 4. Transitional conditions for 
hip equations are listed in Table II. In (3), xed and xsd denote distances along the x axis 
from the hip to the ankle of the support foot and hmin and hmax designate the height of 
hip at minimum and maximum heights during its motion. 
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The equations of hip motion in sagittal plane in x and y positions are given by (3). 
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Table 2. The constraint applied to equation of hip motion 

Time  X  Time y  z  
0 xed 0.5Td hmin z*=0 

Td Ds-xed 0.5(Td+Tc) hmax z*=zm 

Tc+Td Ds+xed 0.5Td+Tc hmin z*=0 
 

          
  

Fig. 4. The trajectory of hip joint during walking simulated in Mathematica 

Assuming that the value of lateral displacement of the hip is zero midway in the 
double support and reaches its maximum midway in the single support phase, the lat-
eral motion can be described by the lateral angle lθ  (5). The motion is assumed to 
have sinusoidal form in the largest portion of the double support phase and tangents to 
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Fig. 5. The trajectory of hip joint in lateral plane during walking. Simulated in Mathematica 

a forth-order polynomial mostly when the body is on one support (8). Tl is the duration 
of sinusoidal behavior, zm is the maximum lateral deviation, and z* is the lateral posi-
tion of the middle point.  

Several lateral smooth trajectories can be obtained by varying these two parameters 
(zm,Tl).The appropriate variation of lateral hip trajectory parameters are shown in Fig. 5. 
The Coefficient α ensures that zm reaches its maximum in the mid single support phase.  
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Dynamic and Stability of a Biped Motion 

There are several methods to ensure whether a particular trajectory is stable. As de-
scribed above, we utilized the ZMP criterion which states that: if the ZMP is within 
the convex hull of all contact points, the stability of the robot is satisfied and the robot 
can walk [9]. In the biped, the stable region is the surface of the support foot (feet) 
(Fig. 6). The location of ZMP is given by (9). 
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Fig. 6. The stable region of ZMP 
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The greater the distance between the boundaries of the stable region and the ZMP 
called stability margin, the higher the stability. So to find the safest trajectory, it is nec-
essary to evaluate all possible trajectories planned by the method described above to 
satisfy this stability criterion. Then, the pattern in which the largest stability margin is 
gained will be selected as the optimum one. 

For sagittal stability using previous works [5, 6, 7, and 10] and by defining different 
values for xed and xsd, we were able to find the trajectory with maximum stability re-
gion through a search method. 

Having developed this method for lateral motion, we used two lateral parameters Tl 
and zm to make it possible to derive a highly stable, smooth hip motion without having 
to first design ZMP trajectory as other workers [8] had. Their method is associated 
with two disadvantages. First, they miss some suitable ZMP trajectories. Second, those 
trajectories not obtained through smooth functions may require too high an accelera-
tion beyond the actuator's capacity so that the hip will fail to trace the desired trajectory. 

3   Simulation Using Realistic Model 

Modeling of contact is an important part of the modeling process. So using the equa-
tions that best describe the physics of contact and that also reduce the frequency of 
switching between equations is essential in avoiding highly frequently switching be-
tween differential equations which are usually hard to solve numerically. 

3.1   New Continuous Contact Model Versus Traditional Discrete Types 

It is well known that classical friction models such as Coulomb and Karnopp in which 
the relation between friction forces and the relative velocity between contact surfaces 
are discontinuous generate discontinuity in the biped robot model. This could result in 
difficulty in integrating equations of motion into one. 
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Fig. 7. ZMP trajectory in the stable region in x and z directions. The gray surface is the stable 
region of ZMP 

Considering different types of friction laws, the Elasto-Plastic law[11], which ren-
ders both pre-sliding and stiction is selected. 

To be able to apply this model to foot ground interaction, the foot is divided into 
some segments. The described model is employed to each segment by using (10) and 
(11) to calculate the reaction force in each segment (Fig. 8). The friction force in 
Elasto-Plastic Model is written as (10) 

        ,     0 i210 >++= συσσσ zzff  (10) 

Details of this equation and description of the parameters are illustrated in the 
Appendix. 

Finally, summing the effects of all segments, total surface reaction applied to the 
foot will be obtained. Using (10), the traditional two-state friction force will change to 
a single-state one and this avoids switching problems. 

 

Fig. 8. The schematic of reaction force of contact model with four elements 

For the normal reaction of the contact surface, Young's modulus-coefficient of restitu-
tion was used [12] to account for the elasticity of foot and ground material and is 
given by (11). 
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δδ ckN +=  (11) 

where, k is the modulus of elasticity; c is the structural damping coefficient of contact 
material; and δ is the penetration depth of the contact foot into the ground. 

3.2   Simulation Results 

To select the actuators, their characteristics were required. We employed the resulting 
trajectory in this paper and, by imposing inverse dynamics, the required torques were 
calculated (Fig. 9). 

                
   

 
 
 

                 
 
 
 

Fig. 9. Torque and velocity for different joints. a) Ankle joint in the sagittal plane b) Knee joint 
in sagittal plane c) Hip joint in the sagittal plane While d) Ankle and hip joint torque graphs in 
lateral direction.(All torques and velocity measured in Nm and rad/s respectively) 

The graphical output of the simulation for two steps of walking of a robot is visual-
ized (Fig10). 
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Fig. 10. The simulation result of 2 steps 

4   Conclusion 

In this paper, we described and developed a method for planning 3D smooth, stable 
walking pattern and, by using a new contact model in order to capture a better similar-
ity with the real environment. The major contributions of the method are: 

• Using sinusoidal functions, more useful trajectories for foot motion can be 
produced considering geometrical consistency; 

• Energy consumption efficiency is achieved since height value changes in-
versely proportional to its speed; 

1. Lateral trajectories are added to sagittal ones in order to simulate three dimen-
sional motion; 

2. ZMP criterion was developed for lateral motion so that the trajectory is stable 
in a general 3D motion;  

3. Using a new contact model, the switching problem in differential equations is 
prevented which results in similarity with real natural contact. 

Future study may consist of analyzing the effects of the upper body motion at very 
high speeds and online adaptation of trajectory to different ground conditions. 
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Appendix: Elasto-Plastic Friction Law 

In order to remove the discontinuity of the contact equation in Elasto-Plastic Model, z 
parameter is used to present the state of strain in frictional contact. The only differ-
ence which makes this theory more comprehensive (inclusive) than LuGre is an extra 
parameter which provides stiction and excludes pre-sliding. Using this model, the 
equation of friction may be written as: 

vzzff 210 σσσ ++=  (12) 



 Three-Dimensional Smooth Trajectory Planning Using Realistic Simulation 393 

 

where, 0σ and 2σ are Coulomb and viscous friction parameters and 1σ provides damp-
ing for the tangential compliance, also ),( zxα is used to achieved stiction. z  is governed 
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f is obtained by Coulomb law. x is the relative velocity between the two con-

tact surfaces and also fba is the breakaway force. Finally, vs is the characteristic veloc-
ity. 
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Abstract. We have developed an automatic calibration method for a
global camera system. Firstly, we show how to define automatically the
color maps we use for tracking the robots’ markers. The color maps
store the parameters of each important color in a grid superimposed
virtually on the field. Secondly, we show that the geometric distortion
of the camera can be computed automatically by finding white lines
on the field. The necessary geometric correction is adapted iteratively
until the white lines in the image fit the white lines in the model. Our
method simplifies and speeds up significantly the whole setup process at
RoboCup competitions. We will use these techniques in RoboCup 2004.

1 Introduction

Tracking colored objects is an important industrial application and is used in
the RoboCup small-size league for locating robots using a video camera which
captures the field from above. The two most important problems which arise in
this kind of object tracking are: a) elimination of the geometric distortion of the
cameras, and b) calibration of the colors to be tracked. It is not possible to cali-
brate geometry and colors manually, once and for all, since lightning conditions
change from one place to another, and even from one hour to the next.

In this paper we describe the techniques we have developed for fast calibra-
tion of the global camera(s) used in the RoboCup small-size league. The paper
is organized as follows. First we comment on related work. Then we describe
in detail our new semi-automatic color calibration method and compare its re-
sults to the hand-optimized ones. The next section deals with the calibration of
the geometric transformation of the field and compare the automatic with the
manual method. Finally, we describe our future plans.

2 Related Work and Motivation

Zrimec and Wyatt applied machine learning methods to the color calibration
problem [10]. They recognize regions delimited by edges and classify them ac-
cording to features such as average hue, saturation, intensity, and others. A com-
puter vision module for Sony robots uses those features to locate field landmarks.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 394–401, 2005.
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Another approach for automatic calibration is to compute global histograms
of images under different lightning conditions. Lookup tables for color segmen-
tation are initialized in such a way as to make the new histogram equal to that
found under controlled conditions [6]. In our case this approach would not work,
since we do not use a single lookup table for the whole field. We recognize colors
locally, using a color map which can change from one part of the field to the
other. Some authors have tried decision trees in order to segment colors inde-
pendently from light. However, they focus on object localization robustness and
do not deal with the automation of the calibration [1].

Regarding the correction of the geometric distortion introduced by a camera,
the canonical approach relies on determining first intrinsic camera parameters
and then extrinsic parameters [2]. The intrinsic parameters can be measured in
the laboratory. The extrinsic can be fitted by least squares, identifying points
on the image with points in a geometric non-distorted model. We do not want
to identify points on the field by clicking on them; the software should be able
to automatically recognize the orientation of the camera and to select relevant
points for matching them with the model.

Whitehead and Roth described an evolutionary optimization approach to
camera auto-calibration [9]. Their method does not apply to our case, because
they optimize the fundamental calibration matrix directly, without considering
the radial camera distortion. Projective geometry methods alone solve one part of
our problem, but not the whole problem. Some authors have studied real-time
distortion correction for digital cameras, but without handling the projective
transformation correction [4].

3 Semi Automatic Color Calibration

In [7] we described our use of color maps for robust color recognition of the
robot’s markers. They consist of a virtual grid superimposed on the field, one
grid for each important color. At each grid node we store the RGB parameters
of the color and the size of visible color markers for that part of the field, as seen
by the camera. The grid must be initialized before starting to track objects, that
is, we need an initialization step for each individual color. The color and marker
size maps are further adapted during play, so that the tracking system updates
the grid information whenever a change of illumination occurs.

3.1 Initializing the Color Maps

The global camera captures images in RGB format. This color space is not
very useful when trying to achieve color constancy. Therefore, we operate in the
HSV(hue/saturation/intensity value) color space. Fig. 1 shows the variability of
the HSV components over the field as captured in our lab.

Fig. 2 shows the functional relationship between the intensity of the back-
ground pixels (green) and the color blobs on the field. The relationship is an
affine function, whose parameters can be computed from the background inten-
sity and from two probes of the desired color positioned on the field. The function
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Fig. 1. The HSV components for the field of play with blue test blobs on it. The first
image shows the hue component, the second the saturation, and the third the intensity.
As can be seen, the intensity changes significantly throughout the field

(a) (b)

Fig. 2. The graph compares the intensity values of some random points on the green
background and the color map. Illumination inhomogeneities produce different changes
for different colors – scaling and translation factors are present: (a) shows the depen-
dency of the intensities as a function of the field coordinates (three lines over the
field); (b) shows the intensity of the color blobs as a function of the intensity of the
background at the same points. The correlation is clearly visible

has two parameters: an additive constant and a scale factor. We compute both
twice, from two probes, and average them for subsequent computations. More
probes could also be taken, resulting in better averaging.

Given b1 and b2, the intensity of the background color at the point P1 and
P2, and given c1 and c2, the intensities of the color C whose map we want to
derive at the points P1 and P2, respectively, the translation factor t and the scale
factor s are given by

t =
(c1 − b1) + (c2 − b2)

2
s =

( c1
b1

) + ( c2
b2

)
2

(1)

When the background intensity b at a point P is known, the unknown inten-
sity c of the color C at this point P is given by

c = bs + (b + t)
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We also want to estimate the size of the robot markers (color blobs) around
the field. The apparent size of the markers varies with lightning conditions and
camera distortion. We assume that their size is proportional to the intensity of
the blob. We estimate the marker size by interpolating the sizes of the samples,
according to the intensity. One can also use the camera distortion to calculate
the size of the robot markers according to it.

To reduce the influence of noise, a median color is computed for the marker
and the background color at the picked point. The radius for the area around
the blob is predefined with respect to the blob-object which is identified by this
color (for example the orange ball is a little bit smaller than a team marker). The
size of the median filter for the background color, for its color grid, is exactly
the size of a grid tile [7].

3.2 Results and Comparison

In Table 1, the different forms of initializing the color map before starting a game
are compared to the manual adjustment method, exemplarily for the ball. As
shown, automatic initialization gives better results and smaller errors, compared
to a uniform initialization of the color map. The most important improvement
is the reduction of the maximum error, the relevant magnitude when trying not
to lose track of an object in the field. The improvement in estimation of the
ball size, as seen from the camera at different coordinates on the field, is also
significant.

Table 1. Statistical results comparing initializations of color maps. The table shows the
performance (relative to the hand-optimized color map) of a uniformly initialized color
map and two different automatically initialized maps. The performance of one specific
map is measured with the maximum and mean percentage deviation of computed values
from those in the hand-optimized map

Deviation from hand-optimized
Uniform Automatic

maximum mean maximum mean
hue 1.94% 0.85% 1.28% 0.61%

saturation 7% 1.4% 4.6% 1.7%
intensity 48% 9% 25% 9.4%

size 31 pixel 13 pixel 18 pixel 9.15 pixel
RGB distance 27.9% 5.2% 14.5% 5.7%
HSV distance 48% 8.7% 25.4% 9.73%

4 Automatic Geometric Calibration

The second camera setup problem we consider is the correction of the geometric
distortion. Traditional methods require identifying pairs of points in the image
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and model space. One could artificially define those calibration points by using a
carpet with marks, but that requires too much manual intervention. In this pa-
per we show how to use the white lines on the field to determine the parameters
of the transformation. The correlation between the extracted, and transformed
lines, and the lines of the model, is a measure for the quality of the transforma-
tion. This measure enables us to find the best transformation with conventional
optimization algorithms.

Our method is divided into the following steps: First, we extract the contours
of field regions from the video image. Next, we find a simple initialization, which
roughly matches the lines of the field to the model. Finally, we optimize the
parameters of the transformation.

4.1 Extraction of Contours

The non-white regions on the field are

Fig. 3. F-180 Field Padova 2003, with ar-
tificial shadows with strong edges. Dashed
lines show the field and out-of-field con-
tours

found by applying our region growing
algorithm as described in [3]. Discrim-
ination between white and non-white
pixels is based on their relative inten-
sity with respect to the local back-
ground. First, we average the intensity
of a larger region around a given pixel,
which is assured to contain a high per-
centage of background pixels. Relative
to that rough approximation, we re-
ject foreground pixels in a smaller re-
gion and locally determine the inten-
sity from the remaining pixels. The
contours of the regions found are the
borders of the field lines (see Fig. 3).

4.2 Quality Measure

Assume that we have a hypothetical geometric transformation T and that we
want to measure its error. Since we cannot determine the exact location of a
contour point p in the model, we approximate its error E(T, p) with the distance
between the transformed point T (p) and the nearest white line in the model. For
a set of points P , we compute the quality error Ê as

Ê(T, P ) := Ē(T, P ) + σ (E(T, P ))

where Ē is the mean error, and σ its standard deviation.

4.3 Initialization of the Transformation

To minimize the complexity of the optimization step, a smart initialization of
the transformation T is useful. We assume that the field has only limited dis-
tortion, radially and in the perspective. A linear transformation is a good initial
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approximation, except for the alignment of the field. Finding a matching pair of
rectangles in model and field let us compute such a transformation. In our case
a bounding box around region 1 (see Fig. 3) results in a good approximation to
a rectangle corresponding to one half of the field in the model. The alignment
can easily be determined by testing all four orientations of the bounding box as
initialization for the linear transformation. Using the quality measure described
above for the contour of region 1, the best match identifies the orientation of the
field, since the region is not symmetric with respect to rotation. The association
between the field sides in image and model is arbitrary. The transformation T
can be initialized accordingly to the linear transformation Tinit. We use a bi-
quadratic transformation as our standard transformation (see Section 4.4), but
other transformation models are possible.

4.4 Optimization

We use for both coordinates in model space a biquadratic interpolation in a single
3×3 grid to determine the coordinates in model-space, giving us 18 parameters to
be optimized. The initialization can be analytically derived from Tinit. However,
our approach relies only on the convergence properties of the transformation
function and not on the function itself.

Given the transformation T , gradient descent with linearly falling step-length
suffices to optimize the placement of the vertices with sub-pixel accuracy. To
achieve faster convergence adaptive selection of step-length and/or conjugate-
gradient methods can be used. Gradient descent only requires a non-degenerate
initialization with the approximate orientation. In our experiments, even the whole
image as rectangle for the initialization converged against the global minimum.

Other transformation-functions can be optimized similarly. Depending on
its convergence properties, a global optimization method may be necessary, for
example simulated annealing.

4.5 Calibration Results

We applied our algorithm to a set of real video images, captured two different
camera-systems (Basler 301fc, Sony XC-555). We presented the algorithm with
two different fields, the field of the Padova World Cup 2003, built according to the
F-180 2003 rules, and our lab-field, which has slightly different dimensions and
several rough inaccuracies. The images had different brightness, and some were
artificially modified to simulate shadows with strong edges (as can be seen in
Fig. 3), which normally are not present on the field and strain region-extraction
more than the soft shadows usually observed. Furthermore, some images were
rotated up to 20o.

For a correct field model, our algorithm could adjust the geometric biquadratic
transformation for all images presented, given the constraints on the distortion,
without further adjustments to the algorithm after the initial selection of the
Padova images. Subsequent attempts to improve manually the parameters of
the transformation function resulted only in worse results, both with respect to
the average and standard-deviation of the error.
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(a) (b)

Fig. 4. The model matched on the rotated field (a) after the initialization and (b) after
the optimization step

In order to speed up the algorithm, initially only a subset of the contour
points is taken into account for the quality measure. The amount is gradually
increased as the error decreases. We use an adaptive step-width, which slowly
increases, unless the gradient step increases the error. Then the step-width is
reduced. The step-width is independent of the norm of the gradient.

We started the optimization with a step-width of 1 pixel and only using every
20th contour point in the measure. The optimization step required on our set
of images at most 6 seconds (5 seconds with conjugated gradient) to adopt the
parameters in 1/100 pixel accuracy and in average 4 seconds (4 seconds) on an
Athlon XP -2400+ (2GHz).

5 Future Work

The color map for a specific color is initialized by clicking on two markers during
setup. This takes a few seconds. In the future, our vision system will automati-
cally detect colors differing from the background, and will initialize a color map
for them.

For the geometric calibration, we want to evaluate other transformation-
functions, which are probably more accurate, due to their better modeling of
the distortion.

The improvements reported in this paper have the objective of achieving true
“plug & play” capability. In the future it should be possible just to place robots
on the field and start playing immediately against another team, whose col-
ors and marker orientation will be determined automatically. This would speed
RoboCup competitions significantly.
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Abstract. In order to detect objects using colour information, the map-
ping from points in colour space to the most likely object must be known.
This work proposes an adaptive colour calibration based on the Bayes
Theorem and chrominance histograms. Furthermore the object’s shape is
considered resulting in a more robust classification. A randomised hough
transform is employed for the ball. The lines of the goals and flagposts
are extracted by an orthogonal regression. Shape detection corrects over-
and undersegmentations of the colour segmentation, thus enabling an up-
date of the chrominance histograms. The entire algorithm, including a
segmentation and a recalibration step, is robust enough to be used during
a RoboCup game and runs in real-time.

1 Introduction

A scenario for teams of mobile robots, in which optical sensors are very impor-
tant, is RoboCup. In the middle size league this was forced by an environment,
where objects like the orange ball can primarily be detected by optical sensors.
The field is adapting towards the FIFA-rules step by step. The most important
rule change in this category was the removal of the board. Illumination was
decreased and variable lightening conditions, e.g. playing under sunlight, are
subject of discussion.

At the moment RoboCup is ideal for applying colour segmentation algo-
rithms. All objects have characteristic colours, e.g. the yellow and blue goals,
permitting a classification in the colour space. To achieve frame rates between
10 and 30 Hz a fast scene segmentation is necessary. The main issue with colour
segmentation, though, is calibrating the object colours.

Well known real-time colour segmentation methods are the definition of
colour regions by thresholds [1, 2, 3], colour clustering [4], occupancy grids [5] and
discrete probability maps [6]. Thresholds are either manually set [1] or trained
by decision trees [2] and neural networks [3]. Probability maps may be approxi-
mated by Gaussian mixture-models [7] to save storage place.

To distinguish different colours by thresholds in an efficient manner, spe-
cialised colour spaces have been adapted to particular object colours [8]. In
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contrast to these threshold-based algorithms, probability maps make no as-
sumptions about the outline of object colours. The number of colour regions
does not need to be provided a priori as with k-means clustering or Gaussian
mixture-models. Furthermore probability maps separate different objects based
on the Bayes Theorem in a statistically sound manner and also consider the
background. The occupancy grids of [5] are similar to probability maps, but do
not model the background, use increment and decrement operations on the grids
and accumulate a term considering the landmark confidence and area. Probabil-
ity maps, however, distinguish a priori and object probabilities while computing
the a posteriori probability.

In addition to colour information, the object shape may be utilised for object
classification. Jonker, Caarls et al. [9] verify a ball hypothesis by two hough
transforms, executed successively. Hanek, Schmitt et al. [10, 11] fit a deformable
contour model to edges and propose an image processing that is independent
of colour segmentation. Depending on the parametrisation of the contour model
different shapes are detected. Their approach requires a rough initialisation of
the adaptive contour model.

This work introduces a method to generate the mapping between single ob-
jects and their chrominance automatically. It is based on histograms which are
combined according to the Bayes Theorem. Colour segmentation is combined
with a shape detection to provide additional robustness and allow colour recali-
bration. The shape detection specialises on RoboCup and recognises the ball, the
flagposts and the goals with their white posts. Whereas the adaptive colour seg-
mentation is generally applicable, as long as a second segmentation is provided
for the colour update. A prior version of the presented algorithm was published
in [12], suggesting a supervised colour calibration.

2 Overview

Colour spaces that distinguish between luminance and chrominance are well
suited for colour segmentation. Bright and dark objects of the same chromi-
nance may be distinguished by their luminance. This work is based on the YUV
space, which is supported by most video cameras and therefore does not require
any conversion.

In order to compute the chrominance histograms of each object, an object
detection is required that either does not utilise colour information or extrapo-
lates incomplete results of a colour segmentation. The latter approach has been
chosen here, sketched in Fig. 1. Image regions occupied by the objects of inter-
est are marked using an initial table, which contains the mapping between the
chrominance and the classified objects and is referred to as colour map. This
map (Fig. 2) can be drawn by hand or recycled from a former tournament.

After applying the colour map, the object’s contour and neighbourhood re-
lations are checked to verify whether it really is a ball, a goal or a flagpost. On
success histograms of the object colours are updated and a new colour map is
calculated. To save computation time the histograms only need to be adjusted
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Fig. 1. Outline of the adaptive colour segmentation
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Fig. 2. Left: Colour map. Middle: Chrominance sets. Right: A posteriori probabilities

on change of the lighting conditions, i.e. the colour segmented area and the
shape detected silhouette differ. Furthermore the colour map is recomputed af-
ter a fixed number of histogram updates. Colours that did not occur for a while
are eliminated because the histograms are rescaled from time to time. To avoid
complete deletion the histograms are scaled only if they contain more than a
minimum number of entries.

Because of the iterative nature of the entire process a second map is added
that specifies the maximum chrominance set (Fig. 2) for each object, including
the background. In contrary to the colour map, these sets may overlap. They
prevent divergence of the algorithm without loss of generality. Currently the
maximum chrominance sets are provided a priori and kept static during a game.

3 Colour Training and Segmentation

Prior to colour segmenting an image, the chrominance histogram HO for each
object O in the object set O is computed. In this context, the background is
also considered an element of O. The relative frequencies in the histograms HO

can be interpreted as the a priori probabilities P (u, v|O) = HO(u, v)/|HO| for
occurrence of an (u, v)-pair under the assumption that object O is seen. The a
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posteriori probability, specifying how likely an (u, v)-pair belongs to object O,
is given by the Bayes Theorem:

P (O|u, v) =
P (u, v|O) ∗ P (O)∑

Q∈O
P (u, v|Q) ∗ P (Q)

. (1)

McKenna, Raja et al. [7] note that the object probability P (O) is related
to the object size. However it is rather difficult to record images containing
the objects in representative quantities. Therefore P (O) is not computed, but
set manually.

If a chrominance pair (u, v) has not been seen yet on object O an initial
probability Pinit(u, v, O) = Pinit(u, v|O) ∗ P (O) is assumed, preventing that
a chrominance pair gets a high a posteriori probability although it is barely
contained in object O.

At each pixel the object with the highest a posteriori probability is classified.
For an efficient classification the object belonging to a chrominance pair is stored
in a look-up table, i.e. the colour map as visualised in Fig. 2. The figure also
shows the probabilities of the classified objects, where darker values correspond
to higher probabilities. In the centre, representing the achromatic area, white
posts in the foreground overlap with white, black or grey background. The green
floor is considered as background.

As long as the lighting condition remains constant the same colour map is
applied and the complexity is identical with [13, 9]. On a lighting change the
histograms and the colour map are updated. In order to eliminate old entries
the histograms are scaled by a time-out factor prior to adding new images.

4 Ball Detection

Colour segmentation identifies image regions, which might contain interesting
objects. Due to occlusions or bad segmentations, especially while the colour map
is adapting, the object’s segmentation might not be complete. Figure 3 shows
a typical segmentation performed with an initial colour map. The upper half of
the ball is not completely segmented. However, there is enough information to
extrapolate a circle with the colour segmented contour points.

To detect partially occluded objects of known geometry we apply a ran-
domised hough transform. Although the projection of a sphere on a plane results
into an ellipse [11], we model the ball as a circle. This approximation is sufficient
for verification and completion of the ball’s shape.

A circle has three degrees of freedom: the centre (cx, cy) and the radius r,
resulting in a 3D hough accumulator. If only a few round objects are inside
the region of interest the search space is reduced with a random approach. The
implemented randomised hough transform is based on the work of McLaughlin
[14] and Xu, Oja et al. [15].

First, three points (xi, yi) on the contour are randomly selected. Considering
the triangle, which is formed by these points, its centre of gravity coincides with
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Fig. 3. Left: Initial colour segmentation. Middle: After recalibration. Right: Original
image, in which the detected ball, flagpost and goal are surrounded by white lines

the circle’s centre and all distances from the centre to these points have about the
same length if the points lie on a true circle. If this test is passed the hypothised
centre (ĉx, ĉy) and its average distance r̂ to all triples are inserted into the hough
accumulator. It is advisable to store the occupied accumulator cells only because
just a few cells are filled [14].

After the specified number of point triples has been drawn and added to the
accumulator, the cells with the highest counts are verified. The best hypothesis
is determined by the weighted sum of the ratio ep between the circumference
and the perimeter of the approximating polygon, the signal to noise ratio eSN ,
and a radial error er. All measures are normalised to values between 0 and 1.
Thereby the error er of the radius is modelled as Gaussian and a probability for
the hypothised radius P (r̂) is calculated from the mean μr and variance σ2

r of
all point distances to the centre (ĉx, ĉy):

er = P (r̂) =
1√

2πσr

e
(r̂−μr)2

2σ2
r (2)

A hypothesis is valid if each measure is above a fixed threshold. If no circle
is detected the procedure may be repeated. Partially occluded balls occasionally
require such a repetition. Due to the randomised approach and noisy data it is
recommended to verify more than one hypothesis at each cycle.

5 Detection of the Goal and Flagposts

Contrary to the ball, the shape of the goal and flagposts cannot be concluded
from the colour segmented contour if a bad colour map is applied (Fig. 3). If so,
the colour segmented area is ragged. Therefore object detection uses edges close
to the colour regions. Also neighbourhood relations are considered. Sideways to
a goal a white bar is expected. Due to partial occlusions a single collateral white
region is sufficient. The flagposts are characterised by vertical yellow-blue or
blue-yellow transitions.

As the robot’s camera looks downward, the upper borders of the goal and
flagposts are never visible. Thus only straight lines bordering the side and the
bottom are checked. Lateral to the goal the inner and outer line of the white
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bar are determined. This allows construction of a histogram for white regions.
The lower line of the flagpost is approximated by a horizontal line. All other
lines are extracted by orthogonal regression [16] applied in a recursive manner.
Thereby the point set is split along the regression line until the desired precision
is reached or too few points are left. The line with the smallest distance to the
colour segmented contour is chosen if more than one straight line fits.

6 Results and Discussion

At the moment colour recalibration supports the ball, the goals including the
white posts and the flagposts. All other objects are modelled as background.
By considering the objects’ shape oversegmentations and undersegmentations
are corrected. This enables learning new colours and updating the colour map.
Figure 3 compares application of the initial and the calibrated colour map.

Due to the statistical approach, the system is able to distinguish between
objects of similar colours, e.g. the ball and human skin (Fig. 4). If the colours of
different objects overlap the probability P (O) controls which object is preferred.
As no restrictions are placed on the form of the clusters in colour space, an ob-
ject may contain several non-connected clusters. Clusters belonging to different
objects may interlock.

The invariance of the YUV colour space against changes in brightness and
lighting is limited. Furthermore the colour map only contains values that have
been seen before. Thus a recalibration is required upon new lighting conditions.

Fig. 4. Left: Colour segmentation of a ball, a bare foot and red posts. Middle: Circle
detected in the left image. Right: Colour segmentation after training

Fig. 5. Left: Colour segmented ball after sudden occurrence of sunlight. Middle: Colour
segmentation after recalibration. Right: Detected ball after recalibration
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Both, Fig. 4 and 5 start with a segmentation based on the colour map trained for
Fig. 3, but have been recorded in an office environment. In Fig. 4 the colour map
specialises on the ball and discriminates skin and other red background objects.
Figure 5 shows a ball under sunlight, which is recognised as an orange ball
merely at the border regions, but still has a circular contour. After recalibration
the entire ball is colour segmented again.

Fig. 6. Left: Segmentation.
Right: Extrapolated circle

The system distinguishes between variably
round objects and chooses the best. In Fig. 5 the
ball is detected despite of its circular mirror on the
floor. Partially occluded balls are extrapolated by
the randomised hough transformation, see Fig. 6.

In general the detected circle is smaller than
the true ball. This is caused by shadows, inter
object reflections and a surface that is not lam-
bertian. Depending on the lighting condition the
ball’s bottom is very dark and overlaps with achro-
matic colors (Fig. 6). The ball’s boundary is sim-
ilar to yellow. Furthermore the ball’s colours compete with skin and other back-
ground objects.

The circle’s centre and radius tend to vary a bit from iteration to iteration.
This is caused by randomly selecting point triples and a contour which is not
perfectly circular. Increasing the number of samples, which are drawn when
building the hough accumulator, results in marginal improvements. All circles
in this paper are detected based on 25 samples.

The goal and the flagposts are modelled as quadrilaterals, whose lines are
detected separately from another. Depending on the quality of edge detection
and colour segmentation lines may be chosen that lie close by or on the objects,
but not at the true border. The presented approach does not distinguish between
the two lower lines of a goal looked at from the side.

However, too big goals and flagposts are critical merely at the beginning of
the training process. Marking incorrect objects in an image influences the colour
map if and only if the a posteriori probabilities of all other objects including
the background are lower. These a posteriori probabilities primarily depend on
the relative frequency in the histograms. As long as the histograms contain few
entries, wrong entries result in higher frequencies as later on, when the correct
maxima have many hits. Thus colour calibration is quite sensible to oversegmen-
tations at the beginning. After some images have been trained, wrong segmenta-
tions have minimal effects. Old erroneous entries are decreased by the time-out
factor and finally erased. To avoid divergence only potential object colours are
filled into the histograms as specified a priori by the maximum chrominance sets.

The entire algorithm is implemented in C++ using the computer vision li-
brary LTI-Lib [17]. As runtime varies due to image content, 163 RoboCup images
of 379×262 pixels are analysed on a Pentium III processor with 933 MHz, which
is build into our robot. Both, the histograms and the colour map, are updated
at each cycle. During a game recalibration only needs to be executed on light-
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ing change. Object detection requires at least 24.28 msec, at most 55.68 msec
and on the average 33.84 msec. Recalibration takes from 51.23 to 79.40 msec
and averaged 59.23 msec, when the chrominance histograms and colour map
are computed with 64 entries in each dimension. In our experiments we did not
notice a quality difference between colour maps with 64 × 64, 128 × 128 and
256 × 256 entries.
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Abstract. We investigate the application of a Monte Carlo localiza-
tion filter to the problem of combining local and global observations of
a small, off-the-shelf quadruped domestic robot, in a simulated Smart
House environment, for the purpose of robust tracking and localization.
A Sony Aibo ERS-210A robot forms part of this project, with the ulti-
mate aim of providing additional monitoring, human-system interaction
and companionship to the occupants.

1 Introduction

This paper investigates using these two forms of sensors for the purpose of local-
izing a small quadruped robot in the presence of obstacles in a Smart House, as
an aid to elderly and disabled people. Such a robot may be guided by the Smart
House system, giving it the ability to interact with the occupants and visit areas
not otherwise covered by Smart House cameras. For example, the robot could be
used to disambiguate a person dropping out of view to retrieve an object from
a person falling over out of view of the Smart House cameras. A combination
of local (robot-based) and global sensing may be used to localize a robot in an
environment. In domestic environments, low-cost and minimal interference with
the existing environment are desirable, ruling out laser rangefinders, sonar rings
and omnidirectional cameras. However, cheap surveillance cameras are available
that can be mounted on the robot or fixed to the house.

This investigation makes use of the Sony Aibo ERS-210A Entertainment
Robot, shown in figure 1(a). This robot possesses a low quality 176 × 144 pixel
camera, a 385MHz MIPS processor, wireless ethernet, quadruped omnidirec-
tional locomotion and approximately one hour of autonomous powered operation
per battery charge, making it well suited for the Smart House project. However,
its undulatory walking motion leads to poor odometry.

The system infrastructure used to operate and interface with the Aibo is
derived from the code released by the UNSW/NICTA rUNSWift 2003 RoboCup

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 410–417, 2005.
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team [1] 1. This code provides a framework for controlling the robot’s movements
and acquiring and processing sensory information.

This paper describes how a partial model of the environment and information
from robot odometry, the onboard camera and ceiling cameras can be combined
to track and guide the robot through the environment. Preprocessed images from
the robot camera are transmitted to the host PC and used to locate the robot
relative to known carpet patterns. The ceiling cameras are also used to track
potential robot positions. Both sensing techniques are complementary. Ceiling
cameras often suffer from occlusion and clutter whilst information from local
vision is often aliased or noisy. The process of sensor fusion makes use of Monte
Carlo localization (MCL) to deal with incomplete or ambiguous data from one
or both sources gracefully.

2 Environment

Four surveillance quality color overhead cameras are placed in the corners of
the Smart House environment such that their fields of view overlap in the unob-
structed center area as in figure 1(b,c). These cameras feed four PCs for analysis.
The location of the robot on the floor is determined using a motion-based back-
ground subtraction technique [4] followed by a camera specific image to real
world coordinate mapping2. The accuracy of the image to floor mapping is ap-
proximately 10cm at worst.

All of the joints in the legs and neck of the robot are equipped with angle
encoders with sub-degree accuracy. However, mechanism slop and flexing of the
robot structure reduce the accuracy of camera positioning relative to the ground
plane to about 1◦ in angle and 5mm in height. These errors as well as the in-
ability of the robot to determine which paws are in contact with the ground at
any one time, means the accuracy drops further as the robot walks. The angle
encoder values allow odometry to be obtained from the walk engine. Unfortu-
nately, asymmetry in the robot’s weight distribution, and variable slip in the
paws, introduce significant errors into this odometry.

The rUNSWift software can color segment the images from the robot’s on-
board camera in realtime using a static 3D color lookup table. The result-
ing images, called CPlanes, can then be fed to the PC host via the robot’s
wireless ethernet interface at close to realtime speeds for further processing.
Additionally, code exists to use the angle encoder values and known height
to locate points observed with the camera in 3D space relative to the robot.
However, positioning inaccuracies as discussed previously, combined with sig-
nificant barrel and chromatic distortion severely limit the accuracy of this
technique.

1 The first author was a member of the 2003 rUNSWift RoboCup team. Components
of the work described in this paper extend work undertaken by the first author and
other members of the 2003 rUNSWift RoboCup team.

2 The crosses in figure 1 are normally used to calibrate the overhead cameras.
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(a) (b) (c)

Fig. 1. The Sony ERS-210A entertainment robot (a) and views from two of the Smart
House overhead cameras (b),(c). Note the large overlapping region and the white crosses
marked on the carpet. Arrows indicate the position of the robot

3 Monte Carlo Localization

The traditional approach to tracking is to use Kalman filtering that assumes
that sensor measurements have Gaussian distributions. However, at any point
in time the robot can only be represented in one location (with some vari-
ance). The MCL filter [2] allows multiple robot locations to be tracked because
it does not commit to one location and instead stores many candidate loca-
tions.

MCL utilizes modified grid-based Markov localization [2] to represent the
robot’s possible location (with heading) or state l = [x, y, θ] as a probability map
in a discretized state space. This representation is modified using a motion model
and observation updates in order to track the robot’s location over time. At any
time, analysis of the distribution of locations allows the most probable location
to be determined. The process is Markovian because the current distribution
of possible locations is solely based on the distribution at the previous time
step, the current observations and the robot’s action. For efficiency, the grid is
probabilistically sampled, each sample called a particle within a set of particles
S = si|i = 1, ..., N . Each particle si is a possible location li of the robot with an
associated probability or weighting pi.

Initially the distribution of particles can be random over the whole space of
possible values of l but will soon converge to form a tight distribution after a
number of iterations. In addition to S, two other parameters are required. First,
a probability distribution p(l|l′, a): given the action a what is the probability
that the robot goes to l from l′. Second, a probability distribution p(s|l): given
the location l what is the probability of a sensor derived location occurring. At
each iteration, the steps in the algorithm are:

1. Generate N new samples probabilistically sampled from S. For each new
sample, the location is called l′i.

2. Generate li from p(l|l′, a) where a is the action or command given to the
robot. Set the probability p for each li to be 1/N .

3. Generate a new value of pi for each new particle from p(s|l) i.e. p(l|s) ←
αP (s|l) where α is used to ensure ΣN

i=1pi = 1.
4. If required, determine the best estimate of location from the distribution S.
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The main issues are defining the distributions p(s|l) (based on observations)
and p(l|l′, a) (based on odometry), and the number of particles N . In addition,
in this work, the algorithm requires some approximations because of speed con-
siderations.

4 Sensing

Preprocessing of data from the individual overhead cameras involves four ma-
jor steps. Firstly, segmentation of the candidate robot pixels is performed by
background subtraction using a mixture of Gaussians background model for
each pixel and color channel [7]. Foreground objects are extracted as long as
they move and are regarded as candidate robot pixels. Secondly, these pixels are
projected onto the ground plane via a camera-specific transformation to form
candidate robot points (assuming the robot is on the ground) [4]. Note that after
projection, the points do not necessarily form a single connected grouping but
will form clusters of points (figure 2).

Thirdly, these candidate points are filtered based on geometric properties to
eliminate those that are unlikely to be part of the robot region. The filter applied
to these points uses the kernel matrix of figure 2, tuned to give a high response
when convolved with a cluster of points of a size that approximately matches the
size of the robot. Finally the output is thresholded to segment out the candidate
robot regions. The varying density of the candidate robot clusters is reduced by
using morphological dilation [5] to directly yield a measure of p(l|s).

A variant of the NightOwl system [6] developed by rUNSWift is used to
extract localization information from the onboard camera. In order to determine
a measure of p(l|s) this algorithm matches known patterns on the ground and
consists of three steps.

Firstly, patterns of interest on the gray-blue carpet are detected using a noise-
reducing edge detector applied to the color segmented CPlane [6]. These patterns
consist of white crosses on a 1m grid as in figure 1. These points are then pro-
jected onto the ground plane. Points projected further than 75cm from the robot
are discarded due to potential inaccuracies. This process is illustrated in figure 3.

(a) (b) (c) (d) (e) (f)

Fig. 2. The robot (a) from overhead appears as (b). The kernel (c) has a similarly
sized positive inner region and negative outer region of a width equal to the minimum
desired distance between detected robot clusters and other points. Three situations
arise: the kernel matches a robot-sized cluster (d), a cluster that is too small (e) and
too large (f)
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(a) (b) (c) (d)

Fig. 3. Robot at (a) observing a feature through its camera (b), transmitting a color
segmented CPlane to the host PC (c) and projecting onto the ground plane in robot-
relative space (d). Arcs in (d) illustrate points 50cm and 100cm from the robot respec-
tively. Note that the robot is in the same position as in figure 1

MAMAX = 252

M(d) =

{
MAMAX − d , d < 3
1
2 (MAMAX − d) , d ≥ 3

(1)

Fig. 4. Matching array MA in heightfield and equation formats. M(d) is the value of
an element of MA based on its distance d from the nearest matchable feature

The matching of these observed, projected points with the known environ-
ment model is performed on an as-needed basis given a query state l for which
an estimation of p(l|s) is needed. Each edge point is transformed by this state
to real-world co-ordinates. These points are multiplied with a matching array
MA (figure 4) which serves as a precomputed model of detectable environmen-
tal features. Locations in the array representing detectable features (crosses)
have a high value and the remaining locations are assigned successively lower
values based on their Manhattan distance from the nearest feature, through a
non-linear mapping (equation 1) to reduce the effect of outliers on the matching.

5 Implementation

The PC receives odometry information from the robot that is used to update
particle positions. These updates have most of their bias removed but retain
significant errors. To account for these errors in a probabilistic manner, the po-
sition updates are randomly scaled to between 90% and 100% in both position
and heading. This motion model may be demonstrated by ignoring sensors and
starting from a known state (figure 5). As the robot moves, the density of parti-
cles S disperses to account for odometric errors. In this application, 3000 particles
were used to balance accuracy and ease of tracking against computational load.

The intermediate probability measure of each particle pi is updated based
on the observations from the cameras. The combination of each observational
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(a) (b)

Fig. 5. The MCL filter tracking a non-sensing (dead reckoning only) robot (a), initial-
ized to the robot’s actual state. (b) shows successive actual robot positions

probability p(l|si) from each source i to form a consolidated observational prob-
ability measure p(l|s) is performed via additive heuristic rules formulated to re-
duce the bias towards areas of the environment that may be observed by many
cameras. The result is summed with a probability measure p(l|so) obtained from
the NightOwl subsystem evaluated at l. These summations are possible since the
measurements may be regarded as independent. Note that the overhead cameras
do not contribute heading information θ.

To extract a single most likely robot location, an iterative algorithm based on
Expectation-Maximization [3] is used. The average Euclidian distance in (x, y)
is found between the last iteration’s average position and each particle. A weight
of 9 is assigned to particles within this distance and 1 to all other particles to
reduce the effect of outliers. A weighted average position of all particles is then
computed and the process repeated. This is efficient since the algorithm tends
to converge within four iterations. The vector average of headings for particles
close to this average position is then used to determine the most likely robot
heading.

6 Experimental Results

When used alone, the data from the overhead cameras localized the robot even
in the presence of some ambiguity, as long as the robot moved. For example, in
figure 6 the robot has stopped long enough to become part of the background.
After it begins to move again, the background “hole” left by the robot tem-
porarily appears as another candidate robot (figure 6(b)). The filter continues
to track the correct state once the hole becomes incorporated into the back-
ground.

When the robot is initially detected, the cluster of particles around the robot’s
state have uniformly distributed headings. As the robot moves, only those with
headings matching the robot’s heading will receive motion updates that cause
their future predictions to coincide with subsequent observations. This technique
is able to reliably achieve an angular accuracy of around 5◦ and spatial accuracy
of around 20cm after only 1m of motion using only one overhead camera. When



416 R. Sheh and G. West

(a) (b) (c) (d) (e) (f)

Fig. 6. Example of the particle filter coping with an ambiguous observation. Sequence
(a) to (c) displays the input to the particle filter from the overhead camera, sequence
(d) to (f) displays the corresponding state of the particles in the particle filter

there is significant clutter and noise, multiple cameras improve accuracy and
speed of convergence.

The onboard camera is not able to globally localize the robot due to ambiguity
i.e. observing a single cross provides four potential locations and with twelve
crosses, 48 potential locations exist. Naturally, this ambiguity is reduced for
more unique, natural and less repeating carpet patterns and features. Despite
this, it is still possible to, over time, extract global localization from this data
by tracking each of these potential locations. As the robot moves, some of these
points may be eliminated as they coincide with environmental limits.

The combination of onboard localization information with that provided by
the overhead cameras greatly improved the speed and accuracy with which the
robot’s heading was determined. If a carpet feature was visible whilst the robot’s
heading was unknown, the filter would often snap to two or three potential
headings (due to similar features being visible in several directions). A small
amount of movement, often only 20cm, would then eliminate all but one of these
headings.

In the following example, only one overhead camera was used. The filter was
able to track the robot (figure 7(a)) up to when it moved behind the barrier. The
particles began to spread out as the robot was no longer visible (figure 7(b)). In
a second test, the onboard camera observed the cross in front of it and was able
to maintain localization and thus the cluster was tight even when the robot was
clearly still occluded (figure 7(d)).

(a) (b) (c) (d) (e) (f)

Fig. 7. Example of the robot moving behind an occlusion. In (a) and (b), no crosses
are visible to the robot and the particles diverge. In (c) to (e), the robot continues
to view crosses and maintain localization. Overhead camera vision (from the opposite
corner of the room to the experiment camera) when the robot was occluded appears
in (f)
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7 Conclusion

This paper has demonstrated that the Monte Carlo filter can successfully track
a robot using both local and global sensing and to cope when one of these is
absent. It can accommodate ambiguous as well as erroneous observations. A
number of heuristics have been used to speed up the algorithm such that real
time performance is achieved. The NightOwl algorithm has been demonstrated
to usefully contribute localization information in a real-world environment and
proved to be very effective as a sensor despite the highly ambiguous information
it provides because of the repeating pattern of crosses. Whilst NightOwl alone
may not be effective for global localization in this specific application it allows
the system to deal with inaccurate or missing global information.
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Abstract. We present a complete system for obstacle avoidance for a
mobile robot. It was used in the RoboCup 2003 obstacle avoidance chal-
lenge in the Sony Four Legged League. The system enables the robot to
detect unknown obstacles and reliably avoid them while advancing to-
ward a target. It uses monocular vision data with a limited field of view.
Obstacles are detected on a level surface of known color(s). A radial
model is constructed from the detected obstacles giving the robot a rep-
resentation of its surroundings that integrates both current and recent
vision information. Sectors of the model currently outside the current
field of view of the robot are updated using odometry. Ways of using
this model to achieve accurate and fast obstacle avoidance in a dynamic
environment are presented and evaluated. The system proved highly suc-
cessful by winning the obstacle avoidance challenge and was also used in
the RoboCup championship games.

1 Introduction

Obstacle avoidance is an important problem for any mobile robot. While being
a well studied field, it remains a challenging task to build a robust obstacle
avoidance system for a robot using vision data.

Obstacle avoidance is often achieved by direct sensing of the environment.
Panoramic sensors such as omni-vision cameras and laser range finders are com-
monly used in the RoboCup domain [1, 9]. Using these sensors, a full panoramic
view is always available which greatly simplifies the task. In detecting obstacles
from vision data, heuristics can be employed such as the “background-texture
constraint” and the “ground-plane constraint” used in the vision system of the
robot Polly [3]. In the case of the RoboCup world, this means that free space
is associated with green (i.e. floor color), whereas non-green colored pixels are
associated with obstacles (see introduction of [6] for an overview of panoramic
vision systems).

In the Sony League, the robot is equipped with a camera with a rather lim-
ited field of view. As a basis for obstacle avoidance, a radial model of the robot’s
environment is maintained. In this model, current vision data is integrated with
recent vision data. The approach to obstacle detection and obstacle modeling
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used by the GermanTeam in the RoboCup challenge turned out to be similar
the concept of “visual sonar” recently presented by [6]. Both bear a strong re-
semblance to the “polar histogram” used in [2]. Our work extends [6] and shows
how such a model can be used to achieve goal-directed obstacle avoidance. It
proved highly robust and performed extremely well in dynamic game situations
and the obstacle avoidance challenge.

Other approaches such as using potential fields [5] were not considered be-
cause the robot’s environment changes rapidly which makes it hard to maintain
a more complex world model.

2 Obstacle Avoidance System

The following sections will describe obstacle detection, obstacle modeling, and
obstacle avoidance behavior. A Sony Aibo ERS210(A) robot was used in the
experiments. The robot has a 400 MHz MIPS processor and a camera delivering
YUV image with a resolution of 172x144 (8 bits per channel). A Monte Carlo
localization was used [8]; other modules not covered here such as walking engine,
etc. are described in more detail in the GermanTeam 2003 team description and
team report [7].

2.1 Obstacle Detection

Image processing yields what we call a percept. A percept contains information
retrieved from the camera image about detected objects or features later used
in the modeling modules. A percept only represents the information that was
extracted from the current image. No long-term knowledge is stored in a percept.

The obstacles percept is a set of lines on the ground that represents the free
space in front of the robot in the direction the robot is currently pointing its
camera. Each line is described by a near point and a far point on the ground,
relative to the robot. The lines in the percept describe segments of ground colored
lines in the image projected to the ground. For each far point, information about
whether or not the point was on the image border is also stored.

To generate this percept, the image is being scanned along a grid of lines
arranged perpendicular to the horizon. The grid lines have a spacing of 4◦. They
are subdivided into segments using a simple threshold edge detection algorithm.
The average color of each segment is assigned to a color class based on a color
look-up table. This color table is usually created manually (algorithms that au-
tomate this process and allow for real-time adaptation exist [4]).For each scan
line the bottom most ground colored segment is determined. If this ground col-
ored segment meets the bottom of the image, the starting point and the end
point of the segment are transformed from the image coordinate system into the
robot coordinate system and stored in the obstacles percept; if no pixel of the
ground color was detected in a scan line, the point at the bottom of the line is
transformed and the near point and the far point of the percept become identical.

Small gaps between two ground colored segments of a scan line are ignored to
assure robustness against sensor noise and to assure that field lines are not inter-
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Fig. 1. Obstacle detection and diagram to illustrate what can be deduced from what is
seen. Green lines in image: The obstacles percept as the conjunction of green segments
close to the robot. Diagram: The robot detects some free space in front of it (s) and some
space that is obscured by the obstacle (t). The obstacle model is updated according to
the diagram (in this case the distance in the sector is set to dobstacle unless the distance
value stored lies in r)

preted as obstacles. In such a case two neighboring segments are concatenated.
The size limit for such gaps is 4 times the width of a field line in the image.
This width is a function of the position of the field line in the camera image
and the current direction of view of the camera. Figure 1 shows how different
parts of scan lines are used to generate obstacle percepts and also illustrates how
information about obstacles in the robot’s field of view can be deduced from the
obstacle percept.

2.2 Obstacle Model

The obstacle model described here is tailored to the task of local obstacle avoid-
ance in a dynamic environment. Local obstacle avoidance is achieved using the
obstacle model’s analysis functions described below. The assumption was made
that some high level controller performs path planning to guide the robot globally.
Certain global set ups will cause the described algorithm to fail. This, however, is
tolerable and it is a different type of problem that needs to be dealt with by higher
levels of action planning. We therefore concentrate on a method to reliably steer
the robot clear of obstacles while changing its course as little as possible.

In the model, a radial representation of the robot’s surroundings is stored
in a “visual sonar” [6]. The model is inspired by the sensor data produced by
panoramic sensors such as 360◦ laser range finders and omni-vision cameras.
In this model, free space in a certain direction θ is stored. θ is divided into n
discrete sectors (“micro sectors”).

If new vision information is received, the corresponding sectors are updated.
Sectors that are not in the visual field are updated using odometry, enabling the
robot to “remember” what it has recently seen. If a sector has not been updated
by vision for a time period greater than treset, the range stored in the sector is
reset to “unknown”.

Micro sectors are 5◦ wide. Due to imperfect image processing the model
is often patchy, e.g. an obstacle is detected partially and some sectors can be
updated while others may not receive new information. Instead of using the
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Fig. 2. Illustration of the obstacle model. The actual number of sectors is greater than
shown here, it was reduced for illustration purposes. Fig. 3 shows the actual obstacle
model used. a) The robot is at the center; dashed lines show sectors; solid orange
lines (dark) show the free space around the robot; light gray lines are used if there
is no information about free space in a sector; small circles denote representatives.
b) illustrates how the model is updated using odometry when the robot is moving.
Updated representatives are shown as dark circles dots. c) and d) illustration of analysis
function used when determining the free space in front of the robot and to its side

model as such, analysis functions that compute information from the model are
used. These functions produce high level output such as “how much free space is
(in the corridor) in front of the robot” which is then used by the robot’s behavior
layers. These functions usually analyze a number of micro sectors. The sector
with the smallest free space associated to it corresponds to the greatest danger
for the robot (i.e. the closest object). In most analysis functions this sector is the
most important overruling all other sectors analyzed. In the above example, the
sector in the corridor containing the smallest free space is used to calculate the
free space in front of the robot. Using analysis functions makes using the model
robust against errors introduced by imperfect sensor information. It also offers
intuitive ways to access the data stored in the model from the control levels
of the robot.

In addition to the free space, for each sector a vector pointing to where the
obstacle was last detected (in that sector) is stored. This is called a representative
for that sector. Storing it is necessary for updating the model using odometry.
Fig. 2 illustrates the obstacle model. The following paragraphs will explain in
more detail how the model is updated and what analysis function are.

Update Using Vision Data. The image is analyzed as described in 2.1. Obstacle
percepts are used to update the obstacle model. The detected free space for
each of the vertical scan lines is first associated to the sectors of the obstacle
model. Then the percept is compared to the free range stored for a sector; fig.
1 illustrates one of the many possible cases for updating the information stored
in a sector θ.

If the distance in a sector was updated using vision information, the obstacle
percept is also stored in the representative of that sector. The necessity to store
this information is explained in the following paragraphs.
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Fig. 3. Left. Camera image with superimposed obstacle percepts and obstacle model
(projected onto the floor plane) Right. Actual obstacle model

Update Using Odometry. Sectors that are not in the visual field of the robot
(or where image processing did not yield usable information) are updated using
odometry. The representative of a sector is moved (translated and rotated) ac-
cording to the robot’s movement. The updated representative is then remapped
to the - possibly new - sector. It is then treated like an obstacle detected by vi-
sion and the free space is re-calculated. In case more than one representatives are
moved into one sector, the representative closest is used for calculating the free
space (see Fig.2 b. for an example). If a representative is removed from a sector
and no other representative ends up in that sector, the free space of that sec-
tor is reset to infinity). The model quality deteriorates when representatives are
mapped to the same sector and other sectors are left empty. While this did not
lead to any performance problems in our experiments, [6] shows how these gaps
can easily be closed using linear interpolation between formerly adjacent sectors.

Analysis Functions. As explained above, the model is accessed by means of ana-
lysis functions. The micro sectors used to construct the model are of such small
dimensions that they are not of any use for the robot’s behavior control module.
The way we model robot behavior, more abstract information is needed, such as
“There is an obstacle in the direction I’m moving in at distance x” or “In the
front left hemisphere there is more free space than in the front right.” Of interest
is usually the obstacle closest to a the robot in a given area relative to the robot.
In the following paragraphs, some analysis functions that were used for obstacle
avoidance and in RoboCup games are described. Other possible function exist
for different kind of applications which are not covered here.

Macro Sector sect(θ, Δθ). This function is used to find out how much free
space there is in a (macro) sector in direction θ an of width Δθ. Each sec-
tor within the macro sector is analyzed and the function returns the smallest
distance in that macro sector. This can be used to construct a simple obstacle
avoidance behavior. The free space in two segments (“front-left”, −22, 5◦±22, 5◦

and “front-right”, +22, 5◦ ± 22, 5◦) is compared and the behavior lets the robot
turn in the direction where there is more free space.

Corridor corr(θ, Δd). If the robot is to pass through a narrow opening, e.g.
between two opponent robots, the free space not in a (macro) sector but in a
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corridor of a certain width is of interest. Usually, a corridor of about twice the
width of the robot is considered safe for passing.

Free Space for Turning corr(θ = ±90◦, Δd =length of robot). When turn-
ing, the robot is in danger of running into obstacles that are to its left or right
and thereby currently invisible. These areas can be checked for obstacles using
this function. If obstacles are found in the model, the turning motion is canceled.
(Note that this is a special case of the corridor function described above).

Next Free Angle f(θ). This functions was used in RoboCup games to deter-
mine which direction the robot should shoot the ball. The robot would only shoot
the ball in the direction of the goal if no obstacles were in the way. Otherwise
the robot would turn towards the “next free angle” and perform the shot.

2.3 Obstacle Avoidance

Goal-directed obstacle avoidance as used in the challenge. Obstacle avoidance is
achieved by the following control mechanisms:

A. Controlling the robot’s forward speed. The robot’s forward speed is
linearly proportional to the free space in the corridor in front of the robot.

B. Turning towards where there is more free space. If the free space in
the corridor in front of the robot is less than a threshold value, the robot will
turn towards where there is more free space (i.e. away from obstacles).

C. Turning towards the goal. The robot turns toward the goal only if the
space in front of it is greater than a threshold value.

D. Override turning toward goal. If there is an obstacle next to it that it
would run into while turning, turning is omitted and the robot will continue to
walk straight.

When approaching an obstacle, B. causes the robot to turn away from it just
enough to not run into the obstacle. C. and D. cause the robot to cling to a
close obstacle, thereby allowing the robot to effectively circumvent it.

Obstacle Avoidance in RoboCup Games. In the championship games, a similar
obstacle avoidance system was used. It worked in conjunction with a force field
approach to allow for various control systems to run in parallel. The obstacle
model itself was used for shot selection. When the robot was close to the ball,
the model was used to check if there were obstacles in the intended direction of
the shot. If there were obstacles in the way, it would try to shot the ball in a
different direction.

Scanning Motion of the Head. In the challenge, the robot performed a scanning
motion with its head. This gives the robot effective knowledge about its vicinity
(as opposed to just its field of view), allowing it to better decide where it should
head. The scanning motion and the obstacle avoidance behavior were fine tuned
to allow for a wide scan area while making sure that the area in front of the
robot was scanned frequently enough for it to not run into obstacles.
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Fig. 4. Image extracted from a video of the RoboCup World Cup 2003 obstacle avoid-
ance challenge and table of results

In the actual RoboCup games, the camera of the robot is needed to look at
the ball most of the time. Therefore, very little dedicated scanning motions were
possible giving the robot a slightly worse model of its surroundings.

3 Application and Performance

RoboCup 2003 Technical Challenge. In the obstacle avoidance challenge, a robot
had to walk as quickly as possible from one goal to the other without running
into any of the other 7 robots placed on the field. The other robots did not
move and were placed at the same position for all contestants. The algorithm
used was only slightly altered from the one used in the actual, dynamic game
situations. As can be seen from the results, the system used enabled the robot
to move quickly and safely across the field. Avoidance is highly accurate: on its
path, the robot came very close to obstacles (as close as 2 cm to touching the
obstacles) but did not touch any of them. Very little time is lost for scanning the
environment (as the obstacle model is updated continuously while the robot’s
head is scanning the surroundings) enabling the robot to move at a high speed
without stopping. The system used in the challenge was not optimized for speed
and only utilized about 70% of the robot’s top speed. Furthermore, some minor
glitches in the behavior code caused the robot to not move as fast as possible.

RoboCup 2003 Championship Games. The obstacle model was used for obstacle
avoidance and for shot selection in the games. An improvement in game play
was noticeable when obstacle avoidance was used. In several instances during the
games, situations in which the robot would otherwise have run into an opponent
it was able to steer around it.

4 Conclusion

The presented system enables the robot to reliably circumvent obstacles and
reach its goal quickly. The system was developed for use in highly dynamic en-
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vironments and limits itself to local obstacle avoidance. In our search for the
simplest, most robust solution to the problem, maintaining a model of the ob-
stacles was a necessity to achieve high performance, i.e. to alter the path of the
robot as little as possible while assuring the avoidance of obstacles currently vis-
ible and invisible to the robot. The control mechanisms make use of this model
to achieve the desired robot behavior. In the RoboCup 2003 obstacle avoidance
challenge, the robot reached the goal almost twice as fast as the runner up with-
out hitting any obstacles. The system was not used to its full potential and a
further increase in speed has since been achieved. An improvement in game play
in the RoboCup championship games was observed although this is very hard
to quantify as it depended largely on the opponent.
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Abstract. In this paper we show how a combination of multiple neuromorphic 
vision sensors can achieve the same higher level visual processing tasks as 
carried out by a conventional vision system. We process the multiple 
neuromorphic sensory signals with a standard auto-regression method in order 
to fuse the sensory signals and to achieve higher level vision processing tasks at 
a very high update rate. We also argue why this result is of great relevance for 
the application domain of reactive and lightweight mobile robotics, at the hands 
of a soccer robot, where the fastest sensory-motor feedback loop is imperative 
for a successful participation in a RoboCup soccer competition. 

Keywords: Neuromorphic vision sensors, analog VLSI, reactive robot control, 
sensor fusion, RoboCup. 

1   Introduction 

In our lab aVLSI technology is exploited in fast moving mobile robotics, e.g. 
RoboCup, where soccer-playing robots perform at high speed. The robot that is used 
in our experiments is a mid-sized league robot of roughly 45 by 45 cm with the 
weight of 17 kg. It is equipped with infra-red distance sensors in order to have fast 
and reliable obstacle avoidance, odometry together with an augmenting gyroscope in 
order to reduce the error in the odometry measurements, and contact sensitive bumper 
sensors. The robot uses a differential drive for movement, a pneumatic kicker for 
shooting and two small movable helper arms to prevent the ball from rolling away. 
The most important sensory inputs are streamed in via FireWire bus [1] from a digital 
color camera. The conventional part of vision processing is software based and 
consumes the most of the calculation resources on-board the robot [2].  

One of the most difficult tasks in the RoboCup environment is to pass the ball 
from one player to another. This requires first of all that the robot can control the ball, 
that is, be in possession of the ball so that it can be kicked in any direction and this 
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while the robot is in motion. The ball needs to be close to the robot in order to be 
successfully controlled. This can be achieved by carefully controlling the velocity and 
position of the robot relative to the ball. The closer the ball the lower the relative 
velocity must be in order for it not to bounce off due to its lower momentum. In order 
to solve this very demanding problem the robot has to know where the ball is located 
at each instant, which requires a fast read-out and processing of the sensory 
information. 

This paper is structured as follows: in section 2 a description of our robot platform 
is given. The neuromorphic vision sensors used in the experiments are presented in 
section 3. In sections 4 and 5 we investigate how the vision system can be aided with 
a set of neuromorphic vision sensors. Here, we present data collected during 
experimental runs with one of our robots. We show that this data is suitable for 
further higher level processing. In the conclusions we point out the importance of the 
results that were achieved. 

2   Our Robot Platform 

Our soccer playing robot has actuators in the form of motors to drive the robot and to 
turn a panning camera. A valve is used to kick the ball pneumatically and small robot 
arms attached to the left and right side of the robot keeps the ball in front of the kicker 
plate. Besides the optical sensors; camera and neuromorphic vision sensors, it has 
four infrared distance sensors, a contact sensitive bumper strip with rubber shield and 
odometry at the two actuated wheels of the robot. This is augmented by a gyroscope 
for fast turning movements. All of these peripheral devices are controlled by three 16 
bit micro controllers [3]. They are interconnected with a bus interface (CAN), which 
is a standard in German automobile industry. A notebook PC operates the main 
behavior program and the operating system can be either Windows or LINUX. The 
cyclic update rate is 30 Hz (~33 ms) which is governed by the frame rate of the digital 
camera.  

For the experiments we increased the observation rate for the neuromorphic 
sensors to the maximum effective sampling rate of the micro-controller module that is 
used which is ~2 kHz (0.5 ms). In the various experiments the signal is down-sampled 
to 153 Hz in the first experiments and up to 520 Hz in the more complex experiment 
done at the end.  

The robot vision system does color blob tracking of multiple objects and delivers 
information from tracked objects such as position of geometrical center, bounding 
box and pixel area. In our experiments only the position of the geometrical center of 
the tracked object will be used to train the system. Other parameters like pixel area 
are only used indirectly, in order to prepare data for the training phase of the system 
by removing noisy information from distant objects and other artifacts. The vision 
software used for the experiments is a free software developed at the Carnegie Mellon 
University and used be many robot teams in RoboCup tournaments [2]. 
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3   Neuromorphic Vision Sensors 

Neuromorphic vision chips process images directly at the focal plane level. Typically 
each pixel in a neuromorphic sensor contains local circuitry that performs, in real time, 
different types of spatio-temporal computations on the continuous analog brightness 
signal. Data reduction is thus performed, as they transmit only the result of the vision 
processing off-chip, without having to transmit the raw visual data to further processing 
stages. Standard CCD cameras, or conventional CMOS imagers merely measure the 
brightness at the pixel level, eventually adjusting their gain to the average brightness 
level of the whole scene. The analog VLSI sensors used in our experiments are made 
using standard 1.6 and 0.8 micron CMOS technologies. They are small 2x2 mm devices 
that dissipate approximately 100mW each. Specifically, they a 1D tracking chip [5], a 
1D correlation-based velocity sensor [6], a single 1D chip comprising both tracking and 
correlation-based velocity measurements, and, a gradient based 2D optical flow chip [7] 
(cf. Fig. 1). The 2D optical flow chip is the most complex and computes the optical flow 
on its focal plane providing two analog output voltages. The correlation-based velocity 
sensor delivers the mean right or left velocity computed throughout the whole 1D array 
in two separate output channels, and the 1D tracker sensor provides an analog output 
voltage that indicates the position of the highest contrast moving target present in its 
field of view. 

 

Fig. 1. Four aVLSI sensors mounted on the robot with their respective fields of view: The 2D 
optical flow sensor (A) is pointing straight towards the ground and also the absolute tracker (B) 
is pointing towards the ground. The absolute tracker (B) is mounted at a somewhat lower angle 
and with its pixel array vertically aligned. The 1D velocity tracker (C) and the 1D integrating 
tracker (D) are directed as a divergent stereo pair and with their respective pixel arrays 
horizontally aligned 

4   Experiment 

The purpose of the experiment is to investigate the plausibility of neuromorphic 
vision sensors to aid higher level vision processing tasks, in particular color blob 
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tracking, which is a standard real-time vision processing application that is 
commonly used on mobile robots. The test consists of two stages; firstly to 
investigate if the sensors can be made sensitive to a moving primary colored object, 
and secondly, to validate this against a somewhat cluttered background. The first 
stage is performed to investigate the precision of the prediction from the fused 
sensory readings. The second stage is performed to investigate if there is enough 
discrimination against background patterns, that is, to investigate the robustness of 
the object tracking task when the robot is moving. If both stages are successful, this 
would imply that a set of neuromorphic vision sensors, sensitive to different types 
of motion, could aid a standard camera based digital vision system in a local 
domain of the scene. 

The experiment consists of data collection from the neuromorphic vision sensors 
and the digital vision system of our soccer robot. The RoboCup soccer playing 
robot is fully autonomous and is operated by a behavior based program that was 
used by our team at the last world championships in Padua Italy [8],[9]. The test 
field is prepared with white lines that are located in a dense non-uniform grid and 
with an average spacing of about one meter. On the field there is a red soccer 
football. 

Three experiments were performed, two stationary experiments followd by a 
moving robot experiment at the end [10]. In the stationary epxeriments the ball is 
moved according to certain patterns that ensure an even distribution of events when 
projected onto the focal plane of the digital vision system. In the moving robot 
experiment the robot will constantly try to approach the red ball in different 
maneuvers. During this time the robot will frequently pass lines on the floor which 
will influence the tracking task of the red ball. Optimally, the system should 
recognize what sensory input belongs to white lines and what input belongs to the 
red ball.  

5   Experimental Results 

The first step here consists of two stationary robot experiments treated in section 5.1, 
and the second step, which is a moving robot experiment is treated in sec. 5.2. The 
data is evaluated by comparing the results from a standard dynamical prediction 
model. A root mean square error is calculated relative to the reference signal from the 
standard vision system. The prediction model used for the two stationary robot 
experiments is a multivariable ARX model of 4’th order. The model, which is part of 
the Matlab™ system identification toolbox is performing parametric auto-regression 
that is based on a polynomial least squares fit [11]. For the dynamic experiments the 
best overall model was chosen in the range of up to a 15 ARX coefficients (15’th 
order ARX model).  

5.1   Stationary Robot Experiment 

In the first experiment the robot is not moving and the camera and neuromorphic 
vision sensors detect a single moving red RoboCup soccer football. The ball was 



430 V. Be anovi , R. Hosseiny, and G. Indiveri 

 

moved so that it passed the robot along horizontal paths. The fields of view of the 
neuromorphic vision sensors were divided into four zones that were partially 
overlapping, and, within the field of view of the standard vision system. During the 
experiment the ball was thrown 25 times back and forth in each zone, but in random 
order, so that the data set would be easily split into a training and testing set of equal 
size. By this procedure the distribution would be close to uniformly distributed in the 
spatial domain and normally distributed in the temporal domain. The prediction 
efficiency is given in Table 1. For example, the horizontal x-channel over-all RMS 
error is about 13 %, which for the horizontal camera resolution of 320 pixels would 
mean an error of 40 pixels, which corresponds well to the fact that the resolution of 
the neuromorphic sensors is between 10 and 24 pixels. 

In the second experiment, that is performed with a non moving robot and the same 
boundary conditions as the first experiment, the ball was moved so that it passed 
straight towards the robot hitting it and bouncing off, where the ball with its 
significantly lower momentum got deflected in an elastic collision. During the 
experiment the ball was thrown 25 times back and forth in different zones, but in 
rando`m order and at the same point of impact, so that the data set would be easily 
split into a training and testing set of equal size. The results here indicate similar 
efficiency as for the first stationary robot experiment for estimating the horizontal 
trajectories of the red ball, but with a better efficiency in the estimation of the vertical 
component (cf. Table 1). An example from the stationary robot data set used in this 
experiment is given in Figs. 2 and 3, where the predicted result for the horizontal and 
vertical blob position is plotted with a solid line and the “ground truth” reference 
signal is plotted with a dotted line.  

Table 1. First and second stationary robot experiment – test data: The overall RMS error 
for the x-value and y-value of the centroid of the pixel blob delivered by the standard 
vision system (SVS). RMS errors of sensors are calculated only in their trig-points, thus 
the lower and irregular sample size. The RMS error is calculated as the difference between 
the object position given by the vision reference and the one predicted with the 4’th order 
ARX model 

Stationary robot Data Set I: 
(153 Hz, 4’th order ARX) 

X Channel  
RMS Error 

Y Channel RMS 
Error 

Sample 
size 

Over all SVS test data: 0.1295 0.1920 38044 
SR Opt. Flow: 0.1101 0.2069 569 
SR Tracker: 0.06250 0.1449 4647 
SR Velocity: 0.2405 0.2505 126 

SR Int. Tracker: 0.1089 0.2304 112 
Stationary robot Data Set II: 

(153 Hz, 4’th order ARX) 
Over all SVS test data: 0.1386 0.1245 37974 

SR Opt. Flow: 0.1586 0.1236 236 
SR Tracker: 0.1416 0.1172 1004 
SR Velocity: 0.1803 0.1210 387 

SR Int. Tracker: 0.1316 0.1396 161 
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Fig. 2. An example from the stationary robot experiment for the red channel of the standard 
vision system. The predicted result for the horizontal blob position is plotted with a solid line 
and the “ground truth” reference signal is plotted with a dotted line. The activity of all the 
sensors is indicated as trig-points on top of the reference signal 

 

Fig. 3. An example from the stationary robot experiment for the red channel of the standard 
vision system. The predicted result for the vertical blob position is plotted with a solid line and 
the “ground truth” reference signal is plotted with a dotted line. The activity of all the sensors is 
indicated as trig-points on top of the reference signal 
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5.2   Moving Robot Experiment 

Data is here continuously collected for 7 minutes and 10 seconds at a sampling rate of 
2 kHz (down-sampled to 520, 260 and 130 Hz) on a fully performing robot, where the 
robot during this time tries to approach the ball in different maneuvers. The 
experiment is validated by tracking red and white objects with the standard vision 
system of the robot, where the red object corresponds to the red ball and white objects 
correspond to lines present in the playfield. The reference information of the red 
object is as before used for the model fitting and the reference of the white objects 
(corresponding to white lines) is only used to indicate trig-points to be used for visual 
inspection and the calculation of the efficiency of discrimination against white lines. 
The system was trained with 75% of the full data set and tested with the remaining 
25%. The results are presented in Table 2, where the over-all RMS error is calculated 
for the test data for sampling frequencies of 130, 260 and 520 Hz. There are also 
RMS errors calculated in trig-points for the case when only the ball was visible (red 
object only) and when the red ball was visible with occluded background (red object 
and white line). It can be seen from Table 2 that the efficiency seems to be slightly 
improved at higher update rates and that the ball can be recognized in occluded scenes 
(with close to over-all efficiency). 

Table 2. Moving robot experiment – test data: The overall RMS error for the x-value and y-
value of the centroid of the pixel blob delivered by the standard vision system (SVS). RMS 
errors of the standard vision system are calculated for: (i) all test data, (ii) when a red object is 
present within the range of the sensors and (iii) when a red object and white line/s are present. 
The RMS error is calculated as the difference between the object position given by the vision 
reference and the one predicted with the corresponding ARX model 

Moving robot Data Set: 
(130 Hz, 12’th order ARX) 

X Channel  
RMS Error 

Y Channel RMS 
Error 

Sample 
size 

Over all SVS test data: 0.2574 0.2808 13967 
SVS Red object only: 0.2293 0.2331 758 

SVS Red obj. & White line: 0.2195 0.2714 320 
(260 Hz, 3’rd order ARX) 

Over all SVS test data: 0.2471 0.2679 27936 
SVS Red object only: 0.2241 0.2328 829 

SVS Red obj. & White line: 0.2113 0.2983 363 
(520 Hz, 6’th order ARX) 

Over all SVS test data: 0.2485 0.2568 55872 
SVS Red object only: 0.2247 0.2163 829 

SVS Red obj. & White line: 0.2116 0.2571 361 

6   Summary and Conclusions 

In our work we investigate if the output signals from a small number of neuromorphic 
vision sensors can perform the elementary vision processing task of object tracking. 
For our experiments we use a soccer playing robot as a test-platform, but are looking  
for a general application domain that can be used for all types of mobile robots, 
especially smaller robots with limited on-board resources. Those robots can benefit 
from neuromorphic vision systems, which provide high speed performance together 
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with low power consumption and small size which is advantageous for reactive 
behavior based robotics [12], where sensors are influencing actuators in a direct way. 
In general it can be concluded that the results of the robot experiments presented 
indicate that optical analog VLSI sensors with low-dimensional outputs give a robust 
enough signal, and, that the visual processing tasks of object tracking and motion 
prediction can be solved with only a few neuromorphic vision sensors analyzing a 
local region of the visual scene. 
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Abstract. In 2004, the playing field size of the small sized league was
significantly increased, posing new challenges for all teams. This paper
describes extensions to our current video server software (Doraemon) to
deal with these new challenges. It shows that a camera with a side view is
a workable alternative to the more expensive approach of using multiple
cameras. The paper discusses the camera calibration method used in
Doraemon as well as an investigation into some common two–dimensional
interpolation methods, as well a novel average gradient method. It also
proves that (ignoring occluded parts of the playing field) it is possible
to construct a realistic top down view of the playing field with a camera
that only has a side view of the field.

1 Introduction

The small sized league (SSL) of the RoboCup competition is a very competitive
league which has introduced many innovations and modifications into the rules
in recent years. After a period of incremental changes to the field size (1997:
1.52m * 2.74m; 2001: 2.40m * 2.90m) the field size has been almost quadrupled
for the 2004 competition. At the moment the rules have not been finalized but
the proposed field size is 4.00m by 5.40m. Such a large change in the field size
obviously led to much discussion of the pros and cons of this change. The authors
of this paper hope that the larger field leads to more fundamental research in
the SSL league and consider it necessary to move towards games of 11 vs 11
players in the future.

The greatest impact of the larger field size is on the global vision system.
Whereas a single global vision camera with a wide angle lens mounted centrally
on top of the playing field is sufficient for the 2002 field (2.40m by 2.90m), this
is no longer true for the 2004 field.

Teams have suggested several solutions to this problem: (a) buy a better
wide angle lens, (b) mount the camera at a higher position, and (c) mount
several cameras over the playing field. The authors believe that a new model–
based approach to global vision in the SSL is a viable alternative to these that
will be beneficial to research. It is clear that few challenges remained for vision
processing with a single overhead camera. However, there are still many open
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problems when dealing with a side view of the field, not the least of which is to
be able to compensate for occlusion of objects.

Doraemon, the video server used by the Little Black Devils (LBD, named
after the Winnipeg Rifles) from the University of Manitoba has always been an
exception in the RoboCup competition. Instead of mounting the camera centrally
overhead, the LBD have always used a side view of the playing field. The camera
used by the LBD is an off-the-shelf camcorder without a wide angle lens, and
Doraemon is able to control our robots from any view of the playing field.

To be able to achieve this, Doraemon includes a sophisticated camera calibra-
tion routine based on the Tsai camera calibration. However, the larger playing
field requires even better image processing and interpolation so that smaller
geometric features can be detected and tracked successfully.

In this paper, the authors compare the accuracy and efficiency of several
interpolation methods in the global vision robotic soccer domain. We also show
a quasi-reconstructed view of the playing field obtained from a side angle.

2 Doraemon and the University of Manitoba Vision Kart

Figure 1 shows a picture of the University of Manitoba Vision Kart. The Vision
Kart is a fully mobile global vision robotics setup. It contains a P4 2.4GHz small
sized PC, a camera on a tripod, a side-mounted Infrared transmission system,
and a wireless router. The Vision Kart can run off a car battery for about an
hour and is an ideal platform for demonstrations and fund raising events for the
LBD. Students usually use laptops with wireless cards to connect to the vision
server and to control the robots.

Figure 2 shows the view of the camera in the vision kart overlooking the play-
ing field. Clearly, the perspective distortion of this setup is much more extreme
than in the case of an overhead camera. The top view shows the playing field
with three robots. The bottom row shows a zoomed in view of the three robots.

Fig. 1. University of Manitoba Vision Kart. A fully mobile SSL platform
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Fig. 2. Overview from the camera on the vision kart (top) as well as a zoomed-in views
of three robots

From the views in Fig. 2, it is easy to see that colour features are hard to
extract. For example, the small pink spot on the robot has been washed out
to pure white because of the angle of the incoming light. We have therefore
investigated alternative methods to use geometric features. For example, in [1]
we describe a method that uses line segments of rectangular robots to determine
the ID and orientation of robots. One problem of this approach is that most
geometric features that may be used as feature points (e.g., area, aspect ratio,
and angles) are greatly distorted by the low position of the camera.

3 Tsai Camera Calibration

Doraemon’s camera calibration uses the well-established Tsai camera calibra-
tion [2] which is popular among computer vision researchers. It is also suitable
for global vision in robotic soccer since it can compute the calibration from a
single image.

The Tsai camera calibration computes six external parameters (x, y and z
of the camera position as well as angles of roll, pitch and yaw) and six inter-
nal parameters (focal length, center of the camera lens, uncertainty factor Sx,
and κ1, κ2 radial lens distortion parameters) of a camera using a set of calibra-
tion points.
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Calibration points are points in the image with known world coordinates.
In practice, Tsai calibration requires at least 15 calibration points. Doraemon
uses a fast, robust and flexible method for extracting calibration points from the
environment. A simple colored calibration carpet is used.

The user selects a colored rectangle and specifies the distance in the x and
y direction between the centers of the rectangle. Doraemon’s calibration is
iterative, so it can compensate for missing or misclassified calibration points.
Even using a side view of the playing field, the calibration results in object
errors of less than 1 cm.

4 Interpolation Algorithms

Interpolation has long been an active research area in computer vision, math-
ematics, and statistics. The problem can be stated as finding the value of a
target function for points in between a supplied set of data points. Often the
data points are assumed to be corrupted with noise, and smoothing must be
performed first. This is often the case in computer vision applications such as
global vision robotic soccer.

Figure 3 is a simple example of a one dimensional interpolation problem.
Given the value of the target function at positions x1, x2, . . . , xn, find the value
of the target function for position xt.

By comparing the right and left half of the example interpolation problem,
one can see that the right half is easier to interpolate. The data looks much more
regular than the left side of the image.

4.1 Square Interpolation

The simplest interpolation algorithm is the square or pulse approximation, which
results in a zero order interpolation of the target value as shown in Fig. 4.

This is identical to the one nearest neighbor algorithm (1-NN) algorithm
where each sub-scanned pixel is assigned the value of its closest neighbor.

Although this algorithm is computationally very efficient, it does not lead to
good results. For example, both the spot and the robot top have very jagged

Fig. 3. One dimensional interpolation problem. Intuitively, one can see that the right
side of the function is easier to interpolate than the left side
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Fig. 4. Results of square pulse interpolation for the spots (left) and a robot (right)

Fig. 5. Piecewise linear (left) and bi-linear interpolation of two dimensional data

edges. This jaggedness also enhances false colour information in the image. For
example, the yellow edges on the robot (which resulted from errors in the colour
processing of the camera) are emphasized.

4.2 Bilinear Interpolation

A slightly more complex interpolation method is the use of triangle instead of
square approximation, also referred to as first order interpolation. In this case,
the value of the target pixel is calculated along the line segment of its two
neighbors.

The extension of this method to the two dimensional case (e.g., images) is
slightly more complex. The problem is that four data points do not in general
lie on an interpolation plane.

Two common methods to overcome this problem are: (a) piecewise linear
interpolation, and (b) bilinear interpolation, as shown in Fig. 5.

In the piecewise linear interpolation approach, the sample surface is split into
two planes (ABC and ACD). In the top left of the image, points are interpolated
using the plane ABC and in the bottom right using the plane ACD.

Using bilinear interpolation, points are first linearly interpolated along the
rows/columns and the resulting points are then used to linearly interpolate the
value of the target point. This bilinear interpolation is commonly used because
it is computationally efficient and leads often to better results in practice than
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Fig. 6. Results of bi-linear interpolation for the spots (left) and a robot (right)

a square pulse interpolation. This can clearly be seen in the example pictures
in Fig. 6. For example, the edges of spots are rounder and the shape of robot is
also not as jagged as the square pulse interpolation.

4.3 Cubic B-Spline Interpolation

Another popular method of interpolation is to fit cubic b-splines to the data. In
general, this method results in smoother interpolation of the data.

The main drawback is that it uses a larger neighborhood around the pixel
to calculate the parameters of a cubic function. Because of computational con-
straints, the neighborhood is usually limited to a 4 by 4 pixel region.

The results of cubic b-spline interpolation are only slightly better than bi-
linear interpolation, but larger interpolation neighborhoods are computationally
much more expensive. Therefore, we restricted ourself to 2 by 2 neighborhood
interpolation functions.

4.4 Average Gradient Method

Because of the noise in the image, it is often necessary to apply blurring to pixels
(e.g., to get a better estimate of the colour of region of pixels). The most popular
method for blurring is to replace a pixel with the average or median of the pixels
in its 4, 9, or 16 neighborhood.

However, blurring an image results in a loss of contrast around the edges of
an object. Since these are important cues to determine the geometrical features
that we use in determining the position, orientation, and identity of our robots,
blurring is not appropriate in our case.

It is also computationally more efficient if the blurring and interpolation steps
are combined.

We therefore designed and implemented a gradient blurring interpolation.
The average gradient along the rows and columns are computed. The closest
point to the target point is selected and the average gradient is applied at the
starting point.
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Fig. 7. Results of our average gradient interpolation for the spots (left) and a robot
(right)

The resulting image of a spot and our robot are shown in Fig. 7. The re-
sult is similar to the bilinear interpolation and better than the square pulse
interpolation.

5 Evaluation

One method of evaluating the scene recognition performance of a computer vision
system is to reconstruct the scene from a different view point. Figure 8 shows
the results of applying our interpolation method over the entire playing field.
The resulting view is an overhead view isometric projection of the playing field
using the original image as shown in Fig. 2.

The errors in the right edge of the playing field are due to errors in the camera
calibration. In most cases, these errors are not significant, because the field is
locally still consistent (i.e., the relative position of a robot and the ball is still
correct), so robots can approach a ball to score, etc.

Although interpolating over the entire field is inefficient during a match, it
nevertheless provides evidence of the accuracy that can be achieved with a solid
camera calibration and reasonable interpolation methods.

Currently, no additional model knowledge has been used. The robots are as-
sumed to be flat on the playing field. Although this is sufficient for detecting
the position, orientation, and velocity of a robot, the quasi-overhead view recon-
struction could be improved even further by correcting the image for the known
height of robots that were found in the image.

We tested square pulse interpolation, bilinear interpolation, cubic b-splines
interpolation as well as our own average gradient method on about 50 test im-
ages. Subjectively, we determined the accuracy of edges, area, and angles in the
resulting image. In all cases, the performance of bilinear interpolation, cubic b-
spline interpolation, and our own average gradient method was comparable and
significantly better than that of the square pulse interpolation. The bi-linear
interpolation is computationally the most efficient method, so we selected it as
default interpolation method in Doraemon.
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Fig. 8. This is not an image taken by an overhead camera, but rather a reconstructed
overhead view. The original image is shown in Fig. 2. The image has been corrected
for perspective distortion and our average gradient interpolation was used

One drawback of the interpolation method is that Doraemon is unable to
maintain 60 fields per second when controlling a field with 11 objects in it. The
capture rate drops to 30 frames per second. We believe that better optimized
interpolation routines or better object tracking can overcome this problem.

6 Conclusion

This paper argues for a more model–based approach to computer vision to tackle
the problems posed by the new field size in the SSL league. The goal of our re-
search is to use a single camera without a wide angle lens that is able to cover
the new larger playing field. As a first step, we built on the existing camera
calibration routines in Doraemon to geometrically interpolate pixels. This in-
terpolation is used to extract important geometric features such as the area,
aspect ratio, and angles in a shape. These features are then used to determine
the position, orientation, and identity of objects on the playing field.

This paper described a comparison of several interpolation methods including
square pulse interpolation, bi-linear interpolation, cubic b-spline interpolation,
and a novel average gradient method. In our evaluation, bi-linear interpolation
had good results, but ran faster than cubic b-spline and average gradient inter-
polation. Square pulse interpolation has the worst results.

To show the effectiveness of the reconstruction, we showed the result of cal-
culating the interpolation of the entire playing field. The resulting image will
hopefully convince other researchers that overhead cameras are not the only
solution to the vision problem in the SSL.
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Abstract. Multiple cameras have been used to get a view of a large area.
In some cases, the cameras are placed so that their views are overlapped
to get a more complete view. 3D information of the overlapping areas
that are covered with two or three cameras can be obtained by stereo
vision methods. By shifting the shutter timings of cameras and using
our pseudo stereo vision method, we can output 3D information faster
than 30 fps. In this paper, we propose a pseudo stereo vision method
using three cameras with different shutter timings. Using three cameras,
two types of shutter timings are discussed. In three different shutter
timings, 90 points of 3D position for a sec are obtained because the
proposed method can output 3D positions at every shutter timing of
three cameras. In two different shutter timings, it is possible to calculate
the 3D position at 60 fps with better accuracy.

1 Introduction

In a soccer robot match, it is important to calculate the position of an object as
quickly as possible in order to control the robot by visual feedback. Also, it is
necessary to calculate the 3D position of the ball, not 2D position on the soccer
field, because some robots have an ability of striking a loop shot [1].

As an approach to implementing a high speed vision system, a 60 fps camera
has been used in small-sized robot league [2, 3]. The system processes NTSC
camera images at a 60 fps rate with double buffering. However, they can’t cal-
culate a 3D position because they use a single camera. Stereo vision using mul-
tiple cameras is needed for measuring the 3D position. They require cameras
to synchronize with each other for tracking an object accurately and measuring
its depth.

We have proposed a pseudo stereo vision method for calculating the 3D posi-
tion of an object using two unsynchronized cameras [4]. The method can obtain
the 3D position of a moving object at 60 fps making use of the time lags of the
shutter timing between the two cameras. In this paper, we present two kinds
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of vision systems based on the pseudo stereo vision method using three normal
cameras (that take pictures at 30 fps), which can output 3D positions at 60 fps
or 90 fps by adjusting the shutter timing of each camera.

2 3D Position Measurement with Multiple Cameras

The stereo vision method which measures the 3D position of the object requires
two images captured at the same time to reduce error in the measurement. Using
a general stereo vision system, 3D positions can be obtained at 30 fps maximum
using a normal 30 fps camera with fast vision algorithm described in [5].

Using two unsynchronized cameras for calculating the 3D positions of objects,
we have proposed a pseudo stereo vision method taking advantage of time lag
between the shutter timing of each camera [4]. To obtain a higher speed with
better accuracy in 3D position, we investigate a vision system consisting of three
cameras and a method for calculating the 3D position with two kinds of shutter
timing of three cameras.

2.1 Shutter Timings of Three Cameras

Three combinations of cameras might be considered as shown in Figure 1 by ad-
justing the shutter timings of the cameras. One of them is the case of same shut-
ter timings which are used in multiple baseline stereo as shown in Figure 1(a).
We focus on two cases where the shutter timing of each camera is different as
shown in Figure 1(b) and (c). In the case of type A, the shutter timing of each
camera is shifted for 1/90 second. Since the 3D position is calculated at every
shutter timing of each camera, the 3D position can be obtained at 90 fps. In the
case of type B, the shutter timings of camera1 and camera3 are synchronized,
and the 3D position is calculated using stereo vision. The shutter timing of cam-
era2 is shifted for 1/60 sec from the shutter timing of camera1 and camera3.
The 3D position can be obtained at 60 fps, and we can obtain better accuracy.
The methods for estimating the 3D position of two kinds of shutter timing are
described as follows.

(c) typeB

ti

Δ = 1/30 sec

δ = 1/90 sec

1/90 sec

(b) typeA

ti+δ ti+2δ ti+Δti

camera1

camera2

camera3
Time

(a) multiple baseline stereo

Δ = 1/30 sec

ti ti+Δ ti+δ ti+Δ

Δ = 1/30 sec

δ = 1/60 sec

Fig. 1. Possible two combinations of shutter timing
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2.2 TYPE-A: Algorithm for Three Different Shutter
Timings(90fps)

The 3D position in the last frame is estimated by using the time interval δ
between the shutter timings of each camera and the results from the previous
two frames. The procedure of 3D position measurement is as follows:

Step1. Calculation of 3D positions in the previous two frames
Step2. Linear prediction of the 3D position
Step3. Prediction using constraints from ray information

Calculation of 3D Positions in the Previous Two Frames
In order to obtain an accurate 3D position from the current frame by linear
prediction, it is necessary to accurately calculate the previous 3D positions Pt−1,
Pt−2. The algorithm of the 3D position calculation at t−2 is described as follows:

Step1. Using two observed points in the frame t and t − 3, a pseudo-
corresponding point from camera1 on frame t − 2 ( ˆu1

t−2,
ˆv1
t−2) is interpo-

lated by the following equation:

ˆu1
t−2 =

δ12u
1
t + (δ23 + δ31)u1

t−3

δ12 + δ23 + δ31
, ˆv1

t−2 =
δ12v

1
t + (δ23 + δ31)v1

t−3

δ12 + δ23 + δ31
(1)

Step2. Calculate the epipolar line e2 on the image from camera1 using the
corresponding point (u2

t−2, v
2
t−2) from the image from camera2. Then, the

nearest point (u′1
t−2, v′1

t−2) from the interpolated point, calculated by step1,
can be set as corresponding point for (u2

t−2, v2
t−2).

Step3. We can measure the 3D position Pt−2 using triangulation as a crossing
point of the two lines in 3D space.
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Step 1, 2, 3 are repeated in the frame t − 1. The two previous 3D positions,
at t−1, t−2 are calculated from previous and following frames and the epipolar
constraint. These two previous points, Pt−1 and Pt−2, will be used and decrease
the prediction error at the next step of linear prediction.

Linear Prediction of 3D Position
As shown in Figure 3, the predicted position P̂t = [xw, yw, zw]T of the last frame
t is calculated by the following equation using the already measured positions
Pt−1 and Pt−2 in the previous two frames.

P̂t = Pt−1 +
δ31(Pt−1 − Pt−2)

δ12
(2)

Note that Equation (2) is based on the analyzed image of the last frame from
camera1. For the position estimate, the Kalman filter [6, 7] and spline curve
fitting have been proposed.

Prediction Using Constraints from Ray Information
In order to decrease the prediction error, the 3D position is calculated once more
using the constraint of a viewing ray in 3D space obtained from the current
image. Let T1 = [Tx, Ty, Tz] be the translation matrix from the origin of the
world coordinate to the focus point of camera1, and r1

t = [xw, yw, zw]T be the
vector which denotes the direction of the viewing ray, l1t , passing through the
position on the image coordinate (u1

t , v
1
t ) and the focus point of the camera. The

viewing ray shown in Figure 3 can be expressed by

l1t = kr1
t + T1 (3)

where k is a real number. Although Equation (2) gives a good 3D position
prediction, the position may not exist on the viewing ray l1t as shown in Figure
3 because of its prediction error. In order to solve this problem, the 3D position
P′

t is calculated by the following equation as the nearest point on the ray l1t .

P′
t =

(P̂t − T1) · r1
t

|r1
t |2

r1
t + T1 (4)
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Finally, P′
t will be the 3D position of the object at the last frame. In case

camera2 and camera3 are the latest frame, the image of the 3D position is
calculated in the same way as mentioned above.

2.3 TYPE-B: Algorithm for Two Different Shutter Timings(60fps)

In order to estimate better 3D position by linear prediction, it is important to
calculate 3D positions in the previous two frames. In the case of Figure 1(c), the
shutter timings of two cameras(camera1 and camera3) are synchronized so that
3D position is calculated by stereo vision. Therefore, P′

t is estimated by linear
prediction using Pt−1 and Pt−3, which are obtained by stereo. Futhermore, 3D
position of camera2 P′

t is calculated by constraint from ray information using
the same algorithm as type A.

Therefore, 3D positions, which are calculated by stereo from two synchronized
cameras and estimated by constraint from ray information of a single camera are
obtained respectively. In this case, the total number of points can be obtained
for a second is 60 points, which is less than type A (90 points).

3 Simulation Experiments

3.1 Recovery of Object Motions

We evaluated the proposed method by simulation of recovering the object’s
motion with uniform and non-uniform motion in 3D space (3,000 × 2,000 ×
2,000 mm). In the simulation, we assumed that three cameras would be mounted
at the height of 3,000 [mm].The proposed method is evaluated by following
three motions.
– uniform motion(straight): An object moves to (x, y, z) = (3,000, 1,200, 0)

from (x, y, z) = (0, 1,200, 2,000) at velocity of 3,000 mm/sec.
– uniform motion(spiral) An object moves in a spiral by radius of 620 mm at

velocity of 3,000 mm/sec at center (x, y) = (1,000, 1,000).
– non-uniform motion: An object falls from the height of 2,000mm, then an

object describes a parabola (gravitational acceleration:g=9.8 m/s2).

The trajectory of the object is projected to the virtual image planes of each
camera. A 3D position is estimated by the proposed method described in section
2.1 using the projected point on the virtual image plane (u, v) of each camera.

3.2 Simulation Results

Table 1 shows averages of estimation error with simulation experiments. The
unsynchronized method in Table 1 shows the result of stereo vision by corre-
sponding points in time delay using two cameras, and the synchronized method
shows the result of general stereo vision with no time delay. In the case of us-
ing two cameras, it is clear that the proposed method(type A) has a better
result than the unsynchronized method, and its accuracy is close to the synchro-
nized method.
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Table 1. Average of absolute errors in 3D positions [mm]

method fps
uniform

non-uniformstraight spiral

2cameras
unsynchronized 60 23.2 21.4 16.2
synchronized 60 0.03 0.14 0.12

type A 60 1.1 2.2 1.8

3cameras
type A 90 1.1 2.0 1.7
type B 60 0.2 0.5 1.5

linear prediction 60 0.2 1.4 4.4

Linear prediction in Table 1 shows the result of linear prediction using the
past two positions calculated by stereo vision. Comparing type B to linear pre-
diction, it is clear that type B has better accuracy because constraint from ray
information decreases the error generated by linear prediction. In the simulation
experiment of non-uniform motion, type A has better accuracy compared to lin-
ear prediction even though the shutter timings of the three cameras are different.
This is why the time interval of the shutter timing is small (δ = 1/90 sec).

4 Experiments Using Real Cameras

We evaluated our method using real data in the same way as the simulation
experiments.

4.1 Configuration of Vision System

Figure 4 shows the camera placement of our vision system that uses three cam-
eras, camera1, camera2 and camera3. These cameras are mounted at a height of
2,800 mm, and each camera has a view of an area of 2,000 × 3,000 mm. Each
camera is calibrated using corresponding points of world coordinates (xw, yw, zw)
and image coordinate (u, v) [8]. The shutter timing of each camera is controlled
by a TV signal generator. Three frame grabbers for the three cameras are in-
stalled on a PC. Our hardware specifications are described as follows:

Process-1, process-2 and process-3 analyze images from camera1, camera2
and camera3 at every 1/30 second respectively. The analyzed results such as
(ui, vi) and the time instant at which the analyzed image was captured are sent
via UDP interface to process-4 that calculates the 3D positions of the object.
There is negligible delay due to communications among processes because this
work is done on the same computer.

4.2 Experiments

Figure 6 shows results of recovering the motion of a hand-thrown ball for about
1.5 sec. Figure 6(a) shows that the numbers of plotted points is 135. This indi-
cates that the speed is the same as 90 fps camera. Figure 6(b) shows that the
numbers of plotted points is 90, which is same as 60 fps camera.
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Fig. 6. Results of 3D position measurement

(a) image from camera1 (b) image from camera2 (c) image from camera3

Fig. 7. Captured images of turntable

Table 2. Average and variance of z values of 3D positions

average[mm] variance
type A 664.5 2143.7
type B 662.3 112.0

As an evaluation for the accuracy of estimated 3D positions, we used a
turntable and a ball as shown in Figure 7. A ball attached on the edge of
ruler(1,000 mm length) makes a uniform circular motion with a radius of 500
mm. The turntable is placed on a box at the height of 500 mm, and the ball’s
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height from the floor is 660 mm. The turntable rotates at a speed of 45 rpm,
and its rotation speed per second is (45×2π)/60 = 0.478 radian.

Table 2 shows the average and variance of the 3D position on the zw axis for
both types. The average of the positions from the two methods was measured
within 5 mm from the actual height of 660 mm. We see that variance of type B
is smaller than type A, which is the same result as the simulation experiments.

5 Discussion and Conclusion

We proposed a pseudo stereo vision method using cameras with different shutter
timings. The method can output 3D position at 60 fps or 90 fps by adjusting
the shutter timing of three cameras. In three different shutter timings (type A),
90 points of 3D position for a sec are obtained because the proposed system
can output 3D positions at every shutter timing of the three cameras. In two
different shutter timings (type B), it is possible to calculate the 3D position at
60 fps with better accuracy.

In RoboCup small-size league, some teams have used multiple cameras to
get the robot’s position with better precision than one camera. From 2004, the
soccer field will become larger than the size that one camera can cover. Using our
method, high speed and 3D information of the overlapped area can be obtained.
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Abstract. This paper describes a new technique for determining the distance to 
a planar surface and, at the same time, obtaining a characterization of the 
surface’s material through the use of conventional, low-cost infrared sensors. 
The proposed technique is advantageous over previous schemes in that it does 
not require additional range sensors, such as ultrasound devices, nor a priori 
knowledge about the materials that can be encountered. Experiments with an 
all-terrain mobile robot equipped with a ring of infrared sensors are presented. 
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Abstract. In this work, a novel search strategy for autonomous search
and rescue robots, that is highly suitable for the environments when
the aid of human rescuers or search dogs is completely impossible, is
proposed. The work area for a robot running this planning strategy can
be small voids or possibly dangerous environments. The main goal of
the proposed planning strategy is to find victims under very tight time
constraints. The exploration strategy is designed to improve the success
of the main goal of the robot using specialized sensors when available.
The secondary goals of the strategy are avoiding obstacles for preventing
further collapses, avoiding cycles in the search, and handling errors. The
conducted experiments show that the proposed strategies are complete
and promising for the main goal of a SR robot. The number of steps to
find the reachable victims is considerably smaller than that of the greedy
mapping method.

1 Introduction

The disasters such as earthquakes make clear the necessity of having robust,
dynamic, and intelligent planning systems and powerful human-machine inter-
action. In general, the scale of the disaster and the speed of changing situations
are far beyond the capabilities of human-based mission planning [3]. Often the
lack of qualified rescue workers is a major problem. In addition, there are many
difficulties for human team members in disaster areas such as dangerous or un-
reachable places. Although rescue dogs could help reduce the human risk by
searching smaller voids in the rubble than a human can, in many cases a video
camera or any structural-assessment equipment is more useful [6]. In overcoming
the difficulties mentioned above, robots can be very sutiable [2].

The research on this area has become very attractive during the last decade.
RoboCup-Rescue League has been started in 2001 [7]. Many search and rescue
(SR) robot architectures, the variety of which is very large [3], have been pro-
posed. In these proposals, the focus is typically on mechanical design, and the
planning strategies are not addressed in detail.

As the most important part of a SR robot, the planning layer should be
capable of generating effective plans for finding victims in a short period of time

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 459–466, 2005.
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while taking care of constraints. The uncertainties about the environment and
the effects of actions, the environmental constraints, goal interactions, and time
and resource constraints make the problem harder. Therefore, flexible search
strategies should be designed to make the problem more manageable. Time is a
very hard constraint while finding the humans suffering from the disaster. There
is a tradeoff between effective planning without dead ends and the fast plans
for finding the victims in the environment. Partial-planning or re-planning [5]
strategies are known to be very effective. However the use of either of them as
such is not suitable for real implementations of the SR robots. However, key
ideas of both approaches could be used in the design of a planning layer design
of a SR robot to take advantages of both. Architectures such as three layered or
BDI (Belief-Desire-Intentions) may be used to implement in the planning layer
design depending on the specific application [8].

Since the difficulties with the environment make the current SR robot proto-
types to be designed as semi-autonomous or highly dependent on human robot in-
teraction, autonomous robot designs are rarely encountered in the literature [1]. In
this study, an autonomous planning strategy suitable for the environments when
the aid of human rescuers or search dogs is completely impossible is proposed. The
work area for a robot running this planning strategy can be small voids or possibly
dangerous environments with gas leakages or under danger of possible explosions
or further collapses. The layered model of InteRRap and the belief update proce-
dures of BDI type architecture are combined, and exception handling strategies are
attached to the proposed planning layer action selection mechanism to cope with
the uncertainties on the environment. Reactive actions are executed directly ac-
cording to the sensory information. This proposal of the hybrid planning strategy
is believed to be useful in promoting further improvements in SR robot designs.

The rest of this paper is organized as follows: Section 2 introduces the pro-
posed planning module design and the proposed strategies. In Section 3 the
experimental results are given. Finally, Section 4 presents future work and con-
cludes the paper.

2 Search and Rescue Planning Module Design

2.1 Requirements

The primary goal of the Planning and Behavior Module (PBM) of a SR robot
is to find victims in the disaster area within a minimum possible time interval.
The secondary goals are avoiding obstacles, avoiding risking resources or trig-
gering a further collapse, searching the area effectively, avoiding cycles in the
search, turning and moving to the directions of locations in which it is believed
that humans to be rescued are located, turning and moving to the directions of
locations in which it is reported by other robots or a dispatcher that humans to
be rescued are located.

The PBM of a SR robot should be able to determine a plan based on the
current state of the environment, the robot’s location, the hierarchical structure
of the desires (goals), and the constraints. It should also perform re-planning
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when necessary while executing a plan based on the intermediate changes on the
environment or the internal state.

There may be static or dynamic obstacles, other robots, and the human
workers of the rescue team in the environment. The environment structure and
the map are unknown.

2.2 Design

The proposed PBM design consists of mainly three layers which interact with
each other to achieve the same end as in the InteRRap architecture. The reactive
layer interacts directly with the sensory modules, and produces an appropriate
action. The planning layer constructs the plan for the robot to implement its
task in an optimal way. The strategies for avoiding cycles, forming beliefs to
direct the search space, and exception handling are implemented by this layer.
The communication layer is the interaction layer of the module and implements
the robot communications. It is responsible for informing other robots accord-
ing to the planning layer outputs, and receiving the incoming information. The
bandwidth requirements are very small.

PBM interacts with other modules of the robot to make decisions and to
convert these decisions into actions. The actions based on the plans produced
by the PBM are sent to the motor interface unit of the robot.

In the design, the following assumptions about the environment are made:

– The assigned rubble sub-area for the robot is a grid like environment.
– Robot’s visibility space contains 8 current neighbor cells.
– The corner neighbor cells cannot be reached if the neighboring cells are

obstacles
– The obstacles are modeled as gaps or untraversable huge obstacles
– The area surrounded by untraversable obstacles is not considered

The only assumption for the architecture of the robot is that it is battery
powered and equipped with some special simple sensors, and it can operate
several hours.

In the design of the PBM, effective algorithms for both exploration and ex-
ploitation are proposed. SR robot works in a dynamic and unknown environment.
Initially, the only information available to the robot is the preloaded knowledge-
base. In the main loop of the planning strategy, if there is some information
about the possibilities of victims, and their possible locations, this information
is used. Otherwise the area is explored effectively. In this manner, the strategy
allows searching of the locations farthest from the visited locations to explore
unknown locations of the victims. This loop continues whenever the state is re-
coverable and it is believed that there may be victims in the area. During search,
the obstacle avoidance is implemented before collisions occur.

2.3 Planning Strategy for Victim Locations

In the strategy for moving to the locations believed to contain victims, the
shortest path is considered. Therefore the robot initially turns to the direction
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Fig. 1. The update strategy of cell distances to the target on the planned path

of the victim and tries to move forward continuously. Exceptions can occur when
the robot encounters an obstacle. It can determine whether the object is dynamic
or static by means of sensory inputs. Since the proposed approach is suitable for
all SR robot architectures including ones lacking of such sensory equipments, the
object type test is implemented blindly by waiting for a short time. If the object
still stands in front, it is assumed to be a static object. If the prediction is wrong,
in later steps, this information can be corrected because of the adaptive world
knowledge update mechanism. For more advanced architectures having efficient
sensors, this test process is not needed. During search, alternative directions
should be tried. After alternative path selection, the shortest victim location
choice is again executed. The Locating Human Beings Module may indicate
another victim location closer than the target. Such information can also be sent
from another robot. In this case, the target is changed, and the closest victim
is chosen to rescue to satisfy the primary goal. When the target is changed, the
information related to the previous target is sent to the dispatcher so that other
robots can save the victim.

If there are no more targets, and it is believed that nobody is alive in the
assigned sub-area a finished message, or if the situation cannot be recoverable,
a help message is sent to the dispatcher. If the deadline ends before reaching the
target, this information is sent to the dispatcher, and a new target is chosen.

The nearest victim path-planning strategy provides the robot to traverse
a path, visiting victim places by using the shortest path. The predicted cell
distances to the selected victim target are updated at every movement, and also
when the world knowledge is updated as in Free Space Assumption planning
theory [4]. An illustrative example of the update strategy of cell distances on
the planned path can be seen in Fig. 1, where, the square represents the current
location, and the circle the target. The lines with arrows are the alternative
paths. The dotted line is the path taken by the robot. The numbers in the
cells are the guessed distance values to the target. Initially the environment
is completely unknown, assuming the sensor range is one-cell distance. After
updating the world knowledge, the observed obstacle information is taken into
account to predict the distance values close to real, and to provide an incremental
search strategy.

The probability information for victim locations is stored as a vector in the
long-term-memory. If the robot finds a victim in a location, it clears the prob-
ability information, and adds the location to the rescued location vector and
sends a saved message to the dispatcher. Such a message can also arrive at the
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NearestVictimPathPlan
do while there is a victim probability

ChooseClosestVictim;

UpdatePathInformation;

if a path to the target is not available

Assign this target as unreachable;

Send a declaration message to the

dispatcher informing the victim location;

else

DefineDeadline;

SelectClosestRotation;

Move;

if PlanFails

HandleErrors;

update worldKnowledge;

UpdatePathInformation
from target expanding to all neighbor cells

assign ∞ for the current distance;

choose the smallest neighbor distance

and update the own;

HandleErrors
if there are obstacles on the path

UpdatePathInformation;

turn to the cell closest to the target

if more than one cell with the same distance value

choose the least visited;

if the situation cannot be recoverable

send a help and go to the idle mode;

Fig. 2. Moving to the nearest victim strategy

communication layer of the current robot. If the location in the message is the
current target, the robot clears the probability information for this location and
selects another target location in the next step. The obstacles information is also
stored in the long-term memory. However since the environment is dynamic, the
planning strategy takes into account of local changes while moving. In this case,
the information related to the obstacles is updated. Therefore the wrong beliefs
related to the dynamic obstacles labeled as static are corrected. The searching
strategy algorithm is given in Fig. 2.

2.4 Search Strategy for Exploration

When the robot has nothing to do better, it tries to search the environment in
an effective manner. This situation occurs when there is no motivation about a
possible location believed to contain victims.

A selective pressure value is defined for unvisited locations, which is updated
for each movement. The added value to the previous pressure value is a function
of the distance between the cell and robot’s location, and the number of unvisited
neighbors of the cell. A pressure value of a cell is updated based on Eq. 1

prk+1
i =

{
0 if i is within the sensor range
prk

i + dist(i(x, y, z), R(x, y, z)) + 10 ∗ nu/nt otherwise (1)

where prk
i is the pressure value of the cell i at step k, nu is the number of

unvisited neighbors and nt is the total number of neighbors in the sensor region,
dist() returns the Euclidian distance between two points in 3D, i(x, y, z) is the
cell location, and R(x, y, z) is the robot location. The selective pressure values
of cells within the sensor range are set to 0.

In the exploration strategy, a cell having the highest selective pressure value is
selected as the new target. After selecting the target, a path is planned containing
maximum number of unvisited cells. For the current cell, the three neighbors
closest to the line between the current cell and the target cell forms a sub-region.
An unvisited cell from this sub-region is selected. If there is not an unvisited sub-
region neighbor, the other neighbors are examined and the unvisited neighbor
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LeastVisitedLocationPlan
Choose unvisited location with the

highest pressure value;

do while (target is not reached)

if there is victim information

break;

UpdatePathInformation;

ChooseTheSubRegionNeighbor;

Move;

UpdatePressureValues;

if PlanFails

HandleExplorationErrors;

update worldKnowledge;

HandleExplorationErrors
if there are obstacles on the path

UpdatePathInformation;

if short term memory indicates that

the situation cannot be recoverable

send a help and go to the idle mode;

if a path to the target is not available

Assign the target as unreachable;

Fig. 3. Exploration Algorithm

closest to the target is chosen. If all the neighbors are visited before, the sub-
region cell having the minimum visit value is chosen finally. The visited locations
are removed from unvisited vector. As soon as any information about a victim
location is determined, the nearest victim path-planning strategy is switched
immediately. The proposed exploration algorithm is given in Fig. 3.

3 Experimental Results

A simulation environment in C++ using OpenGL Library was implemented
to measure the performance of the proposed algorithms. The environment is
constructed with random locations of obstacles and victims. The dynamic objects
representing the refugees or human team members are allowed to walk or run
in the environment. The number for sensor range indicating the maximum cell
distance to sense any victim probability can be adjusted.

Since there is no similar algorithm, the designed algorithm was only compared
with the greedy mapping method. Mine sweeping, vacuum cleaning or lawn
moving planning approaches [1] could also be selected for comparison. In these
tasks the cells should be visited at least once. However these algorithms are
designed without time constraints whereas in SR case this is crucial.

The Greedy Mapping Method [4] is an adaptive method running on an un-
known environment. While selecting the shortest unvisited cell in each step, the
method traverses the shortest path from initial state through the goal state. The
proposed nearest victim path-planning strategy is combined with this strategy
to conduct tests.

The experiments were conducted with randomly generated 20x20 grids or
mazes. The proposed strategy provides a complete search with an effective ex-
ploration capability. The exploration time (Coverage) or the number of steps to
find victims (Goal) change based on the number of obstacles and the structure
of the environment. The results of the proposed strategy can be seen in Table 1.
Each row represents different obstacle densities.

As expected, the number of victims found decreases when the number of
obstacles in the environment increases. The exploration time to visit all of the
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Table 1. The performance of the proposed strategy for different densities

Real
Obstacles

Detected
Obstacles

Coverage Goal Number of
Victims rescued

μ σ μ σ μ σ μ σ μ σ

56.04 7.10 56.16 7.15 531.72 40.31 119.6 50.96 4.92 0.28
122.40 8.81 129.2 13.06 548 103.78 171 61.97 4.9 0.31
199.80 10.12 237.90 24.62 341.70 96,05 102.90 56.60 2.80 1.48

Table 2. Comparison of the exploration strategy with greedy mapping method

Sensor Range
Greedy Mapping Exploration Proposed Exploration

Coverage Goal Coverage Goal
μ σ μ σ μ σ μ σ

2 411.52 23.97 270.28 72.22 563.76 41.42 173.64 80.44
3 407.44 16.07 266.68 50.97 540.88 37.46 92.62 43.38
4 402.08 13.50 231.96 71.46 518.72 26.86 65.68 31.10

cells at least once decreases while obstacles density increases. The numbers of
real and detected obstacles are different because of unreachable places formed
by the combinations of the obstacles. Although it can be inferred that as the
number of obstacles increases the number of steps to find the victims decreases,
the number of victims rescued decreases drastically due to the unreachable places
containing victims.

Table 2 presents the results for the exploration strategy for both the proposed
and the greedy mapping exploration methods. The proposed nearest victim path-
planning strategy is applied for both methods. The same randomly generated
grids are used to compare the methods. The number of victims in the environ-
ment is 5 and the average number of cells containing obstacles is 29.54 with
standard deviation 5.39. The results are average of 25 independent runs for each
sensor range. The algorithms are compared for both the number of coverage
steps (Coverage) and the number of steps to find all reachable victims (Goal).

It can be noted that the number of steps to find the victims in the environ-
ment decreases when the robot’s sense region is increased. Therefore this result
shows that the selection of the specialized sensors is very important for SR mis-
sion. As can be seen from the table, for the proposed exploration method the
number of steps to reach the goal is smaller than that of greedy mapping. How-
ever the number of steps to cover the whole reachable places is greater. But for
SR operation, to reach the goal in a minimum possible time is more important
than covering the area with a smaller number of steps.

4 Conclusions

In this work, a novel autonomous planning strategy suitable for all types of
SR robot architectures is proposed. The planning layer design can be used in
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the environments where the aid of human rescuers or search dogs is completely
impossible. The conducted experiments show that the proposed strategies are
complete and promising for the main goal of a SR robot. The number of steps to
find the reachable victims is considerably smaller than that of the greedy map-
ping method. In the proposed exploration strategy, the environment is explored
to find the victims as soon as possible by selecting the least visited cell as a
new target. Although, the proposed strategy completes a single coverage of the
environment with greater number of steps, this is acceptable due to the nature
of the SR mission. The environment is searched till it is believed that nobody
is still alive in the area. While visiting the least visited neighbors on the way to
the target, the environmental changes can also be tracked.

As a future work, 3D real life experiments with real robots in a disaster
area should be implemented and extending the ideas given in this paper to the
multi-agent case can be considered.
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Abstract. This paper proposes a novel approach for a Constructive Self-
Organizing Map (SOM) based world modeling for search and rescue operations
in disaster environments. In our approach, nodes of the self organizing network
consist of victim and waypoint classes where victim denotes a human being wait-
ing to be rescued and waypoint denotes a free space that can be reached from
the entrance of debris. The proposed approach performed better than traditional
self-organizing maps in terms of both the accuracy of the output and the learning
speed. In this paper the detailed explanation of the approach and some experimen-
tal results are given.

Keywords: Search & Rescue Robotics, Self-organizing Maps, Mobile Robotics,
World Modeling.

1 Introduction

Search and rescue (SR) robotics is one of the promising areas of mobile robotics. The
main aim of the SR robots is exploring the debris after a disaster (especially, after an
earthquake) and locating the living victims in the collapsed buildings, if any. Since a map
of the debris is usually not available, the robot has to make the map of the environment
simultaneously with the exploration and victim detection process while marking the
locations of victims to be saved on the generated map.

The robot should have the ability to determine its position and orientation in the
debris by using sensory inputs. One of the most important methods for localization is
using natural or artificial landmarks in the environment[1] [2] [3]. Since there are no
known landmarks in an unknown environment, this method can not be used. Odometry
sensors providing the relative displacement of the robot with respect to its initial position
can also be used for localization. Because of friction, slippage and encoder errors in
the locomotion parts, odometry data are fairly noisy. This noise increases the error in
estimation cumulatively. In order to overcome this problem, position information must
be corrected periodically. Using GPS is another alternative for position estimation but
accuracy of commercially available GPS receivers are not so high. In this work, we
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assumed that the robot is equipped with a GPS receiver with high accuracy. Since the
accuracy of the GPS is limited (outputs of GPS sensors are also noisy), the map making
algorithm should be able to use noisy inputs.

Some approaches for world modeling and position estimation using self-organizing
networks for mobile robots have been proposed in literature. Marques et al have proposed
a system which uses sensory layer inputs for training a self-organizing network and after
the training phase, finding the most similar neuron for each perception from sensors, and
assuming the position of the robot is the position of the winner neuron in the network [4].
Nehmzow et al have used self organizing feature maps for position estimation in which
they are feeding the network with history of motor actions instead of sensory data[5].

Topological map representation is appropriate for mapping the unknown environ-
ments because of its property of learning both distribution and topology of the data. In
this work, we have used a constructive variant of Kohonen’s Self Organizing Map for
marking accessible free locations in the universe (which we call a Waypoint) and the
locations of detected humans (which we call a Victim). We have used a constructive
network architecture because it is assumed that we do not have any prior information
about the disaster environment[6] so we should make a map of the environment in order
to be able to mark detected humans and free spaces for reaching them on the map.

The rest of the paper is organized as follows: Brief background information about
self-organizing networks is given in Section 2. Detailed description of proposed approach
is given in Section 3. Section 4 covers experimental work and the last section is dedicated
to conclusions.

2 Background

2.1 Self-Organizing Maps

Self-organizing maps are a special kind of neural networks that can learn to detect
regularities and correlations in their input and adapt their future responses according
to that input [7]. Competitive learning is used to learn to recognize groups of similar
input vectors in such a way that neurons physically near each other in a layer respond
to similar input vectors. For a given input, the most similar neuron (called The Winner)
is selected based on the distance between input and the neurons (neurons compete with
each other in order to be the winner). Then, the winner neuron and the neurons in a
certain neighborhood of the winner neuron are updated with a rule called Kohonen
Learning Rule:

wij(t) = wij(t − 1) + h(wi, wg) · α · (pj(t) − wij(t − 1)) (1)

where, wij is the jth weight of ith neuron, pj is the jth component of input, α is the
learning rate, h(wi, wg) is the vicinity function that depends on the distance between
the updating neuron and the winner neuron, wi is the updating neuron and wg is the
winner neuron. The vicinity function decreases as the distance of the updating neuron
to the winner neuron increases, and becomes zero if the neuron is not in the vicinity
of the winner neuron. Each time a neuron is updated, all the neurons in the vicinity of
the neuron are also updated. Self-organizing maps learn both the distribution and the
topology of the input vectors which they are trained on[8].
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3 The Proposed Approach

In our approach, we have used a constructive self-organizing map for representing the
free spaces and victims in the environment, accessibility of victims by using connectivity
among free spaces and connectivity between victims and free spaces. It is assumed that,
the sensorial layer of the robot supplies two kinds of signals: obstacle information and
people detection information. Both of the signals are real numbers in the range of [0,
1] and represent the confidence about existence of either victim or free space ahead
of the robot. Receiving a victim signal strengthens the belief about the existence of
a victim node in the observed location and receiving an obstacle signal weakens the
belief about the existence of a free space (a waypoint) in the observed location. Since
usually the debris has more obstacles than free spaces (we can consider it as a maze-
like environment), it is reasonable to keep track of free spaces and the connectivity
of these spaces instead of marking obstacles on the map. For this purpose, we divide
the nodes into two types: Waypoints and V ictims. Waypoints denote the free spaces
that the robot can pass through and Victims denote detected humans. The nodes contains
information about node type, the 3D position information, the number of hits of the node
and the average confidence value of the node. Since only one network is used for map
generation and the map contains two classes of nodes, class specific update rules and
environment specific linking methods among and between classes have been developed.

In this work, we assumed that there are obstacle and victim detection modules that
supply the probability of encountering an obstacle or a victim. Each time an observation
is received, only the nodes belonging to the same class with the observation are updated
(i.e. a waypoint node is neither updated nor selected as a winner when an observation
of waypoint signal is received even if it is in the vicinity of the winner or it is the
winner itself in terms of distance to the observation). If none of the nodes belonging
to the same class are closer to the observation point than a certain threshold, a new
node of the observation type is introduced to network. When a new node is constructed,
neighborhood information of the nodes should be updated. In this phase, not only the
distances between the nodes but also the physical accessibility from one node to another
is considered. If a node is not accessible from another node, it is not added to the
neighbor list of that node even if it is in the neighborhood range. Whenever a victim
observation is made with a confidence greater than a certain threshold, the victim nodes
are updated according to Kohonen Learning Rule but unlike the conventional rule, the
amount of update is multiplied by the confidence of the signal. This prevents the nodes
from diverging from the correct position when a signal with a low confidence is received
for a long time. Each node, waypoint or a victim, can be of fixed type or variable type.
A fixed node is not updated through learning even if it is in the vicinity of the winner
neuron. A node is set as fixed if it has a number of wins greater than a certain number
and its average confidence is greater than a certain threshold. The idea is that if there are
more than a certain number of observations denoting that there is a victim in a location
with a confidence over a certain threshold, that node should be fixed, and should not
be updated anymore. The network starts with an initial waypoint (the first node of the
system) representing the entrance point of the robot into the debris and is set to be fixed.
A pseudo-code of the algorithm is given in Figure 1.
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Initialize the network by defining a starting node
at (0,0,0) and fixed.

If an observation is received
Find the winner node by comparing the distances
between nodes and incoming observation

If distance between winner and observation is
less than a threshold,

Update the nodes in te vicinity of the winner
node belonging to the same type with observation
type and set the node status to variable

Update hits and average confidence fields of
the winner

Else
Create a new node with type of observation and
set the status to variable

Update the neighborhood information for the new node
and the nodes in its vicinity.

End

If the winner has a count of hits over a threshold and
its average confidence is over threshold,

set the node status of winner to fixed

End

Fig. 1. Pseudo-code implementation of the proposed approach

After the exploration is finished and training of the network is completed, the resultant
network is a graph consisting of free spaces and victims and the links between nodes
denoting the accessibility of nodes.

4 Experimental Work

4.1 Simulation Environment

For the experimental work, The Webots™ Mobile Robot Simulator version 3.2.22 is used
as the testing environment. Webots™ uses a VRML97 compliant scene representation
scheme and allows the user to develop C/C++ and Java robot controllers by providing
API for accessing the simulator functions[9].

We have used a model of a Khepera robot equipped with a color camera as the
prototype of SR robot and the controller for the robot is written in Java. For the ex-
perimentation, the robot is guided remotely and we mimic the signals from the people
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detection module by performing image processing. The light grey cylinders represent
the victims in the environment. The proportion of the number of light grey pixels in the
image obtained from the camera of the robot to the number of all pixels in the image
is a number between [0, 1] indicating the confidence of the existence of a victim in
the visual field of the robot. The people detection module of the robot is assumed to
return the estimated coordinates of the detected people (if any) and the confidence about
this estimation. In our experiments, the location of the robot is considered as the signal
location and the results from image processing are considered as the confidence level
of the signal. As the robot wanders around, the observations are passed to the network
depending on the strength of the signals received. For the waypoint signal production,
the information from infrared (IR) range sensors in front of the robot is used. The IR
sensors of Khepera return a number in the range [0, 1] where 0 means that there are
no physical obstacles in the range of the sensor and 1 denotes a very close obstacle to
the sensor. In our experiments, we have used the average of values obtained from four
front IR sensors of the robot as the obstacle information which is again a number in
the interval [0, 1]. Since an obstacle signal with a value of 1 means that the robot is
confronted with a very close obstacle, we expressed the amount of free space ahead of
the robot as 1 − γ , where γ is the obstacle signal obtained by taking average of four
frontal infrared sensors. It is assumed that the robot is equipped with a GPS receiver
for its self localization. To mimic the noise in the GPS system and IR sensors, uni-
formly distributed random numbers are added to the exact coordinates of the robot and
IR data.

4.2 Experiments

For comparison, two different networks are used in the experimentation phase: A con-
ventional Kohonen’s Self Organizing Map and our modified version of self organiz-
ing network. For the conventional SOM part, Matlab Neural Network Library is used
whereas our modified version of the network is implemented in Java. The conventional
SOM used is a network of 5 x 1 x 5 nodes since the displacements in the Y axis can not
be obtained due to the limitations of the simulator. Our network starts with one initial
node. The SOM network is trained using victim observations in 100 epochs. 1876 victim
observations were obtained during the simulation by making the robot to follow the path
given in Figure 2 where the circles represent the victims in debris. The number of the
observations depends on the running time of the simulation.

Both the outputs of our implementation in one epoch and the output of SOM in 100
epochs can be seen in Figure 3. Here, light grey nodes denote waypoints, dark grey
nodes denote victims, circles denote variable nodes and squares denote fixed nodes.
It can be seen easily that the output of our approach has some major advantages over
the classical self-organizing map approach. Our approach can represent both the victim
locations, the free spaces and the connectivity of these free spaces for reaching victims
and because of its custom update rules and spatially constrained vicinity definition, the
victim locations are found with a higher accuracy than classical SOM. The training phase
of the traditional SOM took approximately 10 minutes on a Pentium 4 based computer
whereas, our approach does not need such a training phase since it generates the map
online while the robot is wandering in the debris.
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Fig. 2. Path of the robot in debris

(a) (b)

Fig. 3. Comparison of outputs of (a) traditional SOM and (b) our approach

5 Conclusions

SR robotics is gaining importance as the disasters causes large scale loss of human
life and most of this loss is due to inefficiency in SR methods. By using SR robots in
collapsed buildings, the chance of detecting the existence and locations of victims in
debris can be increased.
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In this work, an incremental self-organizing network based map generation methods
for a search and rescue robot is presented. The main aim of this work was to come up with
a world modeling algorithm that can represent the locations of human beings in a col-
lapsed building and a list of free spaces that allows reaching those victims. The proposed
approach is implemented on a simulator and compared with a traditional self-organizing
map. Since debris is a maze-style environment, it is not easy to define neighborhood be-
tween neurons. In the definition of neighborhood functions, spatial constraints such as
physical accessibility between nodes are used in addition to Euclidean distance between
nodes. Using spatial accessibility prevents updating unrelated nodes even if they are in
the vicinity of the winner neuron in terms of euclidean distance. There are two types of
nodes in the network: Waypoints and Victims. Waypoints denote the free space that the
robot is passed on in the exploration and Victim denotes a detected living human being
waiting for to be rescued. Since we have two classes of signals to be learned and there
are some spatial constraints in vicinity functions, a traditional self-organizing map is not
sufficient for representing the world model. With its spatial constrained neighborhood
definition and partial update method for updating different types of nodes, our proposed
approach has brought a novel idea to the map making area in unknown environments
and performed better than traditional SOM in both accuracy and learning speed.
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Abstract. The RoboCupRescue Simulation project aims at simulating large-scale
disasters in order to explore coordination strategies for real-life rescue missions.
This can only be achieved if the simulation itself is as close to reality as possi-
ble. In this paper, we present a new fire simulator based on a realistic physical
model of heat development and heat transport in urban fires. It allows to simulate
three different ways of heat transport (radiation, convection, direct transport) and
the influence of wind. The protective effects of spraying water on non-burning
buildings is also simulated, thus allowing for more strategic and precautionary be-
havior of rescue agents. Our experiments showed the simulator to create realistic
fire propagations both with and without influence of fire brigade agents.

1 Introduction

The RoboCupRescue Simulation League aims at simulating large scale disasters and
exploring new ways for the autonomous coordination of rescue teams [2]. These goals
are socially highly significant and feature challenges unknown to other RoboCup leagues,
like long-term planning of rescue missions involving heterogenous agents. Moreover,
the environment these agents act in is a large-scale simulation which is both highly
dynamic and only partially observable by a single agent.

It is due to the latter features of the environment that real disaster situations seldomly
can be predicted and, in turn, are often not adequately dealt with when they actually occur.
Therefore, it must be one of the main goals of the RoboCupRescue Simulation League
to develop realistic disaster simulators that allow agents to develop realistic mission
plans. In this paper, we describe a new fire simulator that progresses towards this goal
while not exceeding the run-time limitations of the RoboCupRescue simulation system.
Previous approaches to firesimulation outside the RoboCupRescue domain are reviewed
in an extended version of this paper [4].

The RoboCupRescue simulation system is a modular framework based on a Geo-
graphic Information System (GIS) describing a city map, and a kernel which acts as a
communication hub and integrator of changes to the world model as proposed by the
various agents and simulators connected to the kernel. (In the extended paper [4] we
describe a direct communication interface for simulators that allows to share internal
physical data and thus to model complex interactions, like fire causing the collapse of a
house, without overloading the kernel communication channels).

Some of the new features of the introduced simulator are the calculation of heat
development in burning houses as well as the simulation of three significant ways of
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heat transportation between buildings. Especially, the influence of wind on the spread
of fire is taken into account. Another step towards greater realism is achieved by the
possibility to limit fire spread by “preemptive extinguishment”, i.e. the spraying of
water on non-burning buildings in order to temporarily protect them from catching fire.
These new features do not only add to the realism of the simulation, but will also allow
rescue agents to act more strategically and precautionary than before. Interacting with
an adequate earthquake/collapse simulator, even the starting of fires can be simulated
without need for artifical “ignition points” as used in the current simulation, hence
supporting the automated generation of realistic disaster situations of variying difficulty.

The remainder of this paper is structured as follows. Section 2 introduces the phys-
ical theory underlying the simulation, whereas section 3 describes its implementation.
Section 4 demonstrates some of the new features of the simulator and section 5 provides
an outlook to further developments.

2 Fire Simulation

2.1 Physical Theory

Since fire produces and is ignited by heat, we have to familiarise our self’s with heat
and heat transportation. The following paragraph presents simplified relations, for more
detail see the extendet version of this paper [4].

The temperature of an object is a measurement for the inherent heat energy depending
on the objects heat capacity. The heat capacity describes the change of temperature in
dependency from the energy change. Whenever two objects with different temperatures
are joined, heat energy is transported from the warmer to the colder (figure 1a). The
amount of transfered energy is proportional to the temperature difference and the expo-
sition duration. This effect is called direct transport. Objects are emitting respectively
receiving heat energy even when they are not directly connected. Objects are emitting
heat radiation in dependency from there temperature, which is nothing else then light,
typically in the infrared spectrum and hence energy. Other objects sharing a line of sight
with the emitter are receiving a part of this energy, depending on the distance and the size

(a) (b) (c)

Fig. 1. Three ways of heat transportation: direct heat transport (a), two bodies (B and C) exchang-
ing heat by area A, radiation (b), the receiver absorbs the energy from beams hitting it’s surface
and convection (c), heat is transported by air. (The more complex distance and layer computations
shown in fig. (a) are described in the extended paper [4])



476 T.A. Nüssle, A. Kleiner, and M. Brenner

of the exposed areas (figure 1b). A third kind of heat transportation, called convection,
can take place within gases. When a region of gas is warmed up its volume increases
and therefore its mass density decreases. The result is an ascending of warmer volumes
while colder descend(figure 1b).

3 Implementation

Due to practical reasons, the amount of computing power in the RoboCupRescue League
is limited on both the server and the client side. Each simulation connecting to the
kernel has to finish all calculations and network communication within a discrete time
step of 500 milliseconds. Therefore efficient algorithms are a necessary requirement.
Particularly, if simulators mutually depend on the results of their calculations, the worst
case cost must never exceed the given time constraint. Computational complexity of
a simulation is usually reduced by an appropriate discretization of the world. In the
RoboCupRescue domain the discretization is already given by the level of detail of
the provided GIS data. This data is distributed in entities, such as buildings, streets
and civilians (of which currently only buildings are relevant for the fire simulation).
Buildings are defined by a polygon describing their footprint, the number of floors, the
area at ground level as well as the type of construction, i. e. steel frame, reinforced
concrete or wood. As global properties, the wind direction and speed are provided [3].
Since this model does not suffice for the simulation of all physical effects, the simulator
additionally implements a discrete model of the air temperature, that will be described
in the subsequent section.

3.1 Discrete Model

The high complexity of urban fires, i.e. due to unpredictable air streams and an inhomo-
geneous distribution of fuel, can only be simulated with strong restrictions. Complex gas
flux calculations are beyond question as well as air-flow pattern computation considering
the influence of buildings. We restricted the model to two dimensions, like the rescue
domain itself. The O2 concentration level is assumed as constant and as sufficiently
available for combustion.

The simulation of heat radiation is carried out by an efficient approximation. If the
total amount of heat energy emitted by radiation from one building to another is known,
a simple and fast to process equation can be used:

Tj(t + 1) = Tj(t) +

(
−radiation(j) +

∑
i∈B,i �=j

pi,j · radiation(i)

)
· Δt

Γj
(1)

where Tj(t) is the temperature of building j, pi,j the percentage of radiation from
building i that contributes to j, Γj the heat capacity of j, and Δt is the duration of a
time step in the simulated world. Table 1 provides reasonable values of mass densities,
whereas the specific heat capacity values for different construction types are currently
set by the user in the configuration file. From these values the building specific heat
capacity Γj is calculated.
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Fig. 2. Randomly emitted rays: The percentage of rays hitting the target building determines the
amount of transfered energy by radiation

Equation 1 is based on the assumption that the temperature is constant during a
simulation interval and that transportation takes place only between cycles. The value of
each pi,j is not calculated completely but randomly sampled with a Monte Carlo method.
Each building is broken down into its outer walls as they are provided by the GIS. For each
wall a number of random rays originating from this wall are generated. The percentage of
rays emitted from building i that hit building j is taken as a stochastic approximation for
pi,j (see figure 2). Since the mapping of pi,j is assumed to be constant, these calculations
are done offline during the simulation start-up. To enhance the performance, a few
improvements have been implemented. The pi,j data for the loaded map is written to
hard disc and linked with a hash code that is calculated from the building’s unique
longitude and latitude. Buildings with a distance exceeding a threshold, which can be
set in the configuration file, are left out of the calculation. The expected error from
this simplification is comparably low, since the energy density from a point source at
distance r is proportional to 1

r2 and thus negligible. The radiation function radiation(i)
is calculated utilising the Stefan-Boltzmann-Law.

The simulation of direct heat transport and convection is limited to a single layer
situated above the ground. Higher layers are ignored because we assume them to have
a small effect regarding the emitting building. The layer is implemented by a two di-
mensional grid that discretizes the air’s continuous heat distribution. The resolution of
the grid is currently set to five meters, but may be set differently in the config file of the
simulator. The standard ambient temperature is 20◦ Celsius which is the initial default
value for all cells.

The update of a the temperature si(t) of air cell i with respect to set of cells R
within the air transmission range of cell i, and buildings Bi intersecting with cell i, is
calculated by:

si(t + 1) = si(t) +

⎛

⎜⎝

∑
j∈R,j �=i

sj(t) · wi,j +
∑

u∈Bi

Tu(t) · au,i

∑
j∈R,j �=i

wi,j +
∑

u∈Bi

au,i
− si(t)

⎞

⎟⎠ · la · Δt(2)
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Table 1. Typical energy release rates for city buildings taken from Chandler’s investigation [1].
N denotes the number of floors in a building

Type of Fuel Fuel Load (GJ/hectare) Mass Density (Kg/hectare)

Dwellings, offices, schools 3,700-9,400 202,000-504,000
Apartments 8,900 ·N 490,000 ·N
Shops 9,400-18,800 500,000-1,010,000
Industrial & Storage 5,700-57,000 or more 300,000-3,000,000 or more

where wi,j weighs the temperature influence on cell i from surrounding cells according
to their distance, au,i weighs the influence of buildings Bi intersecting with air cell i,
Tu(t) is the temperature of building u and la is the heat exchange coefficient. In order
to keep the original temperature values from time step t in memory, the implementation
of formula 2 is carried out by employing two arrays that are swapped after each update.

Besides the air-to-air and building-to-air temperature exchange, also the air-to-
building exchange has to be considered. Therefore an equation similar to equation 2
is introduced that accounts for the different heat capacities of buildings:

Tu(t + 1) = Tu(t) +

⎛

⎜⎝

∑
i∈Su

si(t) · au,i

∑
i∈Su

au,i
− Tu(t)

⎞

⎟⎠ · lb · Δt

Γu
(3)

where Tu(t) is the temperature of building u, Γu is the heat capacity of u, lb is the heat
exchange coefficient and Su is the set of all air cells intersecting with u.

Furthermore every air cell loses heat to the atmosphere due to convection. The amount
of heat loss for each cell si(t) is approximated by:

si(t + 1) = T0 + (si(t) − T0) · clossΔt (4)

where T0 denotes the ambient temperature and closs is a constant approximating a
realistic average degree of heat loss.

The effect of global wind is simulated by shifting air cells accordingly to wind
velocity and direction on the grid. However, since it is possible that the newly calculated
position will not match the grid discretization, grid values, intersecting the shifted cell,
have to be recalculated accordingly. The new value of a grid cell is calculated from the
weighted average of all cells overlapping due to the shift.

Every building with a temperature above the ignition point and sufficient fuel is
considered as burning. Then, during each cycle, a certain percentage of its initial fuel
is transformed to energy and added to the building’s energy value. Empirical data of
fuel densities, as presented in table 1, is utilized for the calculation of the initial fuel
values.

3.2 Extinguishing Fires

The action extinguish building in the RoboCupRescue domain is realized, for both extin-
guishing and preemptive extinguishing, by increasing an internal value for each building
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that represents the amount of water used on it by fire brigades. The fire simulator ensures
that all necessary preconditions for this action are met, which are a sufficient amount
of water in the fire brigade’s tank, a position close enough to the fire and a maximum
amount of water that may be emitted per round.

From the amount of water in a building a fraction, linearly proportional to the tem-
perature of the building, is considered to be vaporizing and by this cooling the building
during each cycle. The heat energy reduction is calculated by the product of the amount
of vaporizing water and its vaporization constant.

Like in reality, preemptive cooling will protect buildings from catching fire tem-
porarily but will not make them completely fire-proof as long as surrounding houses
are burning. Thus, preemptive extinguishment offers new strategic possibilities for fire
brigades but does not relieve them of the duty to stop fires completely.

4 Experiments

Due to the fact that real data of urban fires is hardly available and if so, is specific to a
particular fuel distribution and wind, a close-to-reality evaluation seems to be impossible.
Therefore we present a visualization of the new fire simulator’s general behavior and
compare it to that of the old one. In comparison to the old simulator, which tends to
create a circular wall of fire, the new simulator spreads fire in a more realistic way
(see figure 3). The dynamic fire propagation matches the complex behavior of real
urban fires. As shown in figure 3, the fire spread of the new simulator depends on the
density of buildings situated in the area. A high density of buildings leads to a rapid
fire spread, whereas larger open spaces behave as fire barriers. The new feature allows
fire brigades to predict the most likely fire spread by reasoning about the fire danger
of certain districts. Prediction makes it possible to concentrate forces on jeopardized
locations and to naturally exploit open spaces. For competitions, the fire barrier effect is
not always wanted since an unextinguished fire should continue to grow in order to make
a difference between successful and unsuccessful agents. This barrier can be overstepped
by the activation of the wind feature included in the new simulator.

In real disaster situations, it might happen that the number of fire brigades is not
sufficient for extinguishing a certain fire but may be high enough to control its spread.
This is usually accomplished by preemptively watering non-burning buildings close
to the fire border (“preemptive extinguishment”). In the new simulator, the amount of
water used on a building will accumulate, then vaporize and thus cool the building. If
the building is not yet burning this may even prevent it from catching fire. This new
feature is visualized by the series of pictures in figure 4. As can be seen by the lower
series, preemptive extinguishing of the diagonal row of buildings in the center prevents
the ignition of all buildings behind.

In the RoboCupRescue domain fire brigades are allowed to use more than one nozzle
during one extinguish command. By this it is possible to distribute water on more than
one building at the same time (but note that the amount of water maximally allowed to
be emitted during one cycle remains the same). Since extinguishing an ignited building
requires virtually always more water than a single fire brigade can emit, this feature
offered no tactical advantage so far. Together with the new feature of preemptively
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(a) (b) (c)

Fig. 3. From top to bottom: progress of fire spread of the new simulator, displayed in the internal
model (a), in the RoboCupRescue world model (b) and compared to the progress of the old
simulator (c)

extinguishing, however, it is possible for a single fire brigade to protect multiple buildings
from ignition, since to protect a building requires less water than to extinguish it.

The simulator’s runtime behavior has been evaluated on the three standard city maps
used for the competition, which are Kobe, Virtual City and Foligno. On each map, we
simulated, under the same settings, ten times a fire outbreak for a duration of 300 cy-
cles. The simulations where carried out within a Java virtual machine (Blackdown Java
HotSpot 1.4.1) on an AMD Athlon 700 MHz computer running a Linux operation sys-
tem. Table 2 summarizes the average computing time for one cycle of the simulation on
all of the three maps.Although this measurements do not include network communication



Approaching Urban Disaster Reality: The ResQ Firesimulator 481

Fig. 4. From left to right: the new feature preemptive extinguishing. Upper row: fire spread without
prevention. Lower row: fire spread prevention due to watering the diagonal building row in the
center (blue) in advance

Table 2. Runtime measurements of the new simulator. The first row provides the employed city
map, whereas the second row provides it’s complexity, denoted by the number of buildings and air
cells involved in the simulation. The other rows provide average, standard deviation, maximum
and minimum of calculation time within one cycle of the simulation

Map Complexity Average Standard Deviation Max Min

kobe 733 buildings, 5896 cells 10.6ms 7.8ms 73ms 6ms
virtual city 1269 buildings, 6972 cells 12.8ms 8.1ms 85ms 8ms

foligno 1085 buildings, 17214 cells 24ms 9.6ms 85ms 17ms

time, it can clearly be seen that the new simulator complies with the domain’s time
constraint of 500ms.

5 Outlook

The introduced fire simulator makes a clear step towards close-to-reality simulation of
urban disasters. However, due to the high complexity of urban fire spread, this step is
just the beginning. With increasing computing power we will be able to contribute more
detail to the domain: Firstly, the simulation of fire could be carried out within entities
smaller than houses, such as floors and rooms. This feature would make it easier for fire
fighters to decide which part of the building they should extinguish in order to avoid fire
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trespassing to other buildings. Secondly, the air grid model could be realized in three
dimensions, leading to a more realistic simulation of fire propagation, especially in the
case of higher buildings. Thirdly, the simulator could be extended by the simulation of
smoke trails, which have a physical and psychological effect on civilians.

Particularly the first and third improvement are likewise fundamental to other simu-
lators in the domain. The collapse and civilian simulator, for example, might implement
more realistic responses of buildings and civilians to fire. The introduced fire simulator
has been prepared for being extended towards those improvements.
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Abstract. We address the problem of merging multiple noisy maps in
the rescue environment. The problem is tackled by performing a stochas-
tic search in the space of possible map transformations, i.e. rotations
and translations. The proposed technique, which performs a time vari-
ant Gaussian random walk, turns out to be a generalization of other
search techniques like hill-climbing or simulated annealing. Numerical
examples of its performance while merging partial maps built by our
rescue robots are provided.

1 Introduction

One of the main tasks to be carried out by robots engaged in a rescue scenario
is to produce useful maps to be used by human operators. Among the charac-
teristics of such environment is the lack of a well defined structure, because of
collapsed parts and debris. Robots are supposed to move in uneven surfaces and
to face significant skidding while operating. It follows that maps generated using
odometric information and cheap proximity range sensors turn out to be very
inaccurate. In the robotic systems we have developed this aspect is even more
emphasized by our choice to implement simple mapping algorithms for their real-
time execution on devices with possible low computational power [1],[2]. One of
the possible ways to overcome this problem is to use multiple robots to map
the same environment. The multi-robot approach has some well known advan-
tages in itself, most notably robustness [3]. In the rescue framework, multi-robot
systems are even more appealing because of the possibility to perform a faster
exploration of the inspected area, thus increasing the chances to quickly locate
victims and hazards. As the goal is to gather as much information as possible, it
is evident that the maps produced by different robots will only partially overlap,
as they are likely to spread around in different regions and not to stick together
for the whole mission. It is then a practical issue of enormous importance to
merge together such partially overlapping maps before they are used by the hu-
man operators. To solve the map matching problem we have borrowed some
ideas from a recent randomized motion planning algorithm recently developed
by one of the authors which have turned out to work very efficiently [4],[5]. The
algorithm performs a Gaussian random walk, but its novel aspect is that it up-
dates its distribution parameters so that it can take advantage from its recent
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history. Section 2 formally defines the problem and describes the algorithmic
machinery used to solve it, together with convergence results. Next, section 3
offers details about the implementation of the proposed technique and numerical
results. A final discussion is presented in section 4.

2 Theoretical Foundations

We start with the formal definition of a map.

Definition 1. Let N and M be two positive real numbers. An N × M map is a
function

m : [0, N ] × [0, M ] → R.

We furthermore denote with IN×M the set of N × M maps. Finally, for each
map, a point from its domain is declared to be the reference point. The reference
point of map m will be indicated as R(m).

The function m is a model of the beliefs encoded in the map. For example,
one could assume that a positive value of m(x, y) is the belief that the point
(x, y) in the map is free, while a negative value indicates the opposite. Moreover,
the absolute value indicates the degree of belief. The important point is that we
assume that if m(x, y) = 0 no information is available. From now on, for sake
of simplicity, we will assume N = M , but the whole approach holds also for
N �= M .

Definition 2. Let x,y and θ be three real numbers and m1 ∈ IN×N . We define
the {x, y, θ}-transformation to be the functional which transforms the map m1
into the map m2 obtained by the translation of R(m1) to the point (x, y) followed
by a rotation of θ degrees. We will indicate it as Tx,y,θ, and we will write m2 =
Tx,y,θ(m1) to indicate that m2 is obtained from m1 after the application of the
given {x, y, θ}-transformation.

Definition 3. A dissimilarity function ψ over IN×N is a function

ψ : IN,N × IN,N → R
+ ∪ {0}

such that

– ∀m1 ∈ IN,N ψ(m1, m1) = 0
– given two maps m1 and m2 and a transformation Tx,y,θ, then ψ(m1,

Tx,y,θ(m2)) is continuous with respect to x, y and θ.

The dissimilarity function measures how much two maps differ. In an ideal
world, where robots are able to build two perfectly overlapping maps, their
dissimilarity will be 0. When the maps cannot be superimposed the ψ function
will return positive values.

Having set the scene, the map matching problem can be defined as follows.



Stochastic Map Merging in Rescue Environments 485

Given m1 ∈ IN,N , m2 ∈ IN,N and a dissimilarity function ψ over IN×N ,
determine the {x, y, θ}-transformation T(x,y,θ) which minimizes

ψ(m1, T(x,y,θ)(m2)).

The devised problem is clearly an optimization problem over R
3. Traditional

AI oriented techniques for addressing this problem include genetic algorithms,
multipoint hill-climbing and simulated annealing (see for example [6]). We hereby
illustrate how a recent technique developed for robot motion planning can be
used to solve the same problem. In particular, we will also show that multipoint
hill-climbing and simulated annealing can be seen as two special cases of this
broader technique.

From now we assume that the values x, y and θ come from a subset of S ⊂ R
3

which is the Cartesian product of three intervals. In symbols,

(x, y, θ) ∈ S = [a0, b0] × [a1, b1] × [a2, b2].

Also, to simplify the notation we will often indicate with s ∈ S the three pa-
rameters which identify a transformation, and we will then write Ts. Before
moving into the stochastic part, we define a probability space [7] as the triplet
(Ω,Γ, η) where Ω is the sample space, whose generic element is denoted ω. Γ is
a σ − algebra on Ω and η a probability measure on Γ .

Definition 4. Let {f1, f2, . . .} be a sequence of mass distributions whose events
space consists of just two events. The random selector induced by {f1, f2, . . .}
over a domain D is a function

RSk(a, b) : D × D → D

which randomly selects one of its two arguments according to the mass distribu-
tion fk.

Definition 5. Let ψ be a dissimilarity function over IN×N , and RSf be a ran-
dom selector over S induced by the sequence of mass distributions {f1, f2, . . .}.
The acceptance function associated with ψ and RSf is defined as follows

Ak : S × S → S

Ak(s1, s2) =
{

s2 if ψ(m1, Ts2(m2)) < ψ(m1, Ts1(m2))
RSk(s1, s2) if ψ(m1, Ts2(m2)) > ψ(m1, Ts1(m2))

From now on the dependency of A on ψ and RSf will be implicit, and we
will not explicitly mention it. We now have the mathematical tools to define
Gaussian random walk stochastic process, which will be used to search for the
optimal transformation in S.

Definition 6. Let tstart be a point in S, and let A be an acceptance function.
We call Gaussian random walk the following discrete time stochastic process
{Tk}k=0,1,2,3,...
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{
T0(ω) = tstart

Tk(ω) = A(Tk−1(ω), Tk−1(ω) + vk(ω)) k = 1, 2, 3, . . .
(1)

where vk(ω) is a Gaussian vector with mean μk and covariance matrix Σk.

From now on the dependence on ω will be implicit and then we will omit to
indicate it.

Assumption. We assume that there exist two positive real numbers ε1 and ε2
such that for each k the covariance matrix Σk satisfies the following inequalities:

ε1I ≤ Σk ≤ ε2I. (2)

where the matrix inequality A ≤ B means that B − A is positive semidefinite.
The following theorem proves that the stochastic process defined in 1 will even-
tually discover the optimal transformation in S. The proof is omitted for lack of
space.

Theorem 1. Let ŝ ∈ S be the element which minimizes ψ(m1, Ts(m2)), and
let {T0, T1, . . . , Tk} the sequence of transformations generated by the Gaussian
random walk defined in equation 1. Let T k

b be the best transformation generated
among the first k elements, i.e. the one yielding the smallest value of ψ. Then
for each ε > 0

lim
k→+∞

Pr[|ψ(m1, T
k
b (m2)) − ψ(m1, Tŝ)(m2))| > ε] = 0 (3)

Algorithm 1 depicts the procedure used for exploring the space of possible trans-
formations accordingly to the stochastic process illustrated. As the optimal value

1: k ← 0, tk ← tstart, Σ0 ← Σinit, μ0 ← μinit

2: c0 ← ψ(m1, Ttstart(m2)
3: loop
4: Generate a new sample s ← xk + vk

5: cs ← ψ(m1, Ts(m2)
6: if cs < ck OR RD(tk, s) = s then
7: k ← k + 1, tk ← s, ck = cs

8: Σk ← Update(tk, tk−1, tk−2, . . . , tk−M )
9: μk ← Update(xk, tk−1, tk−2, . . . , tk−M )

10: else
11: discard the sample s

Algorithm 1: Basic Gaussian Random Walk Exploration algorithm

of the dissimilarity is not known, practically the algorithm will be bounded to
a certain number of iterations and it will return the transformation producing
the lowest ψ value.
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We wish to outline that this algorithm is a modification of the Adaptive Ran-
dom Walk motion planner we have recently introduced [4]. The fundamental dif-
ference is that in motion planning one has to explore the space of configurations
in order to reach a known target point, while in this case this information is
not available.

3 Numerical Results

The results presented in this section are based on real-world data collected with
the IUB rescue robots. A detailed description of the robots is found in [1]. We
describe how we implemented the algorithm described in section 2 and we sketch
the results we obtained. In our implementation a map is a grid of 200 by 200
elements, whose elements can assume integer values between -255 and 255. This is
actually the output of the mapping system we described in [2]. According to such
implementation, positive values indicate free space, while negative values indicate
obstacles. As anticipated, the absolute value indicates the belief, while a 0 value
indicates lack of knowledge. The function ψ used for driving the search over the
space S is defined upon a map distance function borrowed from picture distance
computation [8]. Given the maps m1 and m2, the function is defined as follows

ψ(m1, m2) =
∑

c∈C
d(m1, m2, c) + d(m2, m1, c)

d(m1, m2, c) =

∑
m1[p1]=c min{md(p1, p2)|m2[p2] = c}

#c(a)

where

– C denotes a set of values assumed by m1 or m2,
– m1[p] denotes the value c of map m1 at position p = (x, y),
– md(p1, p2) = |x1 − x2| + |y1 − y2| is the Manhattan-distance between p1 and

p2,
– #c(m1) = #{p1|m1[p1] = c} is the number of cells in m1 with value c.

Before computing D, we preprocess the maps m1 and m2 setting all positive
values to 255 and all negative values to -255. In our case then C = {−255, 255},
i.e., locations mapped as unknown are neglected. A less obvious part of the linear
time implementation of the picture distance function is the computation of the
numerator in the d(m1, m2, c)-equation. It is based on a so called distance-map
d-mapc for a value c. The distance-map is an array of the Manhattan-distances
to the nearest point with value c in map m2 for all positions p1 = (x1, y1):

d-mapc[x1][y1] = min{md(p1, p2)|m2[p2] = c}
The distance-map d-mapc for a value c is used as lookup-table for the computa-
tion of the sum over all cells in m1 with value c. Figure 1 shows an example of a
distance-map. Algorithm 2 gives the pseudocode for the three steps carried out
to built it, while the underlying principle is illustrated in 2.
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= map cell with value c

3 2 2 1 2 3 4 5
2 1 1 0 1 2 3 4
1 0 0 0 0 1 2 3
2 1 1 1 1 0 1 2
2 1 0 1 1 0 0 1
3 2 1 0 1 0 0 1
3 2 1 0 0 0 1 2
4 3 2 1 1 1 2 3

d-mapc

Fig. 1. A distance-map d-mapc

1: for y ← 0 to n − 1 do
2: for x ← 0 to n − 1 do
3: if M(x, y) = c then
4: d-mapc[x][y] ← 0
5: else
6: d-mapc[x][y] ← ∞
7: for y ← 0 to n − 1 do
8: for x ← 0 to n − 1 do
9: h ← min(d-mapc[x − 1][y] + 1, d-mapc[x][y − 1] + 1)

10: d-mapc[x][y] = min(d-mapc[x][y], h)
11: for y ← n − 1 downto 0 do
12: for x ← n − 1 downto 0 do
13: h ← min(d-mapc[x + 1][y] + 1, d − mapc[x][y + 1] + 1)
14: d-mapc[x][y] = min(d-mapc[x][y], h)

Algorithm 2: The algorithm for computing d-mapc

It can be appreciated that to build the lookup map it is necessary just to scan
the target map for three times. In this case it is possible to avoid the quadratic
matching of each grid cell in m1 against each grid cell in m2.

While implementing the Gaussian random walk algorithm one has to choose
how to update μk, Σk and the sequence of mass distributions {f1, f2, . . .} used
to accept or refuse sampled transformation which lead to an increment in the
dissimilarity function ψ. For the experiments later illustrated we update μk at
each stage to be a unit vector in the direction of the gradient. Only two different
Σk matrices are used. If the last accepted sample was accepted, Σk = 0.1I,
where I is the 3×3 identity matrix. This choice pushes the algorithm to perform
a gradient descent. If the last sample has not been accepted, Σk = 10I. This
second choice gives the algorithm the possibility to perform big jumps when it
has not been able to find a promising descent direction. The random decisor
accepts a sampled transformation s with probability
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Fig. 3. Subfigures a and b illustrate the maps created by two robots while exploring two
different parts of the same environment. To make the matching task more challenging
the magnetic compass and the odometry system were differently calibrated. Subfigure
c shows the best matching found after 200 iterations of the search algorithm

2(BD − ψ(m1, Ts(m2))
BD

where BD is the best dissimilarity value generated up to current step. Figure 3
illustrates the result of the search procedure.

In particular, subfigure d shows the trend of the dissimilarity function for the
sampled transformation generated by the algorithm. Many recurrent gradient
descents stages can be observed, interleaved by exploring stages where wide
spikes are generated as a consequence of samples generated far from the point
currently being explored. In the devised example 200 iterations are enough to
let the search algorithm find a transformation almost identical to the best one
(which was determined by applying a brute force algorithm).

4 Conclusions

We addressed the problem of map fusion in rescue robotics. The specific problem
is to find a good matching of partially overlapping maps subject to a significant
amount of noise. This means finding a suitable rotation and translation which
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optimize an overlapping quality index. It is then required to perform a search
in order to detect the parameters which optimizes a quality index. We intro-
duced a theoretical framework, called Gaussian random walk. We outlined that
it generalizes some well known approaches for iterative improvement. In fact, it
incorporates a few parameters that when properly tuned can result in techniques
like hill-climbing or simulated annealing. The novel aspect of the proposed al-
gorithm is in the possibility to use time variant random distributions, i.e. the
distributions’ parameters can be updated and tuned accordingly to the already
generated samples. It has in fact to be observed that most of the random based
approaches use stationary distributions, or distributions whose time dynamics
is not influenced by the partial results already obtained.

The proposed algorithm has been applied for fusing maps produced by the
robots we are currently using in the Real Rescue competition. Preliminary re-
sults confirm the effectiveness of the proposed technique, both in terms of result
accuracy and computation speed.
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Abstract. Orpheus mobile robot is a teleoperated device primarily designed for 
remote exploration of hazardous places and rescue missions. The robot is able 
to operate both indoors and outdoors, is made to be durable and reliable. The 
robot is remotely operated with help of visual telepresence. The device is con-
trolled through advanced user interface with joystick and head mounted display 
with inertial head movement sensor. The functionality and reliability of the sys-
tem was tested on Robocup Rescue League 2003 world championship in Italy 
where our team placed on 1st place. 

1   Introduction 

The Orpheus robotic system have been developed in our department from the begin-
ning of year 2003. The project is a natural continuation of “mainly research” 
U.T.A.R. project [1], [2], [3] and is intended as a practically usable tool for rescue  
 

 

Fig. 1. Orpheus 

teams, pyrotechnists and firemen. The Orpheus robotic system consists of two main 
parts: Orpheus mobile robot itself and operator’s station. 
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2   Mobile Robot Description 

The robot itself (see Fig. 1) is formed by a box with 430x540x112mm dimensions and 
four wheels with 420 mms diameter. 

The maximum dimensions of the robot are 550x830x410mm. The weight of the 
fully equipped robot with batteries is 32.5Kg. The mechanical construction of the 
robot is made by aluminium. 

2.1   Locomotion Subsystem 

Our department has developed a new Skid-steered Mobile Platform (SSMP) for the 
Orpheus mobile robot. The SSMP is intended to be both indoor and outdoor device, 
so its design was set up for this purpose. Another our important goal was to design the 
device easy-to-construct because of our limited machinery and equipment. 

Finally we decided to make the platform like shown in Fig 2. The base frame of 
SSMP is a rectangular aluminium construction. Two banks of two drive wheels are 
each linked to an electrical motor via sprocket belt. The two drive assemblies for the 
left and right banks are identical but they operate independently to steer the vehicle. 
The motors can be driven in both directions, thus causing the vehicle to move for-
ward, backward, right or left.  Motors are equipped with incremental encoders and 
can be controlled either in velocity loop.  

Two 24V DC motors with integrated incremental encoders and three-stage plane-
tary gearheads are used. 

 

Fig. 2. Simplified Scheme of the Locomotor 

2.2   Electronics 

Most of the electronics is developed on our department. See Fig. 3 for a photo of the 
electronic subsystem of the Orpheus mobile robot. 

TRANSMISSION BELTS 

MOTOR2 
MOTOR1 
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Fig. 3. Interior of the Orpheus 

Microcontroller System 
The Orpheus microprocessor system consists of  8 microcontrollers. Atmel AVR 
micro and Mega 8-bit RISC microcontrollers were used. The processors communicate 
by RS-232 serial interface using TTL levels. 

Communication Processor - this processor serves to make an interface between 
ELPLRO datamodem and main processor. The main purpose of this processor is to 
transform the messages to and from the datamodem.  

Main Processor - the main processor controls the whole system. It receives messages 
from the operator (through datamodem and communication processor). The architec-
ture is master-slave, so the processor cyclically asks the other processors for the data.  

Thermosensor Controller - the processor makes an interface between the thermosen-
sor’s RS-232 protocol and robot’s internal RS-232 line. It is necessary because the 
thermosensor’s protocol is too easy and has not any ID – responds to each message.  

Servo  Controller - this processor makes 6-channel standard modeller servo control-
ler. The pulse-width may vary from 1.0 to 2.0 ms, is repeated each 20ms and may be 
set for each channel. 

LCD  Controller - four databit transfer mode for standard Hitachi LCD drivers is 
implemented in this microcontroller. The used LCD has four lines with 20 characters 
each, but the driver is universal and may be reconfigured for different LCDs.  

Camera Switch and Analog Measurement Processor - Up to four cameras may be 
connected to the system. The camera switch board may switch among them. The 
processor also may be used for analog-to-digital conversion of various analog signals.  

Motor Controllers - To control wheel velocities and direction a control and power 
switching board was developed. It consists of  PID controller, H-bridge controller and 
full MOSFET H-bridge. There is one channel for each motor. 
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Fig. 4. Spatial Placement of Cameras 

2.3   Sensory Subsystem 

The robot contains three cameras. Their spatial placement is shown on Fig. 4. The 
main camera is on a sensory head. It has two degrees of freedom – may move left to 
right and up to down. The movements limits are similar to the ones of a human head.  

The camera is a sensitive high resolution color camera with Sony chip. The other 
two cameras are black&white high-sensitive cameras with one degree of freedom. 
The front camera has IR light to work in complete darkness. 

 

Fig. 5. The Sensory Head with Main Camera, Directional Microphone and Thermosensor 

An infrared thermosensor Raytek Thermalert MID is used for object temperature 
measurement.  The sensor provides three independent temperatures – the object tem-
perature measured by IR, the sensory head temperature (the sensor measures the dif-
ference between temperatures in principle, so the derivation of this temperature is 
crucial to know if the measurement is precise), and the temperature of the electronics 
box, which we use to measure the temperature inside the robot. The thermosensor is 
placed beside the main camera and rotates with it (see Fig. 5). It causes the tempera-
ture of the object in the center of the camera picture is measured. 

Standard walkie-talkie is used for one-directional audio transmission. One of two 
microphones displaced on the robot may be used during a mission. 
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The first one is integrated in the sensory head (see Fig. 5) and is directional. Since 
it moves with the main camera, the operator can hear the sounds from the direction 
he/she is looking to. The operator also may use the second – omnidirectional – micro-
phone placed on the body of the robot. 

We have made several experiments with two microphones and stereo audio percep-
tion on our older reconnaissance robotic system U.T.A.R. and we plan to use it on 
Orpheus as well, since it seems to be much more natural for the operator to have ste-
reo perception similar to real-world than one omnidirectional microphone with per-
ception axes parallel to the optical one. 

It also seems to be very profitable to use electronically amplified microphones with 
user-variable gain.  

2.4   Communication 

Two independent devices are used for wireless communication with Orpheus: analog 
video transmitter for one-way video transmission and digital datamodem for bi-
directional data communication between the robot and operator’s station. 

 

Fig. 6. Orpheus Operator’s Station for Telepresence Control 

3   Operator’s Station 

The operator’s station for remote control of the mobile robot consists of several main 
parts: notebook, Imperx PCMCIA grabber, SAITEK Cyborg 3D Gold joystick, head 
mounted display: I-Glasses SVGA, INTERTRAX 2 headtracker – Intersense, Elpro 
Datamodem, video-receiver. 

3.1   User Interface 

The robot is controlled by operator with help of so called visual telepresence (see Fig. 
6). The operator has a head mounted display with inertial head movement sensor. 
His/her movements are measured, transformed and transmitted to Orpheus. The user 
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interface of Orpheus mobile robot system is programmed in C++ programming lan-
guage under Microsoft Windows XP system.  

The main advantage of the used user interface is that the digital data may be easily 
displayed over the video, so the operator does not need to switch among displays. The 
principle is that the added data are painted to small dark windows and these windows 
are blitted to the video image. The windows are semi-transparent, so the objects in 
video (or at least some of them) can be seen through the windows. 

In the following text the small windows with additional data are called as displays. 
Three main windows with different level of displayed data were designed. The full 

view, the quick view and the empty view. 

Full View 
All the accessible data are displayed on this display (see Fig. 7).  

In the center part there is a Head Mounted Display Heading Display. This display 
shows the relative rotation difference between the camera and the body of the robot. 
This difference is derived from the operator’s head movements.  

 

Fig. 7. Full view 

 

Fig. 8. Quick view 
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The System Message Window represents the system messages like overall system 
status, list of devices currently connected to the system (joysticks, grabber, etc.). This 
is a tool to show  events that  happen once  rather than  continuous  display  (as against 
all of the other displays). The data are expressed as a text messages that roll on an 
“infinity paper roll”.  

From our experiments and testing it became obvious the full view is too compli-
cated for operator in most standard situations and the operator may become over-
loaded by the amount of not-so-important data. For this reason a more simplistic 
quick view was developed (see Fig. 8). It contains only the most important data 
needed for the operator: user interface status display, HMD heading cross, and several 
indicators. 

4   Conclusions and Perspectives 

The system proved to work reliably during five-days period of the Robocup 2003 
competition. Although the operator (author) had not preceeding experience of the 
system’s remote control (the whole system was constructed in less than five months 
and they was no time for training) the control by visual telepresence was precise and 
reliable. It may be said the operator has a good  view of the situation in the robot’s 
environment. The control of camera movements by operator’s head proved to be both 
intuitive and reliable. The design of the user interface including the virtual HUDs 
placed over the video image in head mounted display seems to be a good way to dis-
play important digital data to operator. 

The Orpheus robotic system will be significantly improved in future. The new ver-
sion marked as Orpheus-X1 is already in progress. The improvements include me-
chanical construction (see Fig. 9), electronics and user interface. 

 

Fig. 9. Orpheus-X1with 2-DOF manipulator 
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Abstract. In this paper, the problem of determining if a population of
mobile robots is able to travel from an initial configuration to a target
configuration is addressed. This problem is related with the controlla-
bility of the automaton describing the system. To solve the problem,
the concept of navigation automaton is introduced, allowing a simplifi-
cation in the analysis of controllability. A set of illustrative examples is
presented.

1 Introduction

Robotic navigation is a central topic of research in robotics, since the ability that
a robot has to accomplish a given task may greatly depend on its capability to
navigate in the environment. The related literature presents numerous works on
the subject, and proposes different navigation strategies, such as Markov Models
[1], dynamic behaviours [2] or Petri Nets [3].

In the last decades a great effort has been addressed to the subject of multi-
robot systems. A common approach to the multi-robot navigation problem is the
extension of known strategies for single robot navigation to the multi-robot case,
for which there are several examples presented in the literature [4]. However, in
the multi-robot navigation framework, new topics of investigation emerged, such
as cooperation and formation control or flocking [5].

In this paper, the problem of multi-robot navigation is addressed. We analyze
the problem of driving a robot population moving in a discrete environment
from some initial configuration to a target configuration. We develop analysis
strategies in order to determine under which situations the target configuration
becomes non-achievable, in order to prevent those situations. In a previous work
[6], this analysis has been conducted for a set of homogeneous robots(1). This
paper extends those results to a set of heterogeneous robots, i.e., where robots
with different capabilities may intervene.

The robot population is modeled as a finite-state automaton (FSA) and the
main contribution of this paper is the analysis of the blocking and controllabili-

1 We consider a set of robots to be homogeneous when all robots are alike, i.e., they
have the same capabilities.
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ty properties of this automaton. Since it models the movement of the complete
robot population in the environment, from a start configuration to given goal
configuration, properties such as blocking and controllability have direct cor-
respondence with the successful completion of this objective. For example, a
blocking state corresponds to a distribution of the robots from which the de-
sired goal configuration is not achievable (because one of the robots has reached
a site from where it cannot leave, for example). Controllability means that such
blocking states are avoidable: it is possible to disable some actions to prevent
the robots from reaching blocking configurations.

The results presented in this paper relate the blocking and controllability
properties of the automaton modeling the multi-robot system (which can be a
large-dimension automaton, for complex systems) with the blocking and con-
trollability properties of smaller automata, named as navigation automata, that
model the navigation of each individual robot in the population.

The paper is organized as follows. In Section 2, some basic concepts are in-
troduced and the problem under study is described. Section 3 approaches the
problem of determining the blocking properties of the automaton describing
the system. In Section 4, the results regarding controllability are presented for
generic systems. Section 5 presents a set of illustrative examples. Finally, Sec-
tion 6 concludes the paper and presents directions for future work. The proofs
of all results in Sections 3 and 4 can be found in [7].

2 Navigation Automata and the Multi-robot system

In this section, some basic concepts regarding automata are introduced and the
notation used throughout this paper is described.

Notation Regarding Automata [8]
An automaton Q is a six-tuple Q = (X,E, f, Γ, x0, Xm), where
– X is the state space;
– E is the set of possible events;
– f : X × E −→ X is the transition function;
– Γ : X −→ 2E is the active event function;
– x0 is the initial state;
– Xm is the set of marked states.

The languages generated and marked by Q are denoted, respectively L(Q)
and Lm(Q). An automaton is called unmarked if Xm = ∅.

An automaton Q is said to be non-blocking if Lm(Q) = L(Q) and blocking if
Lm(Q) � L(Q).

A set XC ⊂ X of states is said to be closed if f(x, s) ∈ XC , for any s ∈ L(Q)
and x ∈ XC . A blocking automaton verifies XC ∩ Xm = ∅.

The Problem. Consider a system of N robots, moving in a discrete environ-
ment consisting of M distinct sites. This is referred as a N -R-M -S situation
(N robots and M sites) or a N -R-M -S system. The set of sites is denoted by
S = {1, . . . , M}.
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Generally, when in site i, a robot will not be able to reach all other sites
in a single movement. The function Ωk : S → 2S establishes a correspondence
between a site i and a set Si ⊂ S of sites reachable from i in one movement of
robot k. If j ∈ Ωk(i), then, for robot k, site j is adjacent to site i. Function Ωk

is called the adjacency function for robot k.
This paper addresses the problem of driving the robots from an initial con-

figuration CI to a final or target configuration CF . The set of sites containing
at least one robot in the final configuration is denoted by ST . The sites in ST

are called target sites. From the point of view of final configuration, no distinc-
tion is made among the robots, i.e., it is not important which robot is in each
target site.

Navigation Automata. A robot k moves in the environment defined by the
topological map according to its own adjacency function and is described by
an unmarked automaton Gk = (Yk, Ek, fk, Γk, y0k). Yk is the set of all possible
positions of robot k, verifying Yk = S. Ek is the set of all possible actions for
robot k. Actions consist of commands leading to the next site for the robot to
move to. Since all robots have the same event space, to avoid ambiguity, action
i issued to robot k is denoted by Gok(i), where i is the next site for the robot k.
Therefore, all events in the system correspond to movements of the robots. It is
assumed that only one robot moves at a time. The active event function Γk when
robot is in state i corresponds to the sites reachable from i in one movement.
This means that Γk = Ωk.

Definition 1 (Navigation Automaton). Given a robot k moving in a discrete
environment consisting of M distinct sites, the navigation automata for this
robot are the marked automata Gk(Ym) = (Yk, Ek, fk, Γk, y0k, Ym), where:

– Yk, Ek, fk and Γk are defined as above;
– Ym is a set of target states, Ym ⊂ ST .

In the case of a homogeneous set of robots, in which Ω1 = . . . = ΩN , all Gi

are alike, except for the initial condition y0k. In this situation, when the initial
condition is clear from the context or not important, a navigation automaton
will simply be denoted by G(Ym) = (Y, Em, fm, Γm, y0, Ym).

2.1 The Multi-robot System

If there are no constrains on the number of robots present at each site, each of
the robots can be in M different positions, and there are MN different possible
configurations.

The system of all robots can be described by a FSA, G = (X,E, f, Γ, x0, Xm),
where X is the set of all possible robot configurations, yielding, in the most
general situation, |X| = MN . Each state x ∈ X is a N -tuple (x1, x2, ..., xN ) and
xi is the site where robot i is.

Also, there is a set XF ⊂ X of states corresponding to the target configura-
tions. Notice that, in automaton G, Xm = XF .
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As seen before, robot k has an available set of actions Ek, denoted by Gok(i).
Therefore, the multi-robot system has a set of actions E =

⋃
k Ek, all consisting

of Gok(i) actions.

3 Blocking

Let G be the automaton modeling a N -R-M -S system.
If G is blocking, there is a closed set of states C, called blocking set, such that

C∩Xm = ∅. This, in turn, means that whenever the robots reach a configuration
corresponding to a state x ∈ C it is not possible to drive them to the desired
configuration anymore.

Usually, blocking is checked by verifying Lm(G) � L(G) exhaustively. In the
present case, as the system can lead to relatively large automata for not so large
M and N , a more effective way to check the blocking properties of G is desirable.
This section addresses this problem.

3.1 Blocking and Navigation Automata

Let G be the automaton modeling a N -R-M -S system. If the system is homoge-
neous, Result 2 of [6] holds.

For a generic (non-homogeneous) system, if G is non-blocking, then so is
each of the navigation automaton Gi, with all target states as marked states.
However, the converse is not true. Theorem 1 follows.

Theorem 1. In a generic N -R-M -S system, for its automaton G to be non-
blocking, all the navigation automata Gi(Ym) must non-blocking, with Ym = ST .
Similarly, if G is blocking, there is at least one i and one target state ym ∈ Ym

such that Gi(ym) is blocking.

Proof. See in [7]. ��

3.2 Blocking Information Matrix

From section 3.1 one can conclude that, generally, it is not possible to determine
the blocking properties of G simply by taking into account the blocking proper-
ties of each navigation automaton individually, since these properties depend on
the relation between them. It is, however, possible to determine whether or not
G is blocking, by comparing the blocking properties of each automaton Gi(ym).

In an N -R-M -S system, let K(m) be the number of robots in target site m
in the final configuration CF . If U ⊂ ST is a set of target sites, define K(U) =∑

m∈U K(m). Define as B(m) the number of robots that block with respect to
target site m. If U ⊂ ST is a set of target sites, define B(U) as the number of
robots simultaneously blocking the sites in U . In general, B(U) �= ∑

m∈U B(m).
If the number of robots blocking simultaneously the sites in some set U ⊂ ST

is such that N−B(U) < K(U), then G blocks, and therefore, N−B(U) < K(U).
This means that there are not enough “free” robots to go to the sites in M . This
condition may be easily verified using the blocking information matrix.
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Definition 2 (Blocking Information Matrix). Given a generic N -R-M -S
system, the blocking information matrix (BIM) BN is a N ×N matrix such that
element (k,m) is 0 if Gk(ym) is blocking and 1 otherwise.

Each of the N lines of matrix BN corresponds to a different robot. On the
other hand, if a site m has K(m) robots in the target configuration, matrix BN

will have K(m) columns corresponding to this site. Matrix BN is easily computed
from the analysis of the navigation automata Gk(ym), and the following result
can be proved.

Theorem 2. Given the Blocking Information Matrix BN for a N -R-M -S sys-
tem, the automaton G describing the overall system is blocking if and only if there
is a permutation matrix P such that PBN has only ones in the main diagonal.

Proof. See in [7]. ��

4 Supervisory Control

In this section, the problem of controllability of G is addressed. The controlla-
bility problem is related to the design of a supervisor S, such that, when applied
to the original system, the resulting system marks some desired language K.

Although the automaton G describing the system already marks the desired
language, in a situation where the automaton is blocking, it is not desirable that
the system reaches a blocking state, since this will prevent the final configura-
tion to be reached. The presence of a supervisor S in the system under study
will necessarily relate to this situation where blocking must be prevented. It is
important to determine the existence of such a supervisor, i.e., it is important
to determine if the system is controllable.

In the following analysis, the existence of unobservable events is disregarded
even if they make sense from a modeling point of view, as described in [6].

4.1 System Controllability

Consider the automaton G describing a N -R-M -S system, which is assumed
blocking, and suppose that there is a non-empty set of uncontrollable events
Euc ⊂ E. These events may correspond to accidental movements of the robots
which cannot be avoided. If the system is homogeneous, Result 3 of [6] holds.

Consider, now, a heterogeneous system. As stated before, blocking in G is
related to the number of robots “available” to fill each target site, when con-
sidering blocking sets. Controllability relates with the ability of a supervisor to
disable strings of events driving a robot to a blocking set.

Let Euk ⊂ Ek be the set of uncontrollable events for robot k. It is possible
to include controllability information in matrix BN in order to conclude about
the controllability of G. If Gk(ym) is blocking but controllable with respect to
the language K = Lm(Gk(ym)), then the element (k,m) of matrix BN is set to
−1. This motivates the following and most general form of Theorem 2.
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Theorem 3. Given the Blocking Information Matrix BN for a generic N -R-
M -S system, the automaton G describing the overall system is blocking if and
only if there is a permutation matrix P such that PBN has only ones in the
main diagonal.

If G is blocking, but there is a permutation matrix P1 such that P1BN has
only non-zero elements in the main diagonal, then G is controllable with respect
to the language K = Lm(G).

Proof. See in [7]. ��
Observe the relation between Theorem 3 and Result 3 of [6]. In fact, the

latter can be derived from Theorem 3 when the robot set is homogeneous.

5 Examples

We present three examples of the application of Theorem 3 in a simple indoor
rescue situation. Consider a non-homogeneous set of three robots in which:

The Crawler. (Cr) has tracker wheels and is capable of climbing and descend-
ing stairs. It is able to open doors only by pushing;

Fig. 1. Map of the environment

Fig. 2. Automata for the robots
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The Puller. (Pl) is a wheeled mobile manipulator, able to open doors either
by pushing or pulling. However, it is not able to climb stairs;

The Pusher. (Ps) is a wheeled robot, able to open doors only by pushing. It
cannot climb stairs.

The rescue operation takes place in the indoor environment depicted in Fig-
ure 1 (e.g., a fire scenario). On the left is the physical map of the place, and on
the right is the corresponding topological map. Each of the robots is described
by a different automaton, as represented in Figure 2.

The robots will leave Room 1 to assist three different victims, somewhere
in the building. The doors open as shown in Figure 1 which limits the robots
access to the different rooms. When in Rooms 6 or 7, only the Crawler can go
upstairs. Finally, when in Rooms 3 and 4, all the robots may fall downstairs, i.e.,
events Gok(6) and Gok(7) are uncontrollable for all k. The following examples
illustrate the practical use of Theorem 3. We determine if there are configura-
tions that prevent the success of a given rescue operation which, in terms of
the framework proposed in this paper, correspond to blocking configurations.
The situation where there are victims in sites a, b and c is referred to as the
a − b − c Rescue.

5.1 6 − 7 − 8 Rescue

In this situation, the BIM for the system is:

B3 =

⎡
⎣

−1 −1 0
1 1 0

−1 −1 1

⎤
⎦ , (1)

where the lines correspond to Pusher, Puller and Crawler and the columns cor-
respond to target sites 6, 7 and 8, respectively.

Note that both Ps and Cr, once inside Room 8, are not able to leave.
Then, GPs(6), GPs(7), GCr(6) and GCr(7) are blocking. However, by disabling
the events GoPs(8) and GoCr(8), blocking can be prevented and B3(1, 1) =
B3(1, 2) = B3(3, 1) = B3(3, 2) = −1.

If Ps or Pl get downstairs, they cannot go back upstairs. However, they
cannot get to Room 8 without going through Room 4 and eventually falling to
Room 6, which cannot be avoided, since Gok(6) is uncontrollable. Then, GPs(8)
and GPs(8) are blocking and uncontrollable, and B3(1, 3) = B3(2, 3) = 0.

Finally, Pl can always reach Rooms 6 and 7, and Cr can always reach Room
8. GPl(6), GPl(7) and GCr(8) are non-blocking, and B3(2, 1) = B3(2, 2) =
B3(3, 3) = 1.

From Theorem 3 the system is blocking but controllable. For example in
the configuration where Crawler and Pusher are in room 8, it is impossible to
reach the target configuration. However, this can be prevented, by disabling, for
example, GoPs(8), which is a controllable event.
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5.2 2 − 8 − 8 Rescue

In this situation, the BIM for the system is:

B3 =

⎡
⎣

−1 0 0
−1 0 0
−1 1 1

⎤
⎦ , (2)

with the columns corresponding to target sites 2, 8 and 8, respectively. It be-
comes evident that the system is blocking but, unlike the previous example, it
is uncontrollable. Since two robots are required for site 8 and the only way to
reach Room 8 is through Room 4, they will eventually move to Room 6 instead
of moving to Room 8 (since Gok(6) is uncontrollable), once they get to Room 4.
In this situation, it may be impossible to assist both victims in site 8. In fact,
as long as there is more than one victim in site 8 (K(8) > 1), this problem will
always exist. This happens because there are two robots which “helplessly” fall
downstairs, blocking site 8 (B(8) = 2). Then, N − B(8) = 3 − 2 = 1 < K(8),
and the system is blocking. Since the only way to Room 8 is through Room 4,
this situation cannot be prevented.

6 Conclusions and Future Work

The problem of analyzing the navigation of a set of mobile robots operating
in a discrete environment was approached. Relevant results have been derived,
that allow the use of small dimension automata (navigation automata) to infer
about the blocking and controllability properties of the automaton that describes
the complete system. In a situation where a specific configuration is aimed for
a set of robots, the presented results allow to determine, using global infor-
mation, if the global objective is achievable, and if blocking configurations are
avoidable.

An important extension of the present work is the determination of the re-
lation between the blocking properties of the navigation automata and the er-
godicity of the Markov Chain which can be used to model the complete sys-
tem, when a probabilistic uncertainty is associated to the events representing
the movements of the robots. Other interesting issue is the use of this local
information in an optimal decision process, when a decentralized system is
considered.
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Abstract. This paper describes the joint approach of three research
groups to enable a heterogeneous team of robots to exchange belief. The
communication framework presented imposes little restrictions on the de-
sign and implementation of the individual autonomous mobile systems.
The three groups have individually taken part in the RoboCup F2000
league since 1998. Although recent rule changes allow for more robots per
team, the cost of acquiring and maintaining autonomous mobile robots
keeps teams from making use of this opportunity. A solution is to build
mixed teams with robots from different labs. As almost all robots in this
league are custom built research platforms with unique sensors, actua-
tors, and software architectures, forming a heterogeneous team presents
an exciting challenge.

1 Introduction

Due to scientific as well as pragmatic reasons, there is a growing interest in
the robotics field to join the efforts of different labs to form mixed teams of
autonomous mobile robots. In RoboCup, the pragmatic reasons are compelling.
The recent rule change in the F2000 league allows for more robots per team,
and in the RoboCup Rescue league a group of heterogeneous robots with diverse
capabilities is likely to perform better than one system that tries to encapsulate
them all. However, the limited financial resources and the additional maintenance
effort for further robots exceeds the capabilities of many research labs. Also,
the threshold for new research groups to participate in RoboCup is lowered if
they only need to contribute one or two robots to a mixed team, instead of
having to build an entire team. Mixed teams are also motivated from a scientific
perspective. They introduce the research challenge of cooperation within teams
of extremely heterogeneous autonomous mobile systems.

As most robots in the F2000 league are custom built, or at least customised
commercial research platforms with unique configurations of actuator and sensor
configurations, mixed teams from different laboratories are extremely heteroge-

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 508–515, 2005.
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neous. There are few commonly used high level libraries for sensor data pro-
cessing and reactive actuator design in the community. Furthermore there is a
multitude of methods and schools, each deliberately designing the control archi-
tecture of their robots fundamentally different to their competitors. This makes
the unification of the software of the different robots of a potential mixed team
almost impossible without substantial rewriting of at least one of the team’s soft-
ware. In our opinion it is also undesirable. Why should an autonomous mobile
robot have to commit to any kind of sensor processing or control paradigm to be
able to cooperate with another team mate, if both are programmed to interact
in the same problem domain?

For cooperation between robots, the sharing of information about the envi-
ronment is initially sufficient for successful cooperation. If all robots share both
the same belief about their environment, as well as the same set of goals, similar
conclusions should be drawn. This has proven to be a successful way of coordi-
nating behaviour in RoboCup scenarios [1, 2]. Therefore, a central prerequisite
for successful team cooperation is the unification of the beliefs about the world
of the different agents. The limitations of the individual sensors usually provide
each robot with quite limited information about the state of its environment. So
it is unlikely that the beliefs derived solely from the robots’ own sensors are au-
tomatically sufficiently similar to coordinate behaviour in a shared environment.
Sharing of information might solve this problem.

This paper presents the early stage of an approach of robotic labs from three
different research groups, of the universities of Ulm, Munich and Graz, to be able
to play interchangeably with their different robot platforms in a mixed team.
The main contributions of this paper are along two research directions. First, the
design and implementation of a communication framework for sharing informa-
tion within a team of extremely heterogeneous autonomous robots is presented.
It is hardware and software independent, and can extend existing software ar-
chitectures in a transparent way. Major code rewrites are not necessary to use
this framework. Second, we specify an expressive shared belief state that our
robots can communicate using this framework, to complement own beliefs, and
to coordinate behaviour.

The remainder of this paper is organised as follows. Section 2 presents the
three robotic teams. Section 3 shows the design of belief exchange between these
teams. The implementation of the communication framework is presented in
section 4. Related work is discussed in section 5, and we present future work and
conclude with section 6.

2 An Overview of the Three Teams

In this section we will describe the differences between the three teams, empha-
sising those that are relevant to the sharing of a belief state. One of the most
important differences lies in the sensors used. On the level of belief state rep-
resentation, we have found that all teams use different methods of modelling
uncertainty and inaccuracy. This is mostly caused by the different ways in which
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the sensors capture the world. Also, some teams use an egocentric frame of refer-
ence, and others allocentric. Furthermore, fusing information from other players
or the coach into the belief states of individual robots is treated in different ways.

Ulm: The Ulm Sparrows [3] are custom built robots, with infrared based near
range finders and a directed camera. The available actuators are a differential
drive, a pneumatic kicking device and a pan unit to rotate the camera horizon-
tally (180o). The robots act upon an egocentric belief state, and uses inaccuracy
and uncertainty about observations. Fusion takes place for the ball.

Munich: The Agilo RoboCuppers [4, 2] are customised Pioneer I robots, with
differential drive and a fixed forward facing colour CCD camera. They act upon
an allocentric belief state, which models inaccuracy, and which they communi-
cate and fuse locally. Opponent observations are fused with a central Multiple
Hypothesis Tracker (MHT).

Graz: The Mostly Harmless [5] are custom-built robots with a modular design
of hardware and software, motivated by the intention of using the robots in
different domains. They have an omni-directional camera, and laser range finder.
The belief state is allocentric, and fusion is done locally using a MHT.

3 Design of Belief Exchange

The scenario depicted in figure

1

4

3

2

Fig. 1. A RoboCup Scenario

1 shows how belief exchange can
be useful. Player 1 has just shot
at the goal, but the keeper has
deflected the ball, which is now
lying behind player 2. This player
has a good chance at scoring,
but cannot see the ball because
it is outside of the field of view
of its camera. Fortunately, two
defenders observe the ball. One
has a laser range finder, and can
determine the location of the ball
accurately. However, since colour information is lacking, it is not that certain
about what the object is. Fortunately, the second defender has a colour camera,
with which it recognises the ball, even if the localisation of it is not very accu-
rate. Player 2 receives this information from the two defenders, and fuses it to
derive there is a ball behind it. All players compute that player 2 is closest to
the ball, and player 2, determined by locker-room agreement, will turn and try
to score a goal.

This scenario shows that exchanging information allows individual robots
with a limited field of view to acquire information about hidden parts of the
state, and to generate a more consistent and certain belief about the world by
fusing observations from different robots, possibly with different sensors.
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To share beliefs, the teams must agree upon structures that encapsulate this
information. In this section we will discuss the design of these structures. The
three main elements are a time-stamp, the probabilistic dynamic pose of the
robot itself, and a list of observed objects. The main design principle is that we
want an expressive belief exchange structure, but not simply a superset of all
the information that the three teams have used so far.

Time-stamped message-based communication. The beliefs of the robots are
exchanged within the team by a message-based protocol. Messages that are cor-
rupted by packet loss in the wireless network do not influence each other, and
can safely be ignored. As a basic requirement for sharing information in a highly
dynamic environment each message is accurately time-stamped. This allows for
interpolation of the beliefs to minimise the estimation error between messages.

The own dynamic pose. Many sensor data processing algorithms assume that
the probability of measuring a certain quantity is distributed according to a
Gaussian normal distribution. We also use this concept, and represent the robot’s
pose by a three-dimensional vector and covariance matrix. The vector represents
the mean of the Gaussian distribution, with (0, 0, 0) being the centre of the field,
facing the opponent goal. The covariance matrix holds the associated uncertainty
as a three-dimensional Gaussian distribution around this mean. How these values
can be computed is discussed more elaborately in [6]. This probabilistic repre-
sentation allows robots to communicate not only where they belief they are, but
also how certain they are about it. Apart from its pose, the robot also com-
municates its velocity as a tuple (vx, vy, ω). There are no uncertainty measures
for the speed. We call the combination of pose, covariance matrix and speed a
probabilistic dynamic pose.

Observed objects. Apart from their own pose, the shared belief state also
contains a representation of all the observations of objects the robots have made.
Each object is represented by the same dynamic pose and covariance matrix,
which have been discussed in the previous section. Although this representation
is somewhat redundant (goal-posts will never have a velocity), it is very general.
The observed objects are projected in an egocentric frame of reference, in which
the observer always has pose (0, 0, 0).

Each observation must be mapped to one of the objects that can be expected
to be encountered in the robot’s environment. On a soccer field these objects
are the ball, the teammates, the opponents, the corner-flags and the goal-posts.
Any other objects (referee, assistants, flashers) are deemed obstacles. Since ob-
servations can usually not be mapped to one object with perfect certainty, each
observation is accompanied by a list of all possible objects, and the estimated
probability that the observation was this object. Observation-object assignments
with a low probability are excluded from this list, as they are not likely to influ-
ence the decisions of a teammate, and would only use up bandwidth.

3.1 Design Issues

Allocentric vs. Egocentric. The most obvious way to fuse observations of different
robots is by the use of a shared frame of reference. Therefore the robots use the
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allocentric frame of reference defined in the previous section, to communicate
their poses. However, this approach requires knowing where you are with suf-
ficient accuracy, something that cannot always be guaranteed. For many tasks
(shooting a goal, passing to a teammate) it is sufficient to know the relative
location of certain objects to the robot. For these reasons we have decided to
use an egocentric frame of reference for the observations.

Inaccuracy and uncertainty. The differences between the sensor systems of
the teams allow them to derive different information about the objects they
observe. The laser range finder of the Graz team provides accurate information
about object locations, but the uncertainty as to what kind of object it is is not
as certain. The other colour-camera based teams are much more certain about
the type of object (orange ball, yellow goal), but cannot locate the objects as
precise. We have chosen to represent both aspects in the shared belief state, to
allow all teams to express their different types of uncertainty. Appropriate fusion
of this distributed multi-modal perception increases the accuracy and certainty
of each robot’s local belief state.

Object superclasses for observation assignments. To make the list of observa-
tion-object more compact, superclasses of the individual objects have been de-
fined. Often it is the case that a robot recognises a robot as being an opponent,
but not which number it has. Instead of sending that it can be Opponent 1,2,3 or
4, each with the same chance, the robot has the option of sending the superclass
Opponent. The full tree of objects and superclasses can be seen in figure 2.

GoalPost Ball Robot

Dynamic Object

Teamate 1..N Opponent 1..N

OpponentTeammate

GoalPostOppL/RGoalPostOwnL/R

GoalPostOwn GoalPostOpp

CornerFlagOppL/RCornerFlagOwnL/R

CornerFlagOppCornerFlagOwn

CornerFlag

Static Object

Object

Fig. 2. Tree of Object Classes

4 Implementation of the Communication Framework

The team communication uses a message-based, type safe high-level communi-
cations protocol that is transfered by IP-multicast, as such a protocol keeps the
communicated data easily accessible and prevents subtle programming errors
that are hard to trace through different teams. As the communication in a team
of autonomous mobile robots has to use some kind of wireless LAN, that is noto-
riously unstable especially in RoboCup tournaments, a connection-less message
based protocol is mandatory. This way, network breakdowns and latencies do
not block the sending robot. To save bandwidth, IP-multicast is used, since this
way each message has only to be broadcasted once, instead of n times for n
clients.
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The implementation uses the notify multicast module (NMC) of the Middle-
ware for Robots (Miro) [7]. Miro provides generalised CORBA based sensor
and actuator interfaces for various robot platforms as well as higher level frame-
works for robotic applications. Additionally to the method-call oriented inter-
faces, Miro also uses the event driven, message-based communications paradigm
utilising the CORBA Notification Service. This standardised specification of a
publisher/subscriber protocol is part of various CORBA implementations [8].
Publishers (suppliers in their terminology) offer events. The so-called consumers
subscribe to those events. They then receive the events supplied by the publisher
through an event channel (EC). The data exchanged is specified in the CORBA
interface definition language (IDL). Standardised mappings from IDL to most
modern programming languages (C, C++, Java) exist.

CORBA uses a connection oriented (TCP/IP based) communication layer
by default, the NMC module therefore plugs into the Notification Service ar-
chitecture and exchanges events between the robots of a team transparently,
using IP-multicast. For this purpose a service federation quite similar to the
one described in [9] is used. An EC instance is run locally on each robot. A
“NMC event consumer” subscribes for all events that are offered only locally
but subscribed by other team mates and sends them to the multicast group. A
“NMC event supplier” in turn listens to all events published via IP-multicast
and pushes those into the local event channel, that are subscribed but not of-
fered locally. To keep track of the offered and subscribed message types, NMC
utilises two fields of the standard event message format: The domain name and
the type name. By convention, the domain name contains the name of the robot
producing the event. The type name describes its payload. As these fields are
also part of the native offer/subscription management and filtering protocol of
the notification service, robots can easily determine whether events they offer
are currently subscribed in the team, and skip their production entirely if there
are no subscribers.

Figure 3 illustrates

Supplier B Consumer B

Consumer ASupplier A

NMC Consumer ANMC Supplier A

NMC Supplier B NMC Consumer B

Multicast Group

Notification Channel

Notification Channel

Robot B

Robot A

A1, A2

B1, B2 A1, B1

A2, B1

A1, A2

B1

A2, B1

A1

B1 A1, B1

A1 B1

A1, A2, B1

A1, B1

A1

B1 A1

B1

A1, B1

Fig. 3. A Federated Notification Channel Setup

a sample configuration
of the notification chan-
nel setup. Two robots
(A, B) produce two
types of events (1, 2),
the resulting events are
{A1, A2, B1, B2}. The
events in the supplier
and consumer boxes
denote the offered and
subscribed events. The
events labelling the
arrows denote the actual
flow of events. Note that
suppliers and consumers can offer/subscribe for multiple events.
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Communicating the IDL-specified belief state discussed in section 3 at 10Hz
with all teammates uses, on average, less than 10% of the available bandwidth
of a standard 802.11b WLAN (11 MBit/s). This should be available, even on
heavily loaded networks, such as those in RoboCup tournaments.

We would like to emphasise that even though our main goal is to communicate
belief states, this framework is not limited to this information only. In principle it
is possible to communicate any type of information, for instance role assignments,
utilities, coaching advice.

5 Related Work

Team wide information sharing is a well-known concept in RoboCup. CS Freiburg
used a global world model fused on a central coach computer by the use of
Kalman and particle filters [10]. It was then sent back to the team mates. The
system was based on a very accurate LSR-based self localisation. High accuracy
was achieved by using the walls that enclosed the field up to 2001 as landmarks.
An early attempt of information sharing in the legged-robot league is described
in [11]. However, this approach suffered from the severe network latencies of the
communication device available on this platform.

The idea of cross team cooperation has some tradition within the RoboCup
leagues. In the simulation league, the source code of many teams was published
on the Internet allowing new participants to base their new team on previous
participants of simulation league tournaments.

One of the most successful mixed teams in RoboCup has been the German-
Team, which participates in the legged-league [12]. The GermanTeam is a coop-
eration of five universities participating with one team and one code repository.
The exchange and integration of software is enabled by a standardised hardware
platform, as well as a modular software design.

The most similar mixed team cooperation effort was done by the Azzurra
Robot Team. They built a middle size league national team from various Italian
universities. They also used a (proprietary) publisher/subscriber communication
protocol, utilising UDP. However, their focus was on explicit role assignment and
coordination strategies among the field players [13]. Unfortunately the Italian
national team was dissolved after the RoboCup tournaments in 2000.

6 Conclusion and Future Work

Currently each team has its own fusion methods. The data exchanged is designed
in such a way that each team should be able to use it for their fusion, as well as
supply the data required by the other teams. Sharing the same belief state will
allow us to compare the different methods better, as the belief state abstracts
from the sensory differences of the teams. In the long run, a unified fusion can
be expected, as all teams will try to get the best out of the shared information.

In this paper a CORBA based communication framework for sharing informa-
tion within a team of extremely heterogeneous autonomous robots is presented.
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Our three teams have extended their existing software architectures with this
framework, enabling transparent communication between these teams. We have
also introduced the shared belief state we communicate using this framework,
and discussed the underlying design principles and motivations.

The design of the mixed team communication for sharing beliefs was started
on the altruistic ground of scientific experimentation. Nevertheless it might turn
into a necessity, as it seems that not all three teams can afford to attend this
years Robot Soccer World Cup in Lisbon as an independent team.
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Abstract. This paper introduces a general formulation of relational be-
haviours for cooperative real robots and an example of its implementa-
tion using the pass between soccer robots of the Middle-Sized League of
RoboCup. The formulation is based on the Joint Commitment Theory
and the pass implementation is supported by past work on soccer robots
navigation. Results of experiments with real robots under controlled sit-
uations (i.e., not during a game) are presented to illustrate the described
concepts.

1 Introduction

Showing cooperation among robots from a team is probably one the top goals of
RoboCup related research. Furthermore, it is desirable to formulate cooperative
behaviours within a formal framework extendable to applications other than
robotic soccer. Surprisingly, not many references to work on these two topics
can be found in the RoboCup-related literature or in other publications referring
cooperation among real robots.

An example of a tool that enables the development of applications based on
the Joint Commitment Theory [1], including communications, has been thor-
oughly reported by Tambe, e.g., in [9]. Yokota et al. use explicit communication
to achieve cooperation and synchronization in real robots. However, no explicit
logical commitments are described [10]. Emergent cooperative behaviour among
virtual agents is also described in [7], where a pass behaviour by implicit com-
munication (observing the other robots behaviour) is implemented in a team
of RoboCup Simulation League, and [6], where also a pass between RoboCup
Simulation League agents is described such that conditions to pass are learned
by a neural network. Again, there is no commitment between players, therefore
the relational behaviour may be kept by one of the team mates even if the other
has to withdraw its relational behaviour.

In this paper a general formulation of relational behaviours for cooperative
real robots is introduced. Most of the paper describes an example of implementa-
tion of this formulation using the pass between soccer robots of the Middle-Sized
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intercept

finish

Fig. 1. Simple example of the pass commitment

League (MSL) of RoboCup. The formulation is based on the Joint Commit-
ment Theory [1], and the pass implementation is supported by past work of the
ISocRob team on soccer robots navigation [3].

In the pass relational behaviour, two participants set up a long term commit-
ment, in which several individual behaviours are executed. One of the robots is
referred to as the kicker ; he starts having the ball and will try to kick the ball in
the direction of the other robot, the receiver, who has to intercept the ball. In or-
der to accomplish a pass successfully, two components of the commitment should
be working well: the synchronization of both players’ actions and the execution
of their individual skills. The synchronization has to be achieved by communi-
cation. In Fig. 1, an example of the pass commitment has been illustrated by
two state machines.

In the following sections, the theory behind the pass commitment as shown in
Fig. 1 will be described. First the individual decision making and the behaviour
synchronization will be explained and then the individual primitive behaviours.
Results of experiments with real robots under controlled situations (i.e., not
during a game) are also presented to illustrate the key primitive behaviours
described.

2 Decision Making and Synchronization

In Fig. 1, several individual behaviours can be found within the commitment.
At any time the participants have to select the correct primitive behaviour indi-
vidually. The architecture that is used for behaviour coordination and decision
making considers three types of behaviours: organizational, relational and indi-
vidual [4], [5]. Organizational behaviours concern decisions involving the whole
team, e.g., player role selection such as defender or attacker. The relational be-
haviours concern more than one player. Commitments among team mates are es-
tablished here. Finally, at the individual level, primitive behaviours are selected,
and motor commands are used to influence the environment in the desired way.

Behaviour selection is done in a module called the logic machine, explained
in [8]. In this module, only the organizational and the individual levels were
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implemented. The work described here addresses the relational layer. The layers
are processed sequentially. This means for the robot that he first chooses a role,
next he selects a commitment, and the individual behaviour is selected after
knowing the robot’s role and commitment.

2.1 Relational Behaviour Selection

Joint Commitment Theory is used in this work to select relational behaviours [1].
Predefined logical conditions can establish a commitment between two agents.
Once a robot is committed to a relational behaviour, he will pursue this task until
one or more conditions become false, or until the goal has been accomplished.
In the described project, the initiative for a relational behaviour is taken by one
of the agents, who sets a request for a relational behaviour. A potential partner
checks if the conditions to accept are valid. If so, the commitment is established.
During the execution of the commitment the changing environment can lead to
failure or success at any time. In that case the commitment will be ended.

In general, within a commitment three phases can be distinguished: Setup,
Loop and End. During the setup and ending of a commitment, a robot is not
executing a relational behaviour. The logic machine will not select any relational
behaviour, so the commitment will be ignored during the primitive behaviour
selection. Only in the Loop phase participants will select primitive behaviours
concerning the commitment in order to achieve their joint goal.

2.2 Primitive Behaviour Selection

The selection of a primitive behaviour within the Loop phase of a commitment
will be explained using the example of the pass commitment of Fig. 1. Three indi-
vidual behaviours can be found there; standBy for both participants, aimAnd-
Pass for the kicker and intercept for the receiver.

The pass commitment has been split up in several states from the beginning
until the end, referred to as commitment states.

– request and accept in the Setup phase.
– prepare and intercept in the Loop phase.
– done and failed in the End phase.

In general, the states in the Setup and End phase will be the same for all com-
mitments, only the Loop changes. Splitting the Loop phase in states allows syn-
chronized execution of the pass. Here, each commitment state is linked to (a set
of) primitive behaviours for both robots, see Table 1. When the commitment
runs as planned, the pass states will be run through sequentially, from request
until done. An error at any time can lead to the state failed. Note that pass states
in the Setup and End phase do not lead to a primitive behaviour from the rela-
tional pass. Table 1 describes the pass commitment of Fig. 1. New commitments
or other versions of commitments can be created under the same framework. One
can change the individual behaviours that have been linked to the commitment
states, or extend the Loop with more pass states and behaviours.
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Table 1. Primitive behaviour selection by the logic machine in all pass states during
the pass commitment

Setup Loop End Default
Commitment States: request accept prepare intercept done failed none
Kicker — — aimAndPass standBy — — —
Receiver — — standBy Intercept — — —

2.3 Synchronization

To synchronize the behaviours, the participants will use explicit communication.
Four variables, containing the identities of the participants and their commit-
ment states, are kept in the agent’s memory. Each of these four variables will be
sent to the other participant in the relational behaviour when it is changed.

Following setup conditions, one agent sets a pass request, and a partner can
enter the accept state. When the commitment has been established, the following
rules will be looped:

– Synchronize commitment state with the state of the parter, if partner has
moved on to a next state.

– Switch to new state by yourself, if predefined switch conditions allow that.
– Select a basic behaviour using Table 1.

This happens until the done or failed state is reached. Then the commitment
will be finished and all variables will be cleared.

Synchronization is achieved at each moment an agent switches to a new
commitment state, since the partner will always follow. By synchronizing com-
mitment states each iteration, the commitment states of both agents can only
be one step away from each other, and this difference will be corrected in the
next loop. It is possible to let agents execute a sequence of primitive behaviours
in one state. They will run asynchronously.

3 The Individual Behaviours

The primitive behaviours are running in a control module. Here the world situ-
ation is evaluated continuously, and motor commands will be send to the robot
in order to influence the environment. The world model of the robot can be seen
as a map with all identified objects in a xy-coordinate system. In the standBy
behaviour, the robot will stay at the same position and will try to keep its front
towards the ball position. This behaviour has been implemented earlier in the
ISocRob team [5]. The other two behaviours, aimAndPass and intercept, had
to be developed from scratch.
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3.1 The AimAndPass Behaviour

When the pass commitment is started, the kicker has the ball. He wants to rotate
with the ball to a certain direction and then shoot. This has been implemented
in the aimAndPass behaviour.

In earlier research a controller has been developed to dribble with a ball to
a goal posture [3]. A navigation algorithm described in [3] is used which takes
the robot to a goal posture while avoiding obstacles, using a modified potential
fields method that takes into account the non-holonomic nature of the robot. The
motor commands given by this navigation algorithm are passed to a dribble filter
which adapts them to the extra constraints of keeping the ball close. Parameters
of the navigation algorithm can be changed to return a very strong angular
acceleration towards the desired direction. Since the dribble filter stays with the
dribble constraints, a controller is achieved which rotates with ball to the desired
direction at the maximum turn angle.

3.2 The Intercept Behaviour

In order to intercept a moving ball, the intercept behaviour controller has been
designed. The literature on visual servoing has solutions for similar problems [2],
but only for a situation when the robot tracking the object is not moving within
an environment cluttered with obstacles. Therefore, the solution described here
is based on the previous mentioned navigation algorithm, [3], using a modified
potential fields method. The intercept controller continuously estimates the in-
terception point given the positions of ball and robot, and their predicted path.
After a certain time t, position of ball and robot should be the same. The corre-
sponding xy-coordinates indicate the interception point and they will be passed
to the navigating algorithm. Interception point estimation is shown in Fig. 2.

Ball (X   , Y   )BB

VB

Interception

α

point (X, Y)

VB

VBY

X

V’R

θ

Robot orientation

Robot(X   , Y    )R R

X

Y

Fig. 2. Interception point calculation
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Figure 2 shows a ball path estimation with position (xb, yb) and velocity
(vbx, vby), and a robot with position (xr, yr). For the estimation, a constant
velocity is assumed.

The robot path is estimated with the assumptions that the robot will move
with a constant velocity in a straight line towards the interception point. This
implies that the orientation of the robot will not change during the movement
to the interception point and thus the initial orientation is ignored. An assumed
average forward speed v′

r is used. Now, the robot path can be given as function
of time, using the robot’s current position (xr, yr), its absolute speed v′

r (given in
the x-direction) and the orientation towards the interception point α, as shown in
Figure 2. Since the interception point is still to be calculated, α is still unknown.

Variables α and t can be eliminated from respectively the x and y-component
from both path estimations. The calculated t represents the time it takes for the
ball and the robot to get to the interception point. By replacing t in the ball
path estimation, xy-coordinates for the interception point are achieved.

Note that the assumption that the robot moves in a straight line to the
interception point, may lead to an error in the estimation of the interception
point, since the robots are non-holonomic. However, the estimation is iteratively
applied and becomes more accurate at each new iteration step, until when the
robot faces the correct heading, where the straight line motion assumption is
fully correct.

4 Implementation and Results

4.1 Implementation of the Commitment

The theory for joint commitments has been implemented in Nomadic Super
Scout II robots of the Robocup Middle-Sized League team ISocRob. The deci-
sion making and the synchronization have been implemented successfully. The
framework for joint commitments requires the definition of the following aspects
of a relational behaviour:

– List of commitment states
– Setup conditions of the commitment
– Switch conditions to switch between commitment states
– Related individual behaviours within each commitment state

The framework takes care of all communication and the synchronized execution
of the relational behaviour.

For the implemented version of the pass commitment, mentioned in section
1, the following pass situation has been defined: a defender has the ball on its
own half of the field and he will pass the ball to an attacker, who is on the other
half of the field. The division in states and the related primitive behaviours are
shown in Table 1. When the kicker has successfuly executed the aimAndPass
behaviour, he switches to the intercept state. The receiver moves to the same
state, and starts the intercept behaviour.
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Note that in this case the kicker switches the pass state to intercept, and
by doing so he tells the receiver to start the intercept behaviour. More reactive
approaches of the pass commitment can define conditions that allow the receiver
to switch to the intercept state, following his own observations.

The results of the execution of the pass behaviour are strongly related to the
results of the individual behaviours. AimAndPass and intercept will be analysed
in the following sections.

4.2 AimAndPass

The aimAndPass behaviour has been implemented following the methods de-
scribed in previous sections. The performance of the behaviour is as expected.
Figure 3(a) shows the result of a test with a real robot on a MSL soccer field.
The robot start position is at the middle of the field, and his target is the mid-
dle of the goal which is located diagonally behind him. The robot turns with
the ball and shoots in the desired direction. However, since the algorithm works
with coordinates, errors can occur when the robot is badly localized. A small
difference in the kicker orientation leads to a significant spatial error when the
distance to the target grows. Those errors caused by localization can be avoided
if the camera is used directly to determine the target direction.

(a) (b)

Fig. 3. Individual behaviour results: a) aimAndPass; b) intercept ball

4.3 Intercept

For the intercept behaviour, the assumed average robot speed, v′
r, has been set

to 0.5 m/s. An example of the interception of a moving ball by a real robot in
a MSL soccer field is shown in Fig. 3(b). Clearly it can be seen that the robot
takes the ball velocity into account, and moves directly to the interception point.
In this example, the ball rolls with a speed of 1.2 m/s in a straight line. The ball
path that is shown is the path as it is observed by the robot. Balls with a high
velocity are likely to bump away after the interception.
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5 Conclusions

In this paper the general formulation of relational behaviours among real robots,
based on the Joint Commitment Theory, has been introduced through an illus-
trative example concerning a pass behaviour between RoboCup MSL robots.
The formulation uses individual decision making and behaviour synchronization
among intervening robots and has been tested successfully during laboratory
games without an opponent. Results of the implementation of the key individ-
ual behaviours (aimAndPass, intercept) in real robots were presented.

Future work will concern the development of new relational behaviours under
this framework, as well as the refining of the individual behaviours, particularly
by using team mates visual recognition to eliminate the self-localization error
and the required communication during the aimAndPass behaviour, and by
providing the robots with force-controlled kicking ability, so as to enable ball
interception by the receiver robot, by reducing the ball speed for pass kicks, as
compared to goal kicks.
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Abstract. In this paper we focus on plan execution in highly dynamic
environments. Our plan execution procedure is part of a high-level plan-
ning system which controls the actions of our RoboCup team ”Mostly
Harmless”. The used knowledge representation scheme is based on tradi-
tional STRIPS planning and qualitative reasoning principles. In contrast
to other plan execution algorithms we introduce the concept of plan in-
variants which have to be fulfilled during the whole plan execution cycle.
Plan invariants aid robots in detecting problems as early as possible.
Moreover, we demonstrate how the approach can be used to achieve co-
operative behavior.

1 Introduction

Artificial Intelligence (AI) planning techniques as decision making layer for au-
tonomous agents acting in fast paced environments have traditionally been dis-
criminated in favour of reactive approaches, such as behavior-based methods [1].

While undoubtedly being a very powerful technique applicable to countless
problems, there are drawbacks with regard to computational complexity [2].
Decades of research on this matter have yielded numerous highly efficient plan-
ning algorithms. Unfortunately, the speed and advantages these algorithms offer
is mostly dependent on certain properties of the domains they are applied to.

Considering such properties that distinguish the real world from toy domains
used for planning research and experiments, the drawbacks of planning become
even more imminent. Uncertainty, incomplete knowledge, the necessity to coop-
erate in multi-agents systems (MAS), limited resources, real-time requirements,
etc. have all caused the creation of special planning extensions. Often, these
extensions are incompatible among each other, usable only for the special cases
they are forged for, and usually they aggravate the task of knowledge engineering
and formulating tasks for human operators.

In this paper we present a framework that does not utilize such complex,
special tailored planning algorithms or even reactive systems. Knowledge repre-
sentation is done exclusively using first-order logic, uncertainty is intentionally
neglected. Instead of optimizing plan creation, plan monitoring is focused upon.
Plan invariants are presented as a means to efficiently monitor plan execution,
and it is shown that efficient plan monitoring is sufficient for reactive behavior
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(assuming low-level tasks such as obstacle avoidance or path-planning are not
performed by the planning system). It is further shown how they can be used
to achieve cooperative behavior in a MAS consisting of independent planning
agents, without extending the planning algorithm or the representation language.

Examples given throughout this paper use the RoboCup [3] Middle-Size
league domain which features numerous qualities making AI planning a diffi-
cult task: it is a fast paced multi-agent environment hosting teams of four fully
autonomous robots to compete in soccer games. All data are gathered by sen-
sors the robots must bear themselves, and therefore much of the research in this
league focuses on yet-to-solve problems concerned with vision and actuating.
Processing power is limited as it is needed for other complex computation tasks
(e.g. self localization, object tracking, etc.). Data are usually incomplete and un-
certain. On the whole, the Middle-Size league offers a domain that comes very
close to the real world.

2 Plan and Knowledge Representation

Following classical STRIPS [4] representation, a planning problem is defined as
consisting of an initial state I, a goal description G and the domain theory A
which describes the actions the agent can perform. STRIPS representation has
seen plenty of useful extensions since it was first introduced. Applying some of
these (e.g. quantification, disjunctions, etc.) allows the usage of first-order logic
instead of plain propositional conjunctions as were used for original STRIPS
planning (with the exception of disjunctions not being allowed for action-effect
descriptions, as that would make actions non-deterministic).

2.1 Representation Language

State descriptions are given as logical sentences. Actions consist of a precondition
and an effect, both again first-order logic sentences (without disjunctions for the
effect). An agent also needs knowledge about the world and its assignment in it.
Knowledge about the state of the world is drawn by observations that need to
be mapped to predicates. In the presented framework, an agent’s possible tasks
are organized in a hierarchical way:

Strategy is shared by all agents of a multi-agent system, and consists of roles.
Role consists of a precondition and an invariant that are used to decide if a

role is suitable. Furthermore a role contains a set of possible tasks an agent
performing a role should pursuit.

Task is an extended planning problem. It consists of a precondition (initial state
of planning problem), a goal description, and in addition an invariant that
has to be true at all times during plan execution.

2.2 Example Situation

To illustrate the representation language, an example from the RoboCup domain
is given. The situation in Figure 1 is described by using constants Ball, OwnGoal



526 G. Fraser and F. Wotawa

HasBall(X): Robot X is in ball possession

InReach(X, Y ): Object X is in kicking range

of Y

Blocked(X): There is an obstacle between

the robot evaluating the statement and X

that prevents ball passing

AwaitingPass(X): X is awaiting a pass

At(X, Y ): X is at position Y

Fig. 1. Example robotic soccer situation. Image is a screen-shot of Simsrv [5], a Middle-
Size league simulator. Connected agents are running the implementation of the de-
scribed planning framework

and OpponentGoal for own and opponent goal respectively, Attacker and Helper
for the two octagonal robots, where the one close to the ball is assumed to be
Attacker.

Attacker and Helper share the same strategy consisting of two roles, an
offensive and an assisting one, having the preconditions HasBall(Self) and
¬HasBall(Self) respectively, where Self stands for the agent evaluating the
statement. As HasBall(Self) is true for Attacker, we assume it chooses the
offensive role while Helper chooses the assisting role. Attacker chooses the goal
At(Ball, OpponentGoal), and its plan has an invariant ¬Blocked(Goal). Helper
chooses the goal InReach(Attacker) ∧
¬Blocked(Attacker).

2.3 Plan Invariants

The actual planning problem that has to be solved by a planning algorithm is
created by choosing a task. The initial state I is determined by the agent’s ob-
servations that have to fulfill the task’s precondition in order for the task to be
selected. The goal description G is contained in the task, and a plan p is calcu-
lated by a planning algorithm using the domain theory A. In contrast to classical
planning we extend the classical planning problem definition by plan invariants.

An extended plan for a planning problem (I, G, A) is a tuple (p, inv), where
p is a solution plan for (I, G, A) and inv is a logical sentence which states the
plan invariant. The invariant inv is a manually defined logical sentence that has
to hold in the initial and all subsequent states. Previously, invariants have been
used for planning in order to cut down the size of the search space and thus
speeding up planning ([6]) However, such invariants are pure domain constraints
and unlike the plan invariants used in this context.

Section 4 shows examples of how advantages can be gained by using plan
invariants. Plan invariants are unlike plan preconditions in that the truth value
of the invariant is not changed by applying operators. The precondition, on the
other hand, is more like a trigger that describes the state the world has to be
in, in order for a plan to start, and this state of the world needs to be altered in
order to reach a goal.
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(a) Ball is ahead (b) ”Ball ahead” is still true

Fig. 2. Qualitative Reasoning, uncertainty does not need to be handled

2.4 Uncertainty and Nescience

Data collected by robots acting in real world environments are very error prone,
assuming realistic, affordable equipment. It has been argued [7] that uncertainty
and stochastic methods are necessary to process such uncertain data. However,
we claim that certainty is not a requirement for decision making. Hence, choosing
a sufficiently abstract vocabulary for the representation language the aspect of
uncertainty is of secondary importance. The remaining problem is to find a
sufficient level of abstraction, and moreover how to be sure that it is sufficient.

As an example, consider the RoboCup environment. Using numerical com-
parisons for distance measures as predicates is inseparably bound to uncertainty.
In order to make a decision, however, it is sufficient to review the relative dis-
position of objects. Is the ball behind or in front of the robot (Figure 2)? Is a
teammate to the left or to the right? At this level of abstraction it is irrelevant
if a distance measure is incorrect. This idea is adhered to by the research field of
qualitative reasoning [8]. Of course, a resulting binary decision might be wrong,
especially in border cases caused by impreciseness. Even so, this risk is justifi-
able. If a decision is indeed wrong, plan execution will fail, and quickly detecting
failure is exactly what the presented framework focuses on.

Finally, as a simple counter-measure to incomplete knowledge a new predicate
is defined in order to make nescience explicit. Often a robot is not able to observe
all of its environment, and so data necessary to calculate the truth value of some
predicates might be lacking. For example, if a RoboCup robot does not actually
see the ball it cannot tell anything about dispositions of the ball with regard to
other objects. A predicate Unknown(Ball) changes its truth value with to true.
Such a predicate is a very useful addition to a plan’s invariant. For example,
a plan for offensive soccer play might only be feasible as long as the ball is
observed, or a plan to assist a teammate might only be feasible as long as the
teammate is seen.

On the whole this makes the representation language very straight-forward
yet powerful and flexible.
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3 Plan Creation

As the representation language used is based on STRIPS and only well-known
extensions are used, any planning algorithm following the classical planning ideas
can be used. As the main focus is on plan execution and execution monitoring,
manual plan creation is also possible.

The actual planning problem is created by selecting a task from the current
role the agent is performing, as described in Section 2.3

4 Plan Execution and Plan Monitoring

Assumptions made at plan creation time (e.g., atomic actions that always succeed)
cannot hold in the real world, where the plan is executed. Actions fail, other agents
do interact with the world, and plans are likely to fail. However, failure is not the
only reason for a plan to be invalid. Possible reasons that invalidate a plan are:

Inexecutable Actions: It might not be possible to execute actions at any
point of the plan execution. This is detected when trying to execute the
action, as its precondition is not fulfilled.

However, an action might be inexecutable also at later points in the
plan. For example, a soccer robot might be busy with communication or
some movement action, while at a later point in its plan there is a kicking-
action that cannot be executed because the robot has lost the ball. If the
current action does not check ball possession with its precondition, the plan
is executed up to the kick action where the failure is detected. Adding a
predicate HasBall that is true if the agent is in ball possession to the plan
invariant, immediately invalidates the plan as soon as the agent looses the
ball, and enables it to quickly react and re-plan.

Failed Actions: Actions might fail to achieve the intended effect. This can
easily be detected by validating the action’s effect description with the world
state after the execution is finished.

Unreachable Goal: Even if all actions of a plan are executable, i.e. their
preconditions are fulfilled (unless they depend on other action’s effects), a
goal might not be reachable. This is caused by exogenous events which are
not considered at the time of plan creation.

For example, in a RoboCup soccer game a referee might call charging.
Clearly it would not be feasible to include the requirement of charging not
being called in all actions’ preconditions, besides for other plans the same
actions could still be executed.

As another example, there are other agents that interact with the same
environment. Any of these other agents might at any time invalidate effects
of previously executed actions, thus making the goal unreachable.

Unfeasible Goal: Even though all actions are executable and the goal reach-
able, a plan might not be necessarily feasible. In a dynamic domain the ob-
jectives of an agent might quickly change. This becomes especially apparent
when considering multi-agent interaction, as described in Section 5.
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Clearly, plan execution has to be monitored to ensure plan validity and quick
reaction to unexpected changes. During execution of an action, its precondition
is checked, and only if it is fulfilled the action is executed. If an action’s effect
is fulfilled before executing the action, the action is skipped and plan execution
is continued with the next action. The plan invariant has to be monitored at
all times of plan execution. If the invariant is invalidated, an action fails or is
not executable, the agent cannot continue to execute the current plan. Plan
reparation or re-planning needs to be performed.

Figure 3 shows the robots from the

Fig. 3. Invalidated plan invariant

example given in Figure 1 after exe-
cuting their plans for a while. At some
point during execution, Attacker de-
tects that it cannot fulfill its plan as
the current plan invariant is no longer
valid (Blocked(Goal) becomes true).
It has to consider a new task.

5 Cooperative Planning

This section shows how to achieve cooperation with simple means with a focus
on monitoring, it is not meant as a fully fledged Distributed AI framework.

The first step towards cooperative behavior is determined by the concept of
strategies and roles as explained earlier. A strategy implicitly defines a team’s
overall goals. Roles define the agents’ tasks in a way to enable cooperative be-
havior. For example, in the RoboCup domain, subsidiary roles could be attacker
and assistant player. Preconditions and invariants assigned to these roles are
defined so that assuming all agents share the identical view of the world no two
agents choose the same role. However, it is not very likely that robots acting in
a real world environment share the same view. Therefore each role has a utility
function. When an agent picks a role it broadcasts this decision together with
the utility value. If another agent chooses the same role but has a higher utility,
the other agent has to choose a new role. This approach for role coordination
has already successfully been used for robotic soccer teams in the RoboCup
Middle-Size league as shown in [9, 10].

Complementary roles let the agents choose such goals that might depend on
each other. For example, the RoboCup assistant robot might try to stay close
enough to the attacking robot in order to be able to receive a pass at any time.
A plan invariant for this plan could be the requirement that the attacker is in
ball possession (HasBall(X)). If the attacker looses the ball, the invariant of
the assistant’s plan becomes invalid and the assistant has to choose a new task.

This consideration reveals the need for such predicates that describe what
other cooperating agents are doing, and then include these predicates to plan
invariants to monitor cooperating agents. In a RoboCup scenario, such predicates
could be HasBall(X) to indicate that X has the ball or AwaitingPass(Y ) to
indicate that Y is awaiting a pass.
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(a) Cooperation (b) Optimistic outcome

Fig. 4. Continued example

To achieve interaction, we define communication as regular actions. As a
first, simplistic approach, we let the queried agent consider the fulfillment of
the communication as its new goal. Of course this approach is very crude, an
agent should be able to consider multiple goals, perform communication actions
in parallel etc. but for illustration it is sufficient.

As an example, the action RequestAwaitPass(X) requests agent X to await
a pass, hence the effect of this action is HasBall(X). The agent performing
the request waits until agent X is done with its plan to fulfill the request. This
might cause two problems: firstly, the agent with the ball might be threatened
by an opponent (thus invalidating the plan), and protecting the ball from the
opponent by moving away might be the preferable solution. To cover this case,
the plan invariant needs to check if waiting is safe. The second problem is that
the other agent might fail to achieve the requested result, e.g. as communication
might not be reliable. Again, a plan invariant could be used to verify that the
other agent is actually trying to help.

Figure 4 concludes the example started in Figure 1, illustrating execution
monitoring and communication as described in the preceding sections. Attacker
and Helper are two robots of the same team, where Attacker has chosen an
offensive role, and Helper a supportive one. In Figure 3, Attacker’s current plan
invariant was invalidated. As a result, a new plan was calculated: RequestAwait-
Pass(Helper), Pass(Helper), Goto(ScorePosition), AwaitPass(Helper), Kic(Goal).

Executing the request-action tells Helper to choose the goal:

InReach(Attacker) ∧ ¬Blocked(Attacker).

Figure 4(a) shows that Helper executes a plan to fulfill the goal requested
by Attacker. At the end of the plan execution, the effect of Attacker’s request-
action becomes true, and the Pass action can be performed. As soon as Helper
has the ball, it chooses a new goal:

¬Blocked(Attacker) ∧ ¬Blocked(Goal, Attacker) ∧
Inreach(Goal, Attacker) ∧ Inreach(Attacker), while Attacker continues execut-
ing its old plan. Finally, assuming quite dumb opponents for the sake of the
example, Attacker and Helper are ready to pass and score a goal. (Figure 4(b))
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6 Conclusion and Further Research

We have presented an integrated framework for plan creation, execution and
monitoring based on traditional STRIPS planning and qualitative reasoning
principles. The advantages offered by such a framework have been outlined.
Plan invariants have been introduced as a means to detect execution problems
as early as possible. The application of communication sketched in Section 5
underlines the usefulness of plan invariants, while further research is necessary
to improve cooperation through communication.

Since first-order logic is used as representation language and no special-
tailored extensions are used, the agent programming (i.e. defining goals, roles,
etc.) is very straight-forward and intuitive. Applying the framework to other do-
mains is a mere matter of defining new predicates and constants to be used for
action, goal and role descriptions. Currently, we are investigating the application
of our soccer robots in an office environment to perform service tasks.
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Abstract. We are exploring the use of auction mechanisms to assign roles within
a team of agents operating in a dynamic environment. Depending on the degree of
collaboration between the agents and the specific auction policies employed, we
can obtain varying combinations of role assignments that can affect both the speed
and the quality of task execution. In order to examine this extremely large set of
combinations, we have developed a theoretical framework and an environment
in which to experiment and evaluate the various options in policies and levels of
collaboration. This paper describes our framework and experimental environment.
We present results from examining a set of representative policies within our test
domain — a high-level simulation of the RoboCup four-legged league soccer
environment.

1 Introduction

Multi agent research has recently made significant progress in constructing teams of
agents that act autonomously in the pursuit of common goals [12, 15]. In a multi agent
team, each agent can function independently or can communicate and collaborate with
its teammates. When collaborating, the notion of role assignment is used as a means
of distributing tasks amongst team members by associating certain tasks with particular
roles. The assignment of roles can be determined a priori or can change dynamically
during the course of team operation.

Collaboration enables a team of agents to work together to address problems of
greater complexity than those addressed by agents operating independently. In general,
using multiple robots is often suggested to have several advantages over using a single
robot [4, 7]. For example, [11] describes how a group of robots can perform a set of tasks
better than a single robot. Furthermore, a team of robots can localize themselves better
when they share information about their environment [7]. But collaboration in a team
of robots may also add undesirable delays through the communication of information
between the agents.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 532–539, 2005.
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We are exploring — within dynamic, multi-robot environments — the use of auction
mechanisms to assign roles to agents dynamically and the effect of different approaches
to collaboration within the team. In order to evaluate this set, we have developed a
theoretical framework and a simulation environment. The theoretical framework helps
us to identify the space of possibilities, and the simulation environment helps us to
evaluate the various degrees of collaboration.

This paper begins by highlighting some background material on auctions and the
use of auction mechanisms in multi agent systems. Then we describe our theoretical
framework. Next we detail our experimental environment — a high-level simulation
of the RoboCup Four-Legged Soccer League. We then present results of simulation
experiments evaluating both collaborative and non-collaborative models of information
sharing as well as various auction policies. Finally, we close with a brief discussion and
directions for future work.

2 Auctions

Following Friedman [9], we can consider an auction to be a mechanism that regulates
how commodities are exchanged by agents operating in a multi agent environment.
An auction mechanism defines how the exchange takes place. It does this by laying
down rules about what the traders can do — what messages they can exchange in an
interaction — and rules for how the allocation of commodities is made given the actions
of the traders. Auctions have been used in different environments for resource allocation,
such as electronic institutions [6], distributed planning of routes [13] or assignment of
roles to a set of robots to complete a common task [10].

3 Theoretical Framework

In our auction, there are two types of agents: the auctioneer and the trader — a player
in the RoboCup soccer game. The player makes an offer and the auctioneer’s job is to
coordinate the offers from all the players and perform role assignment. There are five
main components to our model.

First, we define R to be the set of possible roles: R = {PA, OS, DS}, where PA
is a primary attacker, OS is an offensive supporter, and DS is a defensive supporter.
Note that the goalie is not considered a role to be assigned in this manner, since it cannot
change during the course of the game.

Next, we define P to be a set of player attributes: P = {dball, dgoals, dmates, dopps}
where dball contains the distance from the player (who is making the offer) to the ball;
dgoals contains the distance from the player to each goal; dmates contains the distance
from the player to each of its teammates; and dopps contains the distance from the player
to each player on the opposing team.

Third, we define F to be a set of functions which define the method for sharing per-
ception information between agents. This information could be shared with teammates,
the auctioneer, or both. Fourth, we define M to be a matching function, the method used
by the auctioneer for clearing the auction, i.e., matching the offers with roles. In other
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words, the matching function captures the coordination strategy. Finally, we define an
auction, A, to be: A = 〈P, R, M, f〉 where P ⊆ P and P �= ∅; R ⊆ R and R �= ∅;
M ⊆ M and M �= ∅; and f ∈ F .

Our work is systematically exploring the space of all possible auctions P × R ×
M × F . B denotes the set of possible types of offers in a particular auction, A ∈ A:
B = {r,w} where: r ⊆ R is a set of roles for which the player bids; w is a set of
real-valued weights, one weight corresponding to each of the roles in r (a weight of 0
means that the player is not interested in making an offer for the corresponding role);
and f(p), p ⊆ P , is the mechanism by which perceptual data is used to determine r
and w.

To date, we have defined two different types of auctions within this framework —
a simple auction [5] and a combinatorial auction [3]. We can define a simple auction
bt ∈ B as: bt = {r, w}, where the role r and w are singletons(unique offer). And a
combinatorial auction, is defined as: bt = {(r0, r1, r2), (w0, w1, w2)} where ri and
wj are singletons. Using different combinations of weights allows the agent to bid for
different combinations of roles, and this makes the auction combinatorial [1].

4 SimRob: Our Simulated Approach to a RoboCup Game

We are using RePast[14] to implement our environment. RePast allows us to build a
simulation as a state machine in which all the changes to the state machine occur through
a schedule. In order to model a RoboCup soccer game in RePast, we need to define the
agents, the environment and the state machine that RePast will execute at each scheduled
tick, i.e., simulated time step.

4.1 Agent Parameters

The RoboCup Four-Legged League environment has four Sony AIBO robots per team
and a bright orange ball. Each one of the robotic agents is associated with an array
containing the values that define their perception and localization:

(x, y, φ, dball, dgoals, dopps, dmates, bball, bgoals, bopps, bmates) (1)

where (x, y) are the 2D coordinates of the robot on the field1; φ is the orientation of
the robot2; dball is the distance from the robot to the ball, dgoals is the distance from
the robot to each goal, dopps is an array containing the distance from the robot to each
opponent, and dmates is an array containing the distance from the robot to each team-
mate. The boolean values in the second half of equation (1) indicate if the ball has been
detected by the player (bball), if each goal has been detected by the player (bgoals), if
each opponent has been detected nearby (bopps) and if each teammate has been detected
nearby (bmates).

1 The field itself is broken down into the same discretized grid that we use for localization on the
AIBOs.

2 The 360◦ of orientation are divided into eight 45◦ sections, numbered 0 through 7.
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4.2 Simulation Skeleton

We use RePast in order to simulate the development of a game with the agents. At the
beginning of the simulation, we define four agents (per team) and a ball in the field. Each
of the agents is defined as explained above, by means of an array as in equation (1). The
simulation run in RePast can be divided into the following steps:

(1a) Generation of the agent parameters In this first step, we obtain the parameters
of each of the agents in the field. The localization of the robot is expressed with the
coordinates (x, y) in a 2D field. We also obtain the distances to the ball dball, to the goal
dgoals and to the opponents dopps.

(1b) Amount of information shared by the agents The information shared by the agents
is: mingoal, a boolean variable that is true when the agent is the one closest to the goal.
This variable can be defined when the agents share the variable dgoals among them.
maxopp is a boolean variable that is true when the agent is farthest away from the
opponents in the field. This variable can be defined when the agents share dopps. And
maxball is a boolean variable that is true when the agent is farthest away from the ball.
This value can be defined when the variable dball is shared among the agents.

(2a) Defining a bidding policy for the agents For each simulation tick of the game
play, the agent’s bid will be the role associated by the policy being tested to the set of
perceptions gathered by the agent at that simulation tick.

(2b) Defining an auction policy for the auctioneer The auction is responsible for dis-
tributing the roles between the agents on the field. The auctioneer will go through the
different roles in the bid until one of the roles in the array is assigned to the agent,
meaning that the bid is won.

(3) Game Play Once the agent-roles are defined, we have to actually simulate the joint
task to be developed by the agents. As stated before, our aim is that of simulating a
soccer game. The game model is very simple. Each role has a state graph that will output
a certain behavior depending on the perceptions gathered by the agent:

– PA Behavior: If the agent sees the goal and the ball, then it kicks the ball, otherwise
it turns to look for the ball without losing track of the goal.

– OS Behavior: If the ball is seen, the agent kicks it.
– DS Behavior: If the ball is seen, the agent follows it in order to prevent an agent

from the opposing team scoring.

Finally, if a goal is scored, the robots are sent back to their initial positions and
the ball randomly changes location. Then, the three step (parameter generation, auction
execution and game play) simulation is run again.

5 Experiments

This section describes our experimental work to date. We have started to explore the
range of possible auctions and their effect on the coordination of a team, as measured
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Table 1. Example non-collaborative simple(S) and combinatorial (C) auctions

Ball seen Opponent seen Mate seen Role(S) Role(C)
0 0 0 DS [OS,.7,DS,.2,PA,.1]
0 0 1 DS [OS,.7,DS,.2,PA,.1]
0 1 0 DS [OS,.7,DS,.2,PA,.1]
0 1 1 DS [OS,.7,DS,.2,PA,.1]
1 0 0 DS [OS,.7,DS,.2,PA,.1]
1 0 1 DS [OS,.7,DS,.2,PA,.1]
1 1 0 OS [OS,.7,DS,.2,PA,.1]
1 1 1 OS [OS,.7,DS,.2,PA,.1]

by their performance in simulated games. We have experimented with four very simple
types of coordination and describe policies that we have used for experimentation, chosen
somewhat ad hoc. In current work, we are learning policies [8].

5.1 Non-collaborative Simple Auction

This approach defines a team of agents that don’t share any perception data. Hence, each
one relies on the information that it gathers independently of the others. The offers made
by the agents follow the policy in Table 1 column Role(S). This shows that we have
defined the agent to offer to be OS when both ball and opponent are seen. In any other
case, our agent will offer to be DS. We have chosen a simple matching policy that just
associates a fixed role to each of the possible sets of perceptions.

5.2 Non-collaborative Combinatorial Auction

In this case there is still no sharing of perception, but the bid now contains a vector
defining the agent’s role preferences For our experiments, we have defined two different
bidding policies. The offensive policy, defined in Table 1, column Role(C), represents
a team with an attacking approach, always looking for the goal and aiming to score.
The other policy is more defensive. The offensive policy assigns the array of roles
[DS,.7,OS,.2,PA,.1] to each of the agents. The matching is the same as before.

5.3 Collaborative Simple Auction

In this case, the agents share all the perception data. Hence, when defining the bids, we
can also share the three variables related to the minimum and maximum distances to
the ball, opponents and goal. The table defining the bidding policy is huge. In Table 2,
column Role(S), we show a few lines to give the sense of it, but it is deliberately similar
to the policy for the non-collaborative auction to give a reasonable comparison. When no
elements are seen by any of the agents, the agent bids for the role DS. When everything
is seen and the distances are minimum, the agents bid to be OS. The matching policy is
also the same as for the non-collaborative examples.
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Table 2. Collaborative simple(S) and combinatorial(C) auctions

Ball seen Opp seen Mate seen MinGoal MaxOpp MaxBall Role(S) Role(C)
0 0 0 0 0 0 [DS] [OS,.7,DS,.2,PA,.1]
0 0 0 0 0 1 [DS] [OS,.7,DS,.2,PA,.1]
... . . . . . . .
1 1 1 1 1 1 [OS] [OS,.7,DS,.2,PA,.1]

Table 3. Results

Number of goals scored after 2000 ticks.
unique not unique

offensive defensive offensive defensive
bid bid bid bid

noncollab simple 16 – 16 –
noncollab comb 33 43 30 47
collab simple 40 – 67 –
collab comb 49 37 78 67

5.4 Collaborative Combinatorial Auction

Here the bidding Table 2, column Role(C), is similar to the previous one, but contains
a vector of bids and weights instead of only one role, and this vector is like that for the
non-collaborative combinatorial auction. Again we ran experiments with an attacking
bidding policy and a defensive bidding policy, and the matching table is the one used in
the previous examples.

5.5 Results

Teams using each of the types of coordination described above (including separate of-
fensive and defensive techniques in the combinatorial auction) were run in simulation
against the same, simple, opponent in order to evaluate the effectiveness of the collabo-
ration policy. The opposing team moved randomly around the field, but was not intended
as serious opposition, rather it was intended as a baseline against which all mechanisms
could be judged equally. For each coordination mechanism, we ran two sets of experi-
ments. In one, the “unique” experiments, we made the auctioneer assign unique roles to
agents. In the “not unique” experiments, the auctioneer was allowed to assign duplicate
roles. The average number of goals scored for each of the different kinds of collaboration
are given in Table 3, and plots of the goals scored over time for a sample game are given
in Figures 1.

In the non unique approach, collaborative teams score almost double the number
of goals of the non-collaborative teams. In the unique role approach, differences in
the score of the games between the collaborative and non-collaborative approaches for
both simple and combinational auctions are not so marked. This is due to the fact that our
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Fig. 1. Goals scored over the course of a game

matching policy is very demanding and since we do not allow repeated roles, the auc-
tioneer often ends up distributing roles randomly. In order to prove this last assertion,
we defined a parameter called success ratio in the simulation. The success ratio is as-
sociated with the acceptance of the bids made by an agent. The higher the ratio, the
more times its bid has been accepted. In the not uniqueness experiments, we obtained
very low ratios, meaning that the agents almost never won a bid, and so, the roles were
distributed randomly.

6 Conclusions and Future Work

This paper has described our preliminary work in exploring the use of auction mecha-
nisms to coordinate players on a RoboCup team. While this work is only just beginning,
we believe that the results demonstrate the potential of the approach to capture a wide
range of types of coordination, and to be able to demonstrate their effectiveness through
simulation. In addition, this approach makes it simple to explore more complex, and
potentially more flexible, kinds of role allocation than have been previously used in the
legged-league, for example [2, 16].

Our longterm work is to build on this foundation and explore a wide range of pos-
sible auctions through simulation and on real (physical) robots. We are currently using
learning techniques to automatically explore the space of auctions. We further intend
to implement the most effective bidding and matching policies developed on our real
Legged-League team.
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Abstract. Object recognition systems contain a large amount of highly
specific knowledge tailored to the objects in the domain of interest. Not
only does the system require information for each object in the recog-
nition process, it may require entirely different vision processing tech-
niques. Generic programming for vision processing tasks is hard since
systems on-board a mobile robots have strong performance requirements.
Such issues as keeping up with incoming frames from a camera limit the
layers of abstraction that can be applied. This results in software that
is customized to the domain at hand, that is difficult to port to other
applications and that is not particularly robust to changes in the visual
environment.

In this paper we describe a high level object definition language
that removes the domain specific knowledge from the implementation
of the object recognition system. The language has features of object-
orientation and logic, being more declarative and less imperative. We
present an implementation of the language efficient enough to be used
on a Sony AIBO in the Robocup Four-Legged league competition and
several illustrations of its use to rapidly adjust to new environments
through quickly crafted object definitions.

1 Introduction

Most object recognition systems use hard-coded, domain specific knowledge.
For example, all leagues in Robocup rely on the ball being orange and spherical.
If it were changed to be a non-uniform colour or a non-uniform shape then
most object recognition systems would have to be largely re-coded1. We saw
how devastating this was in last years challenge in the four-legged league which
required the robots to locate a black and white ball where only eight of the
twenty-four teams managed to even identify the ball and no team passed the
challenge2.

This paper presents a higher level descriptive language of the objects we are
likely to recognise in a particular domain and thus leave the underlying vision

1 This is certainly true for the team Griffith 2003 code. There are many other examples
of systems that are programmed in this way because they are based on the vision
algorithms developed by Carnegie Mellon University[1] for the year 2000 competition.

2 http://www.openr.org/robocup/challenge2003/Challenge2003 result.html
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system programming unchanged. We claim that the approach allows rapid ex-
pansion to newer or changing vision domains. The case study for this work is the
Sony AIBO platform in the Robocup Four Legged league. By modern standards
in vision processing systems, these inexpensive robots are not computationally
rich. We will present both the high-level descriptive language called XOD (XML
Object Description) and the techniques used to translate it to C++ code. We
will also present several illustrations where we have used our system to recongise
vastly changed objects on the soccer field.

2 Related Work

There have been a considerable number of studies on different methods for repre-
senting objects generically in such a way that they can be located within target
images. Much of this work focuses on trying to learn object representations from
sample images and, as such, the generic representation usually takes the form
of a statistical model [2] or some subspace representation of the features of the
object [3]. These methods rely on supervised learning techniques. While these
systems do function reasonably well in variant lighting conditions and poses of
objects, they are still not easily applied to the task of mobile robotics. They work
well in situations where the object, though possibly unknown, is in a controlled
environment within the image (such as when the background of the image is
known and the object features, therefore, can be easily extracted) but are less
tolerant to object occlusion and background uncertainty.

Another closely related problem, which our work also addresses, is that of
how to combine and apply existing vision processing techniques to the object
recognition task. For example, some object A may require that edges be extracted
and the texture of the internal pixels analysed for identification while another
object B is more easily identified by colour segmentation and connected region
analysis. Draper [4] proposes that the task of object recognition is a goal driven
task and the user of the system should not need to specify which combination
of vision processing techniques are applicable on a per-object basis. Instead
Draper proposes that the vision processing tasks themselves can be treated as
primitives and their correct combination and application learned by the system
for each object, again by supervised learning techniques. Our work addresses
this problem by the static transformation of user-created object descriptions
into a vision processing pipeline for each object which will use only applicable
techniques according to the description.

The difference between the problems discussed above and the problem ad-
dressed by this paper is that in the field of mobile robotics one usually has the
added difficulty of determining if any of some known set of objects is present in
an image and, if so, where. Our work simplifies the task of describing the objects
- our system does not learn object descriptions but rather they are given to us by
the user. The end of this is similar to other systems in that the domain specific
knowledge is still removed from the vision processing module and the details of
the vision processing itself are not needed to be understood by the user. The ad-
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vantage of this approach, however, is that our system allows for quick and robust
adaptation to varying visual domains with no prior sample images. Supervised
machine learning techniques require large databases of classified samples and
substantial amounts of processing time, neither of which is necessarily available
in the field of mobile robotics.

The idea of codifying the domain specific knowledge in a goal driven and
code independent manner is not new. The German team in Robocup 2003 [5]
presented an XML based specification language for agent behaviors. Our paper
presents a similar system applied to the task of visual object recognition.

3 The XOD

XOD stands for ”XML Object Description” and it is the first version of a
language used to describe the objects we expect our robot to see in a code-
independent way. The language works with several types of primitives - points,
lines, blobs and objects - as well as collections of these primitives. When we for-
malise the language as a logic where these primitives are the terms of the logic.
The relationships between the primitives of our language become the predicates
of the logic. We also take advantage of the overlaps between object-orientation
and knowledge representation in AI to allow our primitives to have properties
defined on them. We now define what we mean by these primitives.

A point is used to represent a pixel. It is not the responsibility of the vision
system to convert items from pixel into world coordinates so a point’s loca-
tion (x, y) in an image is one of its properties. We can use points to specify
properties of other objects such as line intersections or centers of objects.

A line is simply a collection of connected points, for example a connected border
between two different colours. There are two stages of processing on lines -
edge detection and vectorisation. It is sometimes useful to represent lines in
raster form and sometimes useful to represent them in vector form so our
language allows descriptions for both representations. Our language operates
on the properties of lines and the relationships between lines and blobs to
find objects. Note that a property of a line could also be an object (as in the
line’s first point).

A blob represents a bounding rectangle on a connected set of similarly coloured
pixels as well as some other properties of these pixels. Our language also
operates on the properties and relationships between blobs to find objects.
Both the definition and implementation of blobs in our system are a little
different to that of other vision systems[1]. Blobs are often defined as a
connected set of similarly coloured pixels and implemented with tree-based
union-find operations. We have found that simply maintaining bounding
rectangles with some other useful properties allows for faster performance
with no penalty on blob identification.

Thus an object is a named entity in our language. It can be a blob, a line
or a point or a set thereof. Objects are made externally available for post-
processing by other modules on the robot. We may, for example, have an
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<object>
<id>PY BEACON</id> entity(A, B, py beacon) ⇔
<above> above(A, B) ∧
<touching proximity=0.25> touching(A, B, 1) ∧
<proportional error=0.25> proportional to(A, B, 0.25) ∧
<blob><colour>PINK</colour></blob> colour(A, pink) ∧
<blob><colour>YELLOW</colour></blob> colour(B, yellow)
</proportional>
</touching>
</above>
</object>

Fig. 1. A simple XOD representation and its logical equivalence for a pink/yellow
beacon in RoboCup Four-Legged League

object called ball or we may also have an object called field edge which is
actually a set of vectorised lines representing the edge of the field.

3.1 Declarative Elements

The task of XOD is to represent objects of interest in a way that allows C++
code to be automatically generated for the task of locating the objects within
an image if they are present. We use an XML based language because of its
transportability and readability by humans and machines (but the language
can be represented as logic clauses for even more readability, see illustrations
and figures). The main construct in this language is the tag <object> which
encapsulates the definition of an object. All objects have a property of a name
indicated by the <id> tag. Many more features or properties are possible a la
Object-Orientation or Frames.

To illustrate the language assume now that the object the vision system will
attempt to recognise is to be identified via the use of colour (a common case
in Robocup), and not by lines or edges. Then the object will be encapsulated
(circumscribed/bounded) by a blob (if it is a single colour) or encapsulated by
two or more overlapping blobs of different colours. Our language allows us to
search for interesting blobs by both their properties (for example the <colour>
tag) and the relationships between blobs (<above>, <in front>, <touching>,
etc) . For example, the XOD in Figure 1 could be used to locate a pink blob
touching the top of and proportional to a yellow blob, useful if we were looking
for the pink on yellow beacon in RoboCup Four-Legged League.

XOD also allows limitations on the blobs that we use based on the properties
of the blob. For example if we were looking for a large orange blob that has at
least 50% of the pixels within the bounding rectangle of the correct colour then
we might write something like the XOD in Figure 2. Figure 2 also illustrates
how the language will permit us to check relationships (or apply predicates)
with other, previously defined objects such as the field edge. The truth value
of these predicates are determined differently depending on the type of object
being used. For example, the truth value of below(A, FIELD EDGE) will need
to be calculated differently depending whether FIELD EDGE is an edge set or
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<object>
<id>FIELD EDGE</id> entity(A, field edge) ⇔
<edge> a ∈A ∧
<source>FIELD BLOB</source> bounded by(a, field blob) ∧
<colour>WHITE,GREEN</colour> [between colours(a,white,green) ∨
<colour>YELLOW,GREEN</colour> between colours(a,yellow,green) ∨
<colour>BLUE,GREEN</colour> between colours(a,blue,green)] ∧
<vectorise>line</vectorise> straight line(a)
</edge>
</object>
<object>
<id>CLOSE BALL<id> entity(B, close ball) ⇔
<below> below(B, field edge) ∧
<blob>
<colour>ORANGE</colour> colour(B, orange) ∧
<area op=gt>5000</area> greater than(area(B), 5000) ∧
<pixels op=gt>2500</pixels> greater than(pixels(B), 2500)
</blob>
<object>FIELD EDGE</object>
</below>
</object>

Fig. 2. A simple XOD representation and its logical equivalence for a large, primarily
orange blob below the field edge line

<object>
<id>FAR BALL</id> entity(A, far ball) ⇔
<blob>
<colour>ORANGE</colour> colour(A, orange) ∧
<pixels op=lt>500</pixels> less than(pixels(A), 500) ∧
</blob>
<select>
<area op=gt></area> ∀x greater than(area(A), area(x)) ∧
</select> colour(x, orange) ∧ less than(pixels(x), 500)
</object>

Fig. 3. As an approximation to finding a far orange ball, here is an XOD definition
finding the largest orange blob less than 500 pixels with its equivalent logic

a blob. In Figure 2 it is implemented as a set of edges to illustrate that objects
do not necessarily need to be formed from blobs.

3.2 Imperative Elements

Our language goes beyond declarative statements to simplify using quantifiers.
This is illustrated when more than one blob in an image matches the criteria
in an object definition. In this situation we have the option to specify how to
select the correct one or to save the list for post-processing. We do this via the
<select> tag. We may choose either to keep the entire set or to select one object
according to some criteria. Figure 3 illustrates the example where we want to
choose the largest orange blob with less than 500 pixels.

We can choose to select by any of the attributes of the blob or by comparing
to some other named entity. For example, it is possible to select the closest red
blob to the object identified already to be the yellow goal. In the four legged
league this could be useful in identifying the red goal keeper. In the absence of
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Fig. 4. The conceptual schematic pseudo-code of figure 1. The actual implementation
has more efficient control flow

any select statement the default action is dependent on the type of object. If the
object is a blob then the largest blob by area is selected however if the object is
a point or an edge then the set is kept and the object remains a collection.

There are other imperative statements in the language used to modify or
create objects rather than define or select them3.

3.3 Implementation

Each XOD is converted to C++ code that performs the following three-step
meta-procedure:

1. Build subsets of the universal blob set according to the properties specified
in the <blob> section of the definition.

2. Apply predicates forming sets of composite blobs which represent interme-
diary and candidate objects.

3. Apply the operators according to the <select> statements.

Figure 4 illustrates the meta-code generated from the XOD example in Figure 1
(searching for a pink on yellow beacon). Firstly subsets containing respectively
all the pink and yellow blobs are collated from the universal blobset. If there
were other property restrictions defined on these blobs then they would also
be checked at this stage. The second step is to compare every blob in list 1
against every blob in list 2 to see if the predicates defined by the relationship
tags evaluate to true. If they do, then a new blob is created that bounds both
of these blobs and it is added to the universal blobset as well as a new set
containing those blobs generated in this stage. Properties are generated from
the two source blobs and it is given a colour unique to this XOD. Finally the
largest blob (by area) is selected from the set of composite blobs and named
PY BEACON because the XOD in Figure 4 has no <select> statement so the
default action applies (select largest by area).

For efficiency, our implementation does not actually manipulate sets of blobs
but rather indices to blobs in an array. All blobs (including composite blobs cre-
ated by our procedure) are stored in a single, unchanging (with the exception of
adding new blobs) array. We also perform several other important optimisations.

3 <create>, <copy>, <set>
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4 XOD Illustrations

4.1 Black and White Ball

One of the Robocup four-legged league challenges last year required teams to
locate a black and white ball and then score a goal with it. The challenge was
not performed successfully by any team in the competition. The XOD language
allows us to specify a definition for the ball that requires only very minor al-
terations in the ball definition and the system will identify balls of non-uniform
colour easily; in this case, a black and white ball. The XOD used to identify the
black and white ball in Figure 5 differed only by three lines to the XOD used to
locate an orange one.

Fig. 5. The XOD used to locate the orange ball differs only by three lines to the XOD
used to locate the the black and white ball

Fig. 6. AIBO Vision Workshop 2 running sideways beacon detection code. The XOD
to find sideways beacons (flags) differs only in one word to the XOD used to locate
normal beacons

4.2 Flag Instead of Beacon

One proposal to move Robocup more towards real soccer is to replace the nav-
igation beacons with corner flags. The pictures in Figure 6 illustrate that our
XOD system is capable of easily adapting to this change. Turning the beacons
on the side requires only that the <above> relationship in the beacon definition
be replaced with a <left of> relationship.
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5 Conclusion

XOD is an XML based language used to represent object descriptions in a code-
independent way. This frees the vision system from requiring domain dependent
knowledge to locate useful objects within an image. We have presented both the
XOD language as well as an efficient implementation quick enough to be used
on the Sony AIBO platform during a Robocup competition.

XOD enables us to quickly adapt to changing circumstances in the vision
domain. For example, if the ball were changed to be a non-uniform colour (such
as black and white) or the beacons were changed to be flags then the XOD
definition of the objects can quickly be adapted to the new situation. The XOD
also enables us to extend our vision processing application to domains other
than the one it was originally designed for. We illustrated this by detecting an
air-hockey puck. It is possible to use XOD to describe any object which can
be easily identified using either colours or lines or by its relationship to other
objects. This allows us to use XOD to identify many objects in widely different
vision applications.
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Abstract. The existing reinforcement learning approaches have been
suffering from the policy alternation of others in multiagent dynamic
environments such as RoboCup competitions since other agent behav-
iors may cause sudden changes of state transition probabilities of which
constancy is necessary for the learning to converge. A modular learn-
ing approach would be able to solve this problem if a learning agent
can assign each module to one situation in which the module can re-
gard the state transition probabilities as constant. This paper presents a
method of modular learning in a multiagent environment, by which the
learning agent can adapt its behaviors to the situations as results of the
other agent’s behaviors. Scheduling for learning is introduced to avoid
the complexity in autonomous situation assignment.

1 Introduction

There have been an increasing number of work to robot behavior acquisition
based on reinforcement learning methods [1, 2]. The conventional approaches
need an assumption that the environment is almost stationary or changing slowly
so that the learning agent can regard the state transition probabilities as con-
stant during its learning. Therefore, it seems difficult to apply the reinforcement
learning method to a multiagent system because a policy alteration of other
agents may occur, which dynamically changes the state transition probabilities
from the viewpoint of the learning agent. RoboCup provides such a typical sit-
uation, that is, a highly dynamic, hostile environment, in which an agent has to
obtain purposive behaviors.

There are a number of studies on reinforcement learning systems in a multia-
gent environment. Asada et al. [3] proposed a method which estimates the state
vectors representing the relationship between the learner’s behavior and those
of other agents in the environment using a technique of system identification,
then reinforcement learning based on the estimated state vectors is applied to
obtain a cooperative behavior. However, this method requires a global learning
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schedule in which only one agent is specified as a learner and the rest of agents
have a fixed policies. Therefore, the method cannot handle the alternation of
the opponents policies. This problem happens because one learning module can
maintain only one policy. A modular learning approach would provide one so-
lution to this problem. If we can assign multiple learning modules to different
situations in each of which module can regard the state transition probabilities
as constant, then the system could show a reasonable performance.

Jacobs and Jordan [4] proposed the mixture of experts, in which a set of
the expert modules learn and the gating system weights the output of the each
expert module for the final system output. This idea is very general and has
wide applications. Singh [5, 6] has proposed compositional Q-learning in which
an agent learns multiple sequential decision tasks with a number of learning mod-
ules. Each module learns its own elemental task while the system has a gating
module which learns to select one of the elemental task modules. However, there
are no such measure to identify the situation that the agent can switch modules
corresponding to the change of the situation. Tani and Nolfi [7, 8] extended the
idea to mixture of recurrent neural network and introduced it to predict sensory
flow pattern under a navigation task. Their scheme, however, doesn’t have any
control learning structure, which makes it difficult to acquire a purposive behav-
ior by itself. Doya et al. [9] have proposed MOdular Selection and Identification
for Control (MOSAIC), which is a modular reinforcement learning architecture
for non-linear, non-stationary control tasks. Their idea was applied to relatively
simple tasks/dynamic environment, however, it is uncertain that it is possible to
assign modules automatically in the multi-agent system that has highly dynamic
ones.

We adopt the basic idea of the mixture of experts into an architecture of
behavior acquisition in the multi-agent environment. In this paper, we propose
a method by which multiple modules are assigned to different situations and
learn purposive behaviors for the specified situations which are expected as the
result of other agent’s behavior under different policies. Takahashi et al. [10]
have shown preliminary experimental results under same domain, however, the
learning modules were assigned by the human designer. In this paper, schedul-
ing for learning is introduced to avoid the complexity in autonomous situation
assignment.

2 A Basic Idea and an Assumption

The basic idea is that the learning agent could assign one behavior learning module
to each situation which is caused by the other agents and the learning module
would acquire a purposive behavior under the situation if the agent can distinguish
a number of situations in which the state transition probabilities are constant.
We introduce a modular learning approach to realize this idea. A module consists
of learning component that models the world and an execution-time planning
component. The whole system performs these procedures simultaneously.
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– find a model which represents the best estimation among the modules,
– update the model, and
– calculate action values to accomplish a given task based on dynamic pro-

gramming (DP).

As a experimental task, we prepare a case of ball passing behavior without
interception by the opponent player (Figs. 3,5). In the environment there are
a learning agent (passer), a ball, an opponent, and two teammates (receivers).
The problem here is to find the model which can most accurately describe the
opponent’s behavior from the viewpoint of the learning agent and to execute
the policy which is calculated under the estimated model. It may take a time
to distinguish the situation, therefore, we put an assumption : The opponent
continues the one of its policies during one trial and changes after the trial.

3 A Multi- odule Learning System

Fig. 1 shows a basic architecture of the proposed system, that is, a multi-module
reinforcement learning system. Each module has a forward model (predictor)
which represents the state transition model, and a behavior learner (policy plan-
ner) which estimates the state-action value function based on the forward model
in a reinforcement learning manner. This idea of combination of a forward model
and a reinforcement learning system is similar to the H-DYNA architecture [11]
or MOSAIC [9]. The system selects one module which has the best estimation of
a state transition sequence by activating a gate signal corresponding to a module
while deactivating the gate signals of other modules, and the selected module
sends action commands based on its policy.

Predictor

Planner

Gate

Environments s a

s

Fig. 1. A multi-module learning system

3.1 Predictor

Each learning module has its own state transition model. This model estimates
the state transition probability P̂a

ss′ for the triplet of state s, action a, and next
state s′:

P̂a
ss′ = Pr{st+1 = s′|st = s, at = a} (1)

m
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Each module has a reward model R̂a
ss′ :

R̂a
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2)

We simply store all experiences (sequences of state-action-next state and reward)
to estimate these models.

3.2 Planner

Now we have the estimated state transition probabilities P̂a
ss′ and the expected

rewards R̂a
ss′ , then, an approximated state-action value function Q(s, a) for a

state action pair s and a is given by

Q(s, a) =
∑

s′
P̂a

ss′

[
R̂a

ss′ + γ max
a′

Q(s′, a′)
]

, (3)

where P̂a
ss′ and R̂a

ss′ are the state-transition probabilities and expected rewards,
respectively, and γ is discount rate.

3.3 Module Selection

The gating signal of the module becomes larger if the module does better state
transition prediction during a certain period, else it becomes smaller. We assume
that the module which does the best state transition prediction has the best
policy against the current situation because the planner of the module is based
on the model which describes the situation best. In our proposed architecture,
the gating signal is used for gating the action outputs from modules. We calculate
the gating signals gi of the module i as follows:

gi =
0∏

t=−T+1

eλpt
i

where pi is an occurrence probability of the state transition from the previous
(t − 1) state to the current (t) one according to the model i, and λ is a scaling
factor.

3.4 New Module Assignment

If all modules show worse prediction of state transition, that means all gating
signals gi of the modules become small, the system add one learning module and
feed data of sensory-motor sequence to this modules for a while.

4 Task and Assumption

The task of the learning agent is to pass the ball to one of the teammates while
it avoids interception by the opponent. The game is like a three on one; there are
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Fig. 2. A real robot Fig. 3. A simulation environment

one opponent and other three players. The player nearest to the ball becomes to
a passer and passes the ball to one of the teammates while the opponent tries
to intercept it.

Fig. 2 shows a mobile robot we have designed and built. Fig. 3 shows the
simulator of our robots and the environment. The robot has an omni-directional
camera system. A simple color image processing is applied to detect the ball
area and opponent ones in the image in real-time (every 33ms). The left of Fig.
3 shows a situation in which the agent can encounter and the bottom right shows
the simulated image of the camera with the omni-directional mirror mounted on
the robot. The robot consists of an omni-directional vehicle of which motion
(any translation and rotation on the plane) can be controlled.

The state space is constructed in terms of the centroid of the ball on the
image, the angle between the ball and the opponent, and the angles between
the ball and the teammates (see Fig. 4 (a) and (b)). We quantized the ball
position space 11 by 11 as shown in Fig. 4 (a) and the each angle into 8. As a
result, the number of state becomes 112 × 8 × 8 × 8 = 61952. The action space
is constructed in terms of desired three velocity values (xd, yd, wd) to be sent
to the motor controller (Fig. 4 (b)). Each value is quantized into three, then the
number of action is 33 = 27. The robot has a pinball like kick device, and it
automatically kicks the ball whenever the ball comes to the region to be kicked.
It tries to estimate the mapping from sensory information to appropriate motor
commands by the proposed method.

The initial positions of the ball, the passer, the opponent, and teammates
are shown in Figs. 5. The opponent has two kinds of behaviors; it defend the
left side, or right side. The passer agent has to estimate which direction the
opponent will defend and go to the position in order to kick the ball to the
direction the opponent does not defend. From a viewpoint of the multi-module
learning system, the passer agent will estimate which situation of the module
is going on, select the most appropriate module to behave. The passer agent
acquires a positive reward when it approach to the ball and kicks it to one of
the teammate dodging the opponent.
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ball ball
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teammate2

xd

yd
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(a) state variables (position) (b) state variables (angle) (c) action variables

Fig. 4. A state-action space
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Fig. 5. Task : 3 on 1
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Fig. 6. Module switching

4.1 Learning Scheduling

We prepare a learning schedule composed of three stage to show its validity. The
opponent fixes its defending policy as right side block at the first stage. After
250 trials, the opponent changes the policy to block the left side at the second
stage and continues this for another 250 trials. Then, the opponent changes the
defending policy randomly after one trial.

4.2 Simulation Result

We have applied the method to a learning agent and compared it with one
module learning system. We have also compared the performances between the
methods with and without the learning scheduling. Fig. 7 shows the success
rates of those during the learning. The success indicates that the learning agent
successfully kick the ball without interception by the opponent. The success rate
indicates the rate of the number of successes in 50 trials. The multi-module sys-
tem with scheduling shows better performance than the one-module system. The
“mono. module” in the figure indicates “monolithic module” system and it tries
to acquire a behavior for both policies of the opponent with one learning module.
The monolithic module with scheduling means that we applied learning schedul-
ing mentioned in 4.1 even though the system has only one learning module. The
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Fig. 7. Success rate during the learning

performance of this system is similar with multi-module system until the end of
first stage (250 trials), however, it goes down at the second stage because the ob-
tained policy is biased against the experiences at the fist stage and cannot follow
the policy change of the opponent. Since the opponent takes one of the policies at
random at the third stage, the learning agent obtains about 50% of success rate.
“without scheduling” means that we do not applied learning scheduling and the
opponent changes its policy at random from the start. Somehow the performance
of the monolithic module system without learning scheduling is getting worse
after the 200 trials. The multi-module system without learning schedule shows
the worst performance in our experiments. This result indicates that it is very
difficult to recognize the situation at the early stage of the learning because the
modules has too few experiences to evaluate their fitness, then the system tends
to select the module without any consistency. As a result, the system cannot
acquires any valid policies at all.

5 Conclusion and Future Work

In this paper, we proposed a method by which multiple modules are assigned to
different situations which are caused by the alternation of the other agent policy
and learn purposive behaviors for the specified situations as consequences of the
other agent’s behaviors. We have shown reffectiveness of the proposed method
with a simple soccer situation and the importance of the learning scheduling.
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Abstract. An object recognition process in general is designed as a do-
main specific, highly specialized task. As the complexity of such a process
tends to be rather inestimable, machine learning is used to achieve better
results in recognition. The goal of the process presented in this paper is
the computation of the pose of a visible robot, i. e. the distance, angle,
and orientation. The recognition process itself, the division into sub-
tasks, as well as the results of the process are presented. The algorithms
involved have been implemented and tested on a Sony Aibo.

1 Introduction

Computer vision is a multistage task. On the lowest level, the digitized image is
searched for certain, domain-dependent features. The next step combines these
features to more meaningful objects. Thereafter, a classification of the features
computed so far must take place, but the concrete implementation concerning
this classification is not as predefined as the low-level segmentation techniques.

Fig. 1. Colored markers used on Sony Aibo robots
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In order to find an algorithmic base for the recognition of robots, the problem
of pose determination is solved regarding an image of a single robot. The most
obvious feature of a robot in the Sony Four-Legged Robot League (SFRL) are
the colored markers placed on different parts of the body (cf. Fig. 1).

Apart from the unique color which can be used easily to find a robot in an
image, the geometric shapes of the different parts provide much more information
about the position of the robot. The shapes themselves can be approximated
using simple line segments and the angles between them.

2 The Recognition Process

The framework GT2003 that is used for this work is provided by the German-
Team ([2]). The process is embedded into a recognition module that receives the
robot’s current image as input and delivers the poses of the robots perceived
on the field. As shown in Fig. 2, the preprocessing stage consists of the seg-
mentation and surface generation. The pose recognition deals with the higher
level functions of attribute generation, classification, and analysis of the symbols
generated by the classification.

The recognition begins with iterating through the surfaces that have been
discovered by the preprocessing stage. For every surface, a number of segments
approximating its shape and a symbol is generated (e. g. head, side, front, back,
leg, or nothing) as shown in Fig. 3. The symbols are inserted into a special 180◦

symbol memory which is shown in Fig. 3d) at a position that depends on the
rotation of the head of the robot, e. g., a robot looking to the right will insert all

Camera-
Image Percept

Segmentat ion

Sur face-
Process ing

At t r ibute
generat ion

Class i f icat ion

Analys is

Pose Recognit ionPreprocess ing

Recogni t ion Module

Fig. 2. Overview of the recognition module
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a) b)

c) d)

Fig. 3. From original image to symbol representation. a) Original image. b) Result of
segmentation. c) Boundary of a singe segmented surface. d) The 180◦ symbol memory.

symbols on the right side of the memory. The analysis step that computes the
real pose only uses information provided by the 180◦ memory.

2.1 Segmentation and Surface Detection

The segmentation of the original image is done only on pixels which are im-
portant for the recognition of robots. This is reflected by a grid that is used to
process the image. The idea is that only pixels on the grid are tested and if they
belong to a relevant color class, the underlying, more complex algorithms are
started.

Relevant pixels are determined by color segmentation using color tables (see
e.g. [1]). When a pixel is found to be relevant, a flood-fill algorithm is started.
This way, surfaces—along with their position, bounding box, and area—are com-
puted. Some of the information gathered during this step is used in the later
processing stage of attribute generation.

The contour of the surface is computed with a simple contour following algo-
rithm. The direction that is used to add pixels is changed in a clockwise fashion.

Having computed the contour of the surface, the generation of line segments is
started. The iterative-end point algorithm as described in [6] is used to compute
the segments.
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2.2 Attribute Generation

As an important part of machine learning, the choice of the attributes to be
learned must be considered. Different kinds of attributes have been implemented.
Simple attributes, as proposed in [3] and [4], comprise, e. g., color class, area,
perimeter, and aspect ratio. Regarding the representation of the surface as line
segments, the number of corners, the convexity and the number of different
classes of angles between two line segments are provided as attributes. In addi-
tion, the surface is compared to a circle and a rectangle with the same area.The
discretization of continuous values is achieved with a simple algorithm that
searches for an optimal split value in a brute force manner.

A different approach to compute shape based attributes is presented in [5].
The underlying idea, described as conjunctions of local properties, consists of
the merging of neighboring features as one single attribute. This is adopted as
sequences of adjacent angles.

2.3 Classification

As classification algorithm, the decision tree learning algorithm (cf. [7]) is chosen.
This algorithm creates a tree consisting of attributes as described above and
symbols which form the leafs of the tree. The tree is built by calculating the
attribute with the highest entropy which depends on the number of occurrences
of different attribute values.

The problem of over-fitting is solved using χ2-pruning. The basic idea behind
χ2-pruning is to determine whether a chosen attribute really detects an under-
lying pattern or not. For the probability that the attribute has no underlying
pattern a value of 1% is assumed.

2.4 Analysis

The analysis starts with inserting symbols into the 180◦ memory (cf. Fig. 4).
Using this memory, groups of symbols representing a robot each are combined
using the following heuristics:

– Find a side, front, or back symbol in the 180◦ memory. This symbol is the
first symbol.

– Add all head symbols that are near to the first symbol. Test the distance,
size, and relative position of the head.

– Add all leg symbols and perform the same tests on them.
– Add other body related symbols and perform the same tests on them.

The surface area of a group is used to determine the distance to the robot.
The direction to the robot is computed by the group’s position in the 180◦

memory. The relative position of the head within the group and the existence of
front or back symbols indicate the rough direction of the robot. A more precise
value is calculated using the aspect ratio of the initial symbol.
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α

recognized symbol

aperture angle

180° memory

boundary of viewing
angle

data
memory

direction of head
movement

point of
insertion

Fig. 4. Structure of the 180◦ memory used to process symbols

3 Results

The following results have been achieved with an opponent robot as recognition
target under the normal lighting conditions of the SFRL.

Fig. 5. Performance results for different subtasks



Realtime Object Recognition Using Decision Tree Learning 561

Fig. 6. Classification precision of the recognition process

The first question concerns the overall speed of the process. With an average
execution time of 27 milliseconds, the usage on the Aibo robots of the SFRL is
possible. Fig. 5 shows that the slowest subtask is the generation of attributes.
The reason for that is mainly the usage of the iterative-end point algorithm which
consumes much of the execution time using many floating point operations. In
contrast, the decision tree classification as well as the analysis of symbol groups

Fig. 7. Precision of the calculation of the range



562 D. Wilking and T. Röfer

Fig. 8. Precision of the calculation of the rotation

are quite fast. Although only started when required and driven by a flood fill
algorithm, the segmentation constantly uses about a fifth of the execution time.
The decision tree classification has a precision of 84 % using 1080 examples to
classify 5 classes (cf. Fig. 6). The importance of the number of examples decreases
fast. The difference in precision between 730 and 1080 examples is 2 %. Even
with the low number of 25 examples a classification precision of over 50 % is
reached.

To determine the error of the range and rotation calculation, eight different
positions have been measured about ten times each. The averaged results are
presented in Figures 7 and 8. The second and the last case of the range test
are the only calculations associated with a high error compared to the original
value. The reason were wrong classified symbols. The calculation of the robot’s
rotation suffered even more from that problem.

In addition, the function that provided a more precise value for the rotation
within a quadrant suffered from the problem that the aspect ratio of the initial
symbol was coarse.

4 Conclusions

This paper presents a robot recognition process based on decision tree classifica-
tion. Starting with preprocessing tasks such as color class table based segmenta-
tion, contour detection, and line segment generation, a computation of different
attributes (e. g. surface area, perimeter, neighboring angles) is presented. The
decision tree classification and the related χ2 pruning are discussed in greater
detail. The analysis of the resulting symbols uses a 180◦ short-term memory for
combination purposes. Then, symbols are grouped together based on a heuristics
that makes extensive use of the structure of the target objects. Finally, symbol
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groups are processed to get the distance and direction to the robot. The rotation
is computed again based on the structure of symbols and the aspect ratio of the
main surface.

However, due to the complexity and length of the process, some parts could
be streamlined. Especially the heuristics used during the analysis step can be im-
proved using a skeleton template based, probabilistic matching procedure. This
procedure could deal both with the problem of occlusion and missing symbols.
In addition, improvements concerning the speed of the attribute generation can
be achieved. Considering the process architecture, the dependence of the recog-
nition tasks among each other must be examined. Especially the classification
task could benefit from a slowly, rather parallel1 growing recognition process
that provides expected values for the classification.
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Abstract. We show that previously published visual data processing methods 
for the simulated robotic soccer so far have not been utilizing all available in-
formation, because they were mainly based on heuristic considerations.  Re-
searchers have approached to estimating the agent location and orientation as 
two separate tasks, which caused systematic errors in the angular measure-
ments. Further attempts to get rid of them (e.g. by completely neglecting the 
angular data) only aggravated the problem and resulted in the losses in the accu-
racy.  We utilize all the potential of the visual sensor by jointly estimating the 
agent view direction angle and Cartesian coordinates using the extended Kal-
man filtering technique. Our experiments showed that the achievable average 
error limit for this particular application is about 25-33 per cent lower than that 
of the best algorithms published by far.  

1   Introduction 

We started this work in 2001, developing the SFUNLEASHED team for the simulated 
robotic soccer competitions.  While trying to improve the BASIC UVA team [2, 5] used 
as a prototype, we realized that better, or maybe best possible, utilization of the in-
formation provided by the visual sensor was important.  Player self-localization is one 
of related tasks. 

The visual sensor of the simulated soccer agent returns measurements of the polar 
coordinates of objects, i.e. the range and the direction, with regular time intervals.  
The range to the landmarks used for self-localization (borderlines and flags) is meas-
ured relative to current agent location in the field, and the direction is measured rela-
tive to the agent neck orientation. The precise data are distorted by rounding errors. 
With current Soccer Server settings, quantization of the angular measurements results 
in the random error uniformly distributed within [-0.5, 0.5] degrees.  The magnitude 
of the landmark range measurement error is [-0.5%, 0.5%] of the distance [3].   

By far, processing visual sensor information with the purpose of self-localization 
has been addressed in different ways in the simulated robotic soccer community.  The 
related works could be split into two groups, elaborating either on the deterministic or 
stochastic approaches. 
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1.1   Deterministic Methods  

Indeed, for given agent position, the visual sensor in the simulated soccer always 
supplies deterministic data. This feature has recently given birth to a method based on 
two-dimensional interval arithmetic, implemented in the LUCKY LÜBECK simulated 
soccer team [4]. However, because such methods are risk-aversive, the interval esti-
mate tends to have an exaggerated size of the area to which the observed object is 
believed to belong.  It is also unknown if this method provides the best possible accu-
racy, since there is just no explicitly stated optimality criteria.   

One more recent work done at the Humboldt University of Berlin, uses the optimi-
zation of the mismatch between the readings of several landmarks using a gradient 
descent function [1]. This method offers a mathematically elegant solution, which has 
resulted in significantly higher precision than some simple heuristic algorithms.  
However, the weak point is that the angular measurements are being completely ig-
nored in this implementation, which means that all the potential of the simulated vis-
ual sensor has not been completely utilized.   

1.2   Stochastic Methods  

Subtle notions of using stochastic estimation methods are spread over all the Ro-
boCup literature.  However, very few, if any, comprehensive overviews have been 
published.  One early exception is the detailed description of the visual sensor data 
processing algorithm in [6].  For self-localization, the agent neck direction angle is 
estimated first. Then a weighted sum of the individual estimates of the agent position 
relative to different flags is used.  The weights are inversely proportional to the dis-
tances from the agent to these landmarks.   

A rather thorough investigation of several methods can be found in [2].  In this 
work, the so-called particle filter has been selected for visual sensor data processing 
over two simple heuristic methods and the classic Kalman filter. This method was 
implemented in the BASIC UVA soccer team [5], which we are using as a prototype. 
Compared to the nearest-flag method for agent self-localization, the particle filter 
reportedly yielded almost three times better accuracy.  The downside was the two 
order of magnitude increase in the execution time required to obtain this gain.  With 
this reservation, it looks like using the particle filter for performing the agent self-
localization task is overkill, and the grounds on which less resource-demanding Kal-
man filter had been rejected are not all convincing.  

1.3   Previously Mistreated Factor: The Agent Neck Direction Error  

All deterministic and stochastic methods published by far result in that the agent neck 
direction is estimated separately. This adds a systematic component  to all angular 
measurements of the landmarks used for determining the Cartesian coordinates (Fig.1).  

In Fig.1 precise directions are shown as thin lines, while the thicker lines show the 
measurements distorted by the systematic error. With the self-localization algorithms 
proposed in [2,4, 5,6], the estimated agent location would be somewhere close to the 
center of the shaded triangle, which even does not cover the true agent location A. 
Adding more flags would hardly improve the situation, because each angular meas-
urement is equally distorted by . We believe that this was exactly the reason of why 
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some authors were reluctant about using angular data in self-localization and were 
relying on the range measurements only in the simulated soccer.  

 

Fig. 1. The ambiguity area with the systematic error  added to the angular measurements 

This allows us to conclude that not all the potential gain has been obtained from 
the application of stochastic methods to visual sensor data processing in the simulated 
soccer.  It is still unclear, where the limit of the perfection lies and how much could 
be in principle obtained by improving the data processing algorithms. 

The purpose of this paper is two-fold. Firstly, we want to synthesize near-optimal 
algorithms for estimating object locations by a soccer agent completely utilizing all 
the potential information in the multiple readings received in one cycle. Secondly, we 
want to find the limits of perfection for visual sensor data processing methods in the 
simulated robotic soccer. 

We are pursuing these goals by a comprehensive stochastic analysis of the visual 
sensor of the simulated soccer player.  Here we consider the static case only and de-
liberately do not use filtering data over time, leaving the multi-cycle case for the fu-
ture.  Because we are using the extended Kalman filtering technique, it can be gener-
alized for the multi-cycle case rather easily.  

2   Using the Extended Kalman Filtering Algorithm   

The complete utilization of the information supplied by the visual sensor could be 
achieved by jointly estimating the neck direction angle with the agent Cartesian coor-
dinates using the extended Kalman filter [7].  It is recursively yielding an optimal 
estimate of the state vector x based on a set of measurements. The optimality criterion 
is the maximal likelihood of 

kx̂  [8].  

Assuming that the filter has been already applied (k-1) times, on the k-th step its 
input parameters are, the measurement vector 

kẑ  and its error covariance matrix 
kR . 

Other inputs also are the optimal state vector estimate obtained on the previous step 

1ˆ kx  and its covariance matrix 
1kP . The filter returns an optimal estimate 

kx̂  of the 
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state vector and its covariance matrix 
kP  on current k-th step. In our context, k is the 

index of the source providing raw data at the same instant of time. It is assumed that 
the state vector is changing with k as  

)w,f(xx 1k1kk  , (1)

where f is the state transition function, and w is the white Gaussian random sequence 
having zero mean and covariance matrix Qk.  

The measurement model has the following form: 

)v,h(xz kkkˆ  , (2)

where h is the observation transformation function and v is a white Gaussian meas-
urement noise having zero mean and covariance matrix Rk. 

The Kalman filtering algorithm is executed in three steps. First, the a priori esti-
mate 

kx~ of the state variable vector and its covariance matrix 
kP

~ are computed using (1):  

),xf(x 1kk 0ˆ~  , (3)
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Second, the Kalman matrix ‘weight’ is calculated:  
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Third, the optimal state variable vector estimate and its covariance matrix are com-
puted:  

,0))xh(z(Kxx kkkkk
~ˆ~ˆ  , (6)

kkkk P)HK(IP
~  . (7)

Noteworthy that this estimate is only optimal when the error statistics is Gaussian. 
In Section 3 below we analyze how non-Gaussian statistics in the simulated soccer 
affects the accuracy.  

Now we customize the general Kalman filtering algorithm to the particular case of 
estimating the simulated soccer agent state vector. For the purpose of the self-
localization, the state vector variable contains two agent Cartesian coordinates, x, y 
and the neck direction angle, :  
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Tyxx  . (8) 

Now consider the model of the state vector dynamics (1). Because we are dealing 
with a snapshot, this allows us to reduce (3) to the trivial linear model  

1kk xx  .  (3a)

Moreover, the Jacobian matrices Ak, and Wk in (4) are both zero matrices and we get: 

1kk PP
~  , (4a)

The measurement model (2) is substantially nonlinear. The observation vector for 
k-th landmark is the pair of polar coordinates, with the direction (azimuth) dk meas-
ured relative to the agent neck direction and the range rk measured from the agent to 
the landmark:  

T
kkk drz  . (9)

From the geometry of the relationship between z and x we get:  

)v(x,hz kkk  , (2a)

where   
rkFkFkkk vyyxxhr 22)1( )()(),( kvx ,   
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 xFk, yFk are the Cartesian coordinates of the k-th reference point Fk, and  
 T

dkrk vv ][kv  is the random measurement error vector.  

The low index k in (2a) underscores that, in general, for different landmarks the 
measurement model could be different. For all visible flags the covariance matrix is,  

2

22

0

0

d

rk
k

r
R  , (10)

where ))/180(12/(1 22 o
d

  and  12/)01.0( 22
r   for static objects [3].  

For the field borderlines, however, the measurement model differs in that the range 
measurements are unavailable and only the direction can be measured. To keep the 
same model for both types of landmark, in the covariance matrix (10) for borderlines 
we assume that 2

r
.  

For calculating the matrix weight (5) we need two Jacobian matrices, Hk, and Vk. 
They immediately follow from (2a) and (10). 
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Therefore, the sought matrix weight can be calculated, as follows:  

1
k

T
kkk

T
kkk )RHP(HHPK 11
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This weight is used to compute the optimal state variable vector estimate  

,0))x(hz(Kxx kkkkk 11 ˆˆˆ k
 , (6a) 

and its covariance matrix  

1kkkk )PHK(IP  . (7a) 

Expressions (3a-7a), coupled with (10-12) yield the sought optimal algorithm for 
agent localization in the simulated soccer.  For N visible landmarks it must be  
executed for k=1,2,…,N .  

The initial state )P,x( 00ˆ  for this algorithm is extrapolated from the previous  

(k-1)th cycle, which increases the self-localization error 2..3 times.  With more than 
three flags visible on k-th cycle, this allows ignoring measurements made in the pre-
vious cycle and just set  

00

00

00

0P  . (13)

This results in that (5a) assigns very large weight to the innovation in (6a) and we 
do not care about 0x̂  at all. However, less than three flags are visible 9 per cent time 

for 90-degree visual sector and 1 per cent time for 180-degrees. Because ignoring 
history data in these cases would result in the increased errors, the diagonal elements 
in P0 are set to finite positive values. 

3   Simulation Results 

To determine the precision of the proposed method, we have run five sets of simula-
tions. Each of them contained total 2000 experiments by placing the agent in the ran-
dom points which were uniformly spread over the field. The neck direction was uni-
formly distributed in the [0°, 360°) interval. The agent viewing sector was either 90 or 
180 degrees wide, with average number of visible flags 5.7 and 11.4, respectively. 
The results (Table 1) are accurate with less than 0.9% error, 19 times of 20.  
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Experiment #1 estimates the achievable accuracy of the proposed algorithm and 
provides a benchmark for comparing it with the alternative self-localization methods. 
Experiment #2 estimated the loss in precision which resulted from violating the 
assumption that the visual sensor measurement errors are Gaussian as required 
by Kalman filter theory  We compared the self-localization errors in two cases: (a) 
default Soccer Server rounding errors ( 0.5° for the angle and 0.5% for the range), 
and (b) Gaussian errors having zero means and same standard deviations (i.e. 0.289° 
and 0.289%, respectively).  

Table 1. Experiments with the self-localization algorithms (90-dergee agent viewing sector) 

Experi
ment  

Description  Objective Localization 
error, meters  

1 Kalman Filter as proposed 
in Section 2 

Estimating absolute accu-
racy  

0.091 (100%) 

2 Kalman Filter with Gaus-
sian measurement error 
statistics 

Estimating loss of preci-
sion from non-Gaussian 
statistics 

0.090 (98.9%) 

3 Kalman Filter with ignored 
angular measurements  

Estimating the gain from 
using angular data  

0.13 (143%) 

4 All-flags, with systematic 
angular error present  

Comparison with the 
widely used algorithm  

0.11 (121%) 

5 Nearest flag algorithm  Comparison with the 
simplest method  

0.30 (330%) 

We found that in the Gaussian case, for which the Kalman filter is strictly optimal, 
the mean error is 98.9% of the error obtained in the default case.  This gives the idea 
of the price paid for the sub optimality.  Since the difference is very close to the accu-
racy limit of our experiments, it is clear that the non-Gaussian statistics only insignifi-
cantly affects the estimator quality. Presumably this unreasonable concern was the 
main reason for using particle filter in [2]. 

Experiment #3 evaluated the loss in precision when angular measurements are 
ignored, as suggested by some of our predecessors. The test was run by setting in 

(10) the angular variance 2
d  1000 times greater that it originally was. This forced 

the Kalman filter to ignore angular measurements and resulted in a 43% increase of 
the error.  

Experiment #4 evaluates a very common self-localization algorithm. It is using 
one border line for estimating the neck direction angle and then is utilizing all visible 
flags to estimate the agent location. No care is taken of the systematic angular error, 
like shown in Fig.1. Although this algorithm has been developed by us, it is combin-
ing the ideas, which are widely spread in the simulated soccer community. We specu-
late that it could be somewhat more accurate than each of its predecessors, because it 
is taking correlation of the Cartesian coordinates measurements into account. Still 
compared to the Kalman filter, it results in the self-localization error which is greater 
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by 21%. We have also run similar experiment with a 180 degree visual sector, which 
resulted in a 45% increase of the error. Assuming that 90- and 180-degree sectors are 
being used with equal probability, the average localization error would be greater by 33%.  

Experiment #5 gives the reference point for the achievable accuracy of the pro-
posed method as compared to the simplest, the nearest-flag self-localization algo-
rithm. The Kalman filter offers a three-fold accuracy gain in this case. This is consis-
tent with the reported gain from using the particle filter [2].  

It is safe to say that Table 1 contains the minimal achievable average self-
localization errors in the simulated soccer and could be used as the reference point.  

In a separate set of the experiments we assessed the benefits of two-agent ball 
tracking. Two agents were simultaneously viewing the ball from different locations. 
Each agent knew its location and orientation precisely, and could relay his estimate of 
the ball coordinates to the second agent without increasing the estimation error. The 
latter agent was using two sets of ball (x,y) coordinate measurements to estimate the 
ball location more precisely. Noteworthy that, unlike landmarks, ball Cartesian coor-
dinate measurement errors may be highly correlated.  

We compared two algorithms, heuristic and the Kalman filter (Table 2). The first 
algorithm was calculating the ball Cartesian coordinates based on the range and direc-
tion measurements by the agents.  Then two x,y pairs of the ball coordinates were 
being merged into the final estimate using the near-optimal method based on the 
maximal-likelihood criterion [10] and its two modifications. One modification ig-
nored the correlation between the Cartesian coordinates, and the second ignored the 
angular data. The Kalman filter was using the joint estimate of the ball location based 
on the observations of its polar coordinates by the two agents.  

Agents were placed 2000 times 10 meters apart in random locations at the distance 
from the ball uniformly distributed in the 5 to 15 meter interval. The results are accu-
rate with less than 1.1% error, 19 times of 20.They show that, while estimating the 
ball location in a 90-degree viewing sector, the assistance by a teammate can poten-
tially reduce the mean linear error about two times. Ignoring correlation would reduce 
this gain to just 1.3 times. Ignoring angular measurements would be counterproductive.  

Table 2. One- and two-agent ball tracking average linear error (in meters) using different esti-
mation algorithms (90-degree sector) 

Two agents 
One agent 

Ignore angles  Ignore-correlation Near-optimal  Kalman Filter 

1.17 
(193%)  

4.10 (676%)  0. 78 (129%) 0.606 (100%) 0.601 
(99.2%) 

In other experiments reported elsewhere [10] we have also found that the joint  
estimation of the Cartesian coordinates and the agent orientation would offer more 
significant gains in the robotics application, where the systematic error is greater than 
in the simulated soccer (0.5º). In particular, we have found that the average localiza-
tion error can be decreased 4..8 times, if the angular bias is uniformly distributed in 
the interval as big as ±4.0º. This implies that the significance of this work is not 
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limited to the simulated soccer. Rather, with only minor changes the proposed algo-
rithm can be reused in other robotics applications, where joint estimation of the robot 
location and its orientation could result in significant gains.  

4   Conclusion 

We have derived algorithms for determining absolute Cartesian coordinates of objects 
using imprecise readings of local polar coordinates, supplied by a visual sensor in a 
system like robotic soccer. The proposed solution is based on the Kalman filtering 
technique.  

The innovation is in the rigorous treatment of this problem from the positions of 
the stochastic estimation theory.  In particular, by jointly estimating the agent location 
and orientation, we have taken into account the correlation of the raw measurements 
which is emerging after converting them into Cartesian coordinate system.  By far, 
this correlation has been neglected in the simulated soccer applications, which re-
sulted in some losses. Although in self-localization this loss is negligible, in the re-
lated task of ball tracking using agent communication negligence of correlation in-
creases the linear error by 30 per cent.  

Using the joint estimation of the agent location and orientation allows walking 
around the problem of the systematic error present in the angular measurements. This 
problem has been persisting in the self-localization algorithms published so far and 
limited their accuracy. In particular, we have shown that ignoring the angular data as 
the way to getting rid of the systematic error would result in about 43 per cent in-
crease in the localization error.  

We have demonstrated that the non-Gaussian statistics of the raw measurement er-
rors, which presumably was a concern for some researchers who have been reluctant 
about using Kalman filter in the simulated soccer on these grounds, is indeed not an 
obstacle.  Our experiments has shown that replacing the non-Gaussian errors with the 
equivalent ‘true’ normal noise would not result in statistically significant differences 
in the self-localization accuracy.  Compared to the best published algorithms, the new 
method can reduce the average error by 25-33 per cent.  

Because we have shown that the assumption made about Gaussian statistics does 
not reduce the precision, we can guarantee that, the solution found cannot be tangibly 
improved in terms of the mean error of the location estimate.  We thus indeed have 
utilized all the potential of the visual sensor, as it applies to single simulation cycle.  

The computational effort required for implementing this algorithm is proportional to 
the number of the landmarks used for self-localization.  Compared with the nearest flag 
method, the increase in the computation time is roughly six-fold. We believe that it is a 
fair cost for gaining a three times higher accuracy than the nearest-flag algorithm.  

We also have found that the proposed algorithm could potentially offer even more 
gains in cases when the systematic angular errors are greater that those present in the 
simulated soccer. Therefore we hope that after some modifications, our algorithm 
could be reused in some other robotics applications.  
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The results, however, are limited to data processing in a single simulation cycle. 
Our future work will be targeted at similar comprehensive study of the coordinate 
data processing over time using all the power of methods offered by the Kalman fil-
tering technique.  
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Abstract. Path planning technique is proposed in the paper. It was developed 
for robots with differential drive, but with minor modification could be used for 
all types of nonholonomic robots. The path was planned in the way to minimize 
the time of reaching end point in desired direction and with desired velocity, 
starting from the initial state described by the start point, initial direction and 
initial velocity. The constraint was acceleration limit in tangential and radial 
direction caused by the limited grip of the tires. The path is presented as the 
spline curve and was optimised by placing the control points trough which the 
curve should take place. 

1   Introduction 

Mobile, autonomous robots are about to become an important element of the “factory 
of the future” [12]. Their flexibility and their ability to react in different situations [9] 
open up totally new applications, leaving no limit to the imagination. To drive the 
mobile robot from its initial point to the target point, the robot must follow previously 
planned path. Well-planned path together with robot capabilities assure desired 
efficiency of the robot. The path could be optimised considering different aspects 
such as minimum time, minimum fuel, minimum length and others [4, 7, 10]. When 
the path is planned in details, the robot capabilities are exactly known and that makes 
an advantage when coordinating several mobile robots [3]. 

This paper deals with time optimal path planning considering acceleration limits. 
The proposed technique is presented on the robot soccer system (Fig. 1), which 
became very popular recently. It is an excellent test bed for various research interests 
such as path planning [4, 7, 10], obstacle avoidance [4], multi-agent cooperation [3, 
11], autonomous vehicles, game strategy [2, 8], robotic vision [6], artificial 
intelligence and control. The robot soccer has also proven to be excellent approach in 
engineering education, because it is attractive and through the game the students get 
immediate feedback about the quality of their algorithms. 

Mirosot is one of the games, for which the rules are provided by FIRA 
(Federation of International Robot-soccer Association). The robot size is limited 
with the cube of 7.5 cm side length. The navigation of the robots is provided with the 
vision system. The obtained positions of the robots and the ball are used for 
calculating the commands that are then sent to each robot radio transmitter. There are 
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two leagues of Mirosot. Small league is a game of 3 against 3 robots on the 
playground of 1.5 m x 1.3 m, while 5 robots of each team play middle league on the 
playground sized 2.2 m x 1.8 m. 

 

Fig. 1. The robot soccer system 

The problem for which the solution is presented in this paper is the following: We 
want to find the path for the robot that would give the robot minimum time to move 
from the start point (SP) to the end point (EP) where the robot kicks the ball. Besides 
SP and EP, also the orientation and velocity in both points should be considered. The 
robot should stay inside its acceleration limits all the time. It could be said the paper 
presents an anti-skid path design. 

The paper is organized as follows: Section 2 presents the mathematical model of 
the robot and its limitations. A quick overview of curve synthesis and analysis is 
given in Section 3. Section 4 describes the proposed technique. Case study is 
presented in Section 5 and application aspects are discussed in Section 6. Section 7 
gives the conclusions. 

2   Robot Model and Limitattions 

The robot is cubic shape with the side of 7.5 cm. It is driven with the differential drive, 
which is located at the geometric centre. This kind of drive allows zero turn-radius. The 
front and/or the back of the robot slide on the ground. For more detailed description see 
Fig. 2. The commands that the computer sends to the robot are reference for linear and 
angular velocity. The microprocessor on the robot calculates the reference angular 
velocities of the left and right wheel. The motors that drive the wheels contain 
encoders so the microprocessor also knows actual velocities. The PID controller in the 
microprocessor then calculates the needed voltage for both motors. The PID controller 
together with powerful motors causes sliding of the wheels if the desired velocity makes 
step change. This knowledge is important when modelling the robot. 
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Fig. 2. The robot 

The movement of the robot can be modelled with the following equations: 

cos( )

sin( )
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real
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x v

y v

ϕ
ϕ

ϕ ω

=
=
=

 (1) 

where x, y and j stand for position and orientation respectively, vreal is real linear 
velocity and wreal is real angular velocity. If the wheels are not sliding, both 
velocities are very close to the reference velocities that have been sent to the robot. 
With these assumptions the real velocities from eq. (1) can be substituted with the 
ones, which has been sent as commands. We get: 
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Only this simplified model will be used and all other dynamics will be neglected. It 
must not be forgotten, that this model is good only when the wheels don’t slide or in 
other words, when the robot is not forced with too large acceleration. The overall 
acceleration can be decomposed to tangential acceleration and radial acceleration. The 
tangential acceleration is the derivative of velocity with the respect to time and is 
caused with desire to increase or decrease speed. 

tang

dv
a

dt
=  (3) 

The radial acceleration is caused by turning at certain speed and is the product of 
linear and angular velocity 

rada v ω= ×  (4) 

Since tangential and radial acceleration are orthogonal, the overall acceleration is 
the Pythagoras sum as follows: 
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2 2
tang rada a a= +  (5) 

The overall acceleration is limited with the friction force. The limit of tangential 
acceleration differs from the limit of radial acceleration. That happens, because the 
gravity centre of the robot is on certain height above ground level. When accelerating 
in linear direction, the robot leans on the rear slider, which takes over a part of the 
robot weight. That means that the wheels of the robot press on the ground with the 
force that is smaller than gravity force. We know that the friction force is product of 
the force orthogonal to the ground and the friction index. Comparing tangential 
acceleration to the radial, the orthogonal force is smaller, which causes lower 
acceleration limit. 
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Fig. 3. Acceleration limits 

The acceleration limits have been measured in our case. To measure radial 
acceleration limit, the angular velocity was set to a certain value and then the linear 
velocity was slowly increased. The slipping moment was determined visually. The 
maximal radial acceleration was then calculated from eq. (4). Tangential acceleration 
limit measurement was little more complicated. In this case slipping cannot be 
determined visually, so the vision system was used. Several experiments were made. 
During each experiment the robot was forced with the constant acceleration. The 
acceleration at each next experiment was slightly increased comparing to the previous 
experiment. Real acceleration of the robot was measured as second derivation of 
robot’s position, which was obtained using the vision system. Measured maximum 
tangential acceleration was 2 m/s2 and maximum radial acceleration 4 m/s2, so the 
overall acceleration should be somewhere inside the ellipse as it is shown in Fig. 3. 

3   Curve Design and Analysis 

There are many possible ways to describe the path. Spline curves are just one of them. 
The corresponding theory has been presented in number of books and papers [1,5] so 
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in this paper a quick overview will be given. The two dimensional curve is got by 
combining two splines, x(u) and y(u)., where u is the parameter along the curve. Each 
spline consists of one or more segments – polynomials. The point of tangency of two 
neighbour segments is called knot. The spline could be interpolated through desired 
points in (u,x) or (u,y) domain, where also the derivative conditions can be fulfilled. 
When the knots are set, the spline parameters can be obtained by solving a linear 
equation system. If the p-th  order spline consists of m segments, than the number of 
parameters to determine is 

( 1)m p +  (6) 

Number of linear equations is 

( 1)n m p+ −  (7) 

where n is number of explicitly defined points and derivative conditions at these 
points, (m-1) is number of knots and p is number of continuous derivatives at the 
knots. The number of searched parameters should be equal to the number of linear 
equations what leads to: 

m n p= −  (8) 
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Fig. 4. The splines 

This equation presents the general spline condition, and if the constructor is not 
careful, some segments can be over- and other can be under-defined. To avoid this 
problem the knots were set to fit in the proposed interpolation points. These points are 
called control points (CP). 

Fig. 4 shows the sample of set conditions to design the splines x(u) and y(u). 
Splines from Fig. 4 are joint to the curve y(x) that is shown in Fig. 5. There are 7 
conditions (n=7) to define each of splines and each of splines consists of 4 segments 
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(m=4). According to eq. (8) this leads to the cubic spline. New inserted CP raises n 
and m for 1 and eq.(8) remains fulfilled. 
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Fig. 5. The spline curve 

The orientation at the start and the end point (SP and EP) are given as angles, but 
should be transformed to the derivative conditions. The following can be written 

maxmin

min max

( )( )
,

( ) ( )SP EP

y uy u
arctg arctg

x u x u
ϕ ϕ

′′
= =

′ ′
 (9) 

where x’(umin), y’(umin), x’(umax) and y’(umax) are derivatives of splines x(u) 
and y(u) with the respect to parameter u at the start and the end point, and must be 
obtained knowing only the start and end direction. This leaves some free space, so the 
following was proposed: 
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(10) 

Time optimal path planning requires robots to drive with high speed. For driving 
with high speed smooth path is necessary. The path smoothness is presented by the 
curvature κ. When dealing with spline curves in two dimensions k is given as follows: 

( )3/ 22 2
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x u y u y u x u
u

x u y u
κ

′ ′′ ′ ′′−=
′ ′+

 (11) 

The geometrical meaning of the curvature is inverted value of circle radius in 
particular point (1/R). The curvature for the curve shown in Fig. 5 is presented in Fig. 6. 
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Fig. 6. The curvature 

4   Finding the Optimal Path 

In competition systems, such as robot soccer, the time needed by robots to get to 
desired points is most critical. So the problem to be solved is a minimum time problem 
where the time is calculated by integration of time differentials along the path 

. .

target

init pos

ds
t

v
=  (12) 

Considering 

2 2( ) ( )ds x u y u du′ ′= +  (13) 

Eq. (12) can be written as 

2 2( ) ( )

( )

b

a

x u y u
t du

v u
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To assure the real robot to follow the prescribed path, it must not slide, i.e. his 
accelerations must be within limits given in Fig. 3. It is well known that the time 
optimal systems operate on their limits, so the acceleration must be on the ellipse 
given in Fig. 3. The problem is solved by constraint numerical optimisation with 
control points as free parameters to be optimised. The optimisation procedure is as 
follows: 

1. Choose initial control points and calculate the initial path. An example of this is 
shown in Fig. 4. 

2. For given path the highest allowable overall velocity profile is calculated as follows: 
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− Its curvature is calculated according to Eq. (11) as shown in Fig. 6. 
− The local extreme (local maximum of absolute value) of the curvature are 

determined and named turning points (TP). In these points the robot has to move 
with maximum allowable speed due to radial acceleration limit. Its tangential 
acceleration must be 0. 

− Before and after a TP, the robot can move faster, because the curve radius get 
bigger than in TP. Before and after the TP the robot can tangentially decelerate 
and accelerate respectively as max. allowed by (de) acceleration constraint. In 
this way the maximum velocity profile is determined for each TP and have the 
shape of “U” (or “V”) as shown in Fig. 7. At some point the velocity profile 
becomes horizontal. The velocity there is so high, that the radial acceleration is 
out of limits. The part of the curve after that point is useless. This happens 
because the curvature starts increasing (the influence of the neighbour TP). But 
that neighbour TP requires lower speed in that area so the described problem 
doesn’t really have meaning. 

− Similarly the maximum velocity profile (due to tangential acceleration/ 
deceleration) is determined for initial (SP) and final (FP) (if required) velocity 
respectively. 
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Fig. 7. Highest allowable velocity profile excluding start end end point 

− The highest allowable overall velocity profile is determined as the minimum of 
all velocity profiles, as indicated in Figs. 7 and 8 (bold curves) 

− The initial and final (if required) velocities must be on the highest allowable 
overall velocity profile (as it is in Fig. 8). If not, the given path cannot be driven 
without violating acceleration constraints. (The case in Fig. 7). 

− For given highest allowable velocity profile the cost function is calculated 
according Eq.(14). 

3. Optimize the problem with control points as optimizing parameters. 
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Fig. 8. Highest allowable velocity profile including start end end point limitations 

5   Case Study 

The objective of this case study is to the number of points needed to find good 
approximation of time optimal path. Let us take a look to the case for which we can 
say it is not very simple, but on the other hand we cannot say it is the most 
complicated. The robot starts at the point SP(-0.5, 1) in direction 225° with the 
velocity of 1 m/s. The end point is in the origin of the system. The robot should pass it 
with the velocity of 1 m/s in the direction 180°. The question is how many control 
points are needed. Two points are needed to fulfil the conditions of initial and 
terminal velocity. Each one can be placed in the way to ensure some minimum 
distance from start or end point to the closer TP. The test was made with the various 
number of CPs. The initial number was 2 and was increased up to 7 CPs. Fig. 9 shows 
how the needed time depends on the number of CPs. It can be seen that the use of 4 
CPs are optimum in our case. The 4th CP improves the time for a tenth of a second 
(more than 6 %) and the 5th would improve it for only one hundredth of a second. 

The resulted paths are shown in Fig. 10. The doted line presents 2 CP path, 3 CP 
path is shown with dashed line and 4 CP path with continuous line. 5, 6 or 7 CP paths 
are practically the same and are presented with the thick line. It can be seen where 2 
and 3 CP paths spend too much time because of not well-defined path. 5 (or more) CP 
path is slightly different from the 4 CP one and the difference lies in the area where a 
large improvement cannot be done. 

In some cases there would be more than 4 CPs needed to find path close to 
optimal. But the problem of using only 4 CPs is not critical. In case of not using 
enough CPs the result is not so close to optimal (time needed would increase). If the 
number of playing robots is taken into account, we can say that the robot with such 
complicated path would also need more time to reach the goal. The goal is usually to 
kick the ball and that is job just for one robot. The supervisory algorithm who controls 
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the roles of the robots would choose the robot with minimum time needed to do that 
and would probably not choose the robot with complicated path. 
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Fig. 9. Time needed according to the number of Control points 
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Fig. 10. Optimal paths constructed from the different number of Control points 

6   The Application Aspect 

The proposed technique uses optimisation to find optimal solution. As it is well 
known, the optimisation is very time-consuming. The particular problem becomes 
burning when the realisation is taken into account. The robot’s control algorithm acts 
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in the following way. First the path is planned, then the control action is calculated 
from planned path using the inverted model of the robot. This is repeated each time 
instant. The time allocated to the path planning is therefore shorter than sample time. 
In the dynamically changing environment, like it is robot soccer game, short sample 
time is required. Actually it is defined with the camera. Using the NTSC standard 
camera the sample time is 33 ms, and this is far shorter time than time needed for 
optimisation. The idea that solves this problem is called multi-parametric 
programming. For a grid of initial relative position of the robot regarding to the ball, 
the paths (CPs) are obtained in advance and are stored to the look-up table. Inputs are 
relative robot position, initial angle, initial and final velocity and outputs were the 
CPs. The table was determined for certain quantization. For the intermediate points, 
linear interpolation was used. 

The use of look-up table also increases cooperating capabilities. Robots can very 
quickly determine which of them needs shorter time to perform an action. Shorter 
time if often closely related to the effectiveness. Such precision path planning offers a 
lot of support to the multi agent decision-making algorithm that is in charge for robot 
cooperation. 

7   Conclussions 

The path finding algorithm for nonholonomic mobile robots was proposed. The case 
study concerned slippery conditions in robot soccer environment. The path is 
presented as a spline curve and was got with the control points positioning. The 
control points were placed using the optimisation function where the criterion was 
needed time. The optimisation is very time-consuming process and cannot be done 
online, so the look-up table was built. Due to well defined future moving of all robots, 
the cooperation between players also improved. 
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Abstract. Fast and accurate self-localization is one of the most important prob-
lems in autonomous mobile robots. In this paper, an analysis by synthesis 
method is presented for optimizing the self-localization procedure. In the  
synthesis phase of this method, the robot's observation of the field is predicted 
using the results of odometry. It is done by calculating the position of the land-
marks on the captured image. In the analysis phase, the local search algorithms 
find the exact position of the landmarks on the image from which the best 
matching coordinates of the robot are determined using a likelihood function. 
The final coordinates of the robot are then obtained from the odometry sensor, 
using an integrated delay compensation and correction technique. Experimental 
results show that precise and delay-free results are achieved with a very low 
computational cost. 

1   Introduction 

Self-localization is one of the most challenging problems in the field of autonomous 
mobile robots. Accuracy of the obtained localization data directly affects the quality 
of the mission to be done by the robots. In most cases, self-localization must be done 
in a dynamic, uncertain environment containing a great amount of noise. Such an 
environment leads to use reliable and precise sensors for data acquisition. 

The common sensors used in this field are omni-directional and frontal cameras  
[3] [13], odometry [4] [7], ultrasonic sensors [6] [12], laser range finders (LRF) [10] 
[19], and infrared (IR) field surface detectors. Among these, the vision and odometry-
based self-localization techniques are currently implemented in most mobile robotic 
projects [3] [4]. 

Vision-based self-localization suffers from several disadvantages such as high 
computational cost, low sample rate, unacceptable delay and inadequate accuracy. 
According to this, vision techniques are currently used together with other  
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self-localization techniques such as odometry [3]. Several techniques have been de-
veloped to fuse odometry and vision outputs together in order to gain more precise 
and real time results, such as Kalman filter, Markov and Monte Carlo Localization 
(MCL) [17] [18] [19], and Complementary filtering [20]. In these techniques, vision 
and odometry algorithms run independently and another module is responsible for 
fusing their results and calculating the final position and orientation. 

In this paper we have introduced a new approach to perform data fusion. In this 
approach, one of the sensors (usually the simpler sensor) is used to predict another 
one. This is called the synthesis phase. The position of the landmarks which appear on 
the captured image is predicted based on the results of the odometry sensor. Having 
this information, a fast local search can be performed in order to determine the exact 
position of the landmarks. This is similar to tracking methods except that in tracking, 
the search is done around the last position of the landmarks on the image. The search 
area in tracking techniques needs to become wider as the velocity of the robot in-
creases while in our method the search area around the predicted position remains 
constant. The results of the search algorithm are then converted to the robot coordi-
nates by a probabilistic map matching technique. An integrated delay compensation 
and correction method is then implemented to obtain the final coordinates of the robot. 

The approach has been tested in the RoboCup scenario in which robot positioning 
is usually a requirement for successful coordination and overall team behavior. The 
team PERSIA obtained the 3rd place in the middle size league of RoboCup 2003 Italy. 

2   Description of the System 

Fig. 1 shows the block diagram of the designed self-localization system. In this 
method, localization data is provided from two sources: omni-directional camera and 
the odometry system. 

 

Fig. 1. Block diagram of the self-localization algorithm 

RoboCup MSL Field

Odometry 

Synchronization
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The procedure first synchronizes the output of odometry with the camera and then 
predicts the position of the landmarks on the image based on the synchronized 
odometric results. Having a preliminary knowledge about the position of the land-
marks, the procedure then refers to the image and performs an exact local search to 
calculate the accurate position of each landmark in the image. The calculated parame-
ters form a local feature map which is matched to the global field map using a likeli-
hood function that is maximized at the most probable coordinates of the robot. Finally 
an integrated delay compensation and correction technique is used to synchronize the 
two sources and also eliminate the delay of the final output. Further parts of this sec-
tion describe the function of each module in detail. 

2.1   Odometry 

An approach to decrease the cumulative errors of the odometry sensors is presented in 
[7] by separating the driving and odometry wheels which increases precision of the 
sensor to a great extent. In the present method, odometry provides the preliminary 
estimation of the robot coordinates which is then improved by the further parts of the 
system using vision-based techniques. It is also used to eliminate the delay caused by 
the vision module. 

2.2   Omni-Directional Camera 

In many systems, vision is used as a proper complement to cooperate with odometry. 
However, the vision-based localization is robust enough to be implemented individu-
ally. The reason for fusing odometry and vision is high amount of delay, low preci-
sion and heavy process of the vision-based techniques. 

Omni-directional cameras are preferred to frontal cameras because they can pro-
vide the robot with 360° observation range [13] [16].  

Another shortcoming of the vision-based techniques is their delay, which is gener-
ated partly by the camera and its interface hardware and driver and partly by image 
processing algorithms. A high amount of delay can easily cause the control system 
that uses the localization data as its feedback to diverge. Our vision hardware is com-
posed of a camera and a hyperbolic mirror. The delay of such system is measured to 
be around 100 milliseconds. 

2.3   Field Estimation 

After synchronizing the odometry results with the current captured frame, the next 
step towards linking these two sources is to predict the position of the landmarks on 
the image, based on the odometry generated coordinates. This can efficiently decrease 
the amount of needed computations, by avoiding the search algorithms from search-
ing a large area of the image which contains no useful landmarks. This also simplifies 
the search algorithm for each specific landmark because the search area rarely con-
tains other landmarks to be confused with the desired one. 

The function that maps the surface of the field to the captured image is a radial 
transform. Under this transform, the viewing angle of the objects around the robot 
remains unchanged on the image, while their distance from the center of the image is 
not linearly related to its real value. Also, every line which is perpendicular to the 
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field surface appears as a radial line in the captured image. According to this phe-
nomenon, the field can be predicted as a set of distances and angles which describe 
each landmark as it appears in the polar coordinate system placed on the center of the 
image. The following objects are defined as landmarks; goal vertical bars, intersec-
tions between goal inner corners and the field surface, and poles. 

The field prediction function is not only used to predict the position of the land-
marks in the image, but also it forms the global feature map of the field in the map 
matching procedure. 

2.4   Landmark Detection Algorithms 

It is very complicated to search the image for a landmark while having no knowledge 
of its position because almost every landmark in the MSL field consists of blue and 
yellow parts and can not be simply distinguished from others according to its color. 

Another problem which occurs during the landmark detection is the possibility of 
having a landmark occluded by another landmark or robots. For example the poles 
may be occluded by the goal sides from some observation points inside the field. 

These problems can be solved by performing a local search around the result of 
field prediction procedure for each landmark. According to this predicted position, a 
proper search region can be defined for the detection algorithm that is not related to 
the velocity of the robot. For most of the landmarks, the search region contains no 
other landmarks. The region sometimes contains part of the neighbor landmark, so the 
detection algorithm in the worst case should only distinguish between two neighbor 
landmarks. This will result in further simplification of the algorithms which indeed, 
efficiently decreases their computational cost. 

2.5   Map Matching 

After finding the exact position of each landmark on the image, another module is 
needed to calculate the position and orientation of the robot. Two methods for per-
forming this task are discussed in this section. 

In the first method, the robot coordinates are calculated by triangulation as in [8]. 
One of the drawbacks of the triangulation method is the high sensitivity of the algo-
rithm to incorrect input parameters. The reason for this sensitivity is that the triangu-
lation algorithms use no means of redundancy in their calculations. Obviously, the 
robot can localize itself by knowing the position of at least 3 landmarks on the image. 
The triangulation methods typically use 3-5 parameters to calculate the robot coordi-
nates while more than 15 parameters can be easily derived from the image. 

The second method is the probabilistic map matching, which is designed to take 
advantage of redundancies in the input parameters to reduce the sensitivity of the 
algorithm to incorrect inputs which may be generated due to noise and occlusion. In 
this method the best match between the landmark detection results and the global field 
map is found using maximum likelihood estimation. 

In order to compare the feature parameters in the global field map with the detected 
parameters, a maximum likelihood similarity measure is defined. The function must 
be designed so that it is not affected seriously if one or more parameters are presented 
incorrectly. Such a function can be composed as (1) in which S and S' are vectors of 
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the measured and estimated features (angles and distances) and Ni(.) is the ith normal 
function defined in (2) for comparing corresponding elements of Si and S'i. i presents 
the acceptable error range in the compared parameters. Using trial and error, the 
proper i for distances is found to be 0.02 and for angles is found to be 0.1. 

′−=′ )(),( iii SSNSSL  (1) 

2

)( x
i

iexN α−=  (2) 

Fig. 2 shows the result of applying the likelihood function for comparing a set of 
features calculated from a typical point with the global field map.  

                   

Fig. 2. The likelihood function is used to find the position of the robot 

Applying the maximum likelihood measure to all possible coordinates of the robot 
will need a great amount of computations. In order to decrease the computational cost 
of the algorithm, the matching can be done in a neighborhood of the odometric coor-
dinates of the robot. 

2.6   Global Search 

The final coordinates of the robot in the introduced algorithm are the vision-improved 
version of the odometric coordinates. Since odometry is only capable of tracking the 
displacement and rotation of the robot, the system must be initialized once with the 
correct coordinates in order to be able to localize the robot. In this case the local 
landmark detection algorithms are temporarily substituted with a global detection 
algorithm for a limited number of landmarks. It is known from the features of omni-
directional cameras that both goals can always be viewed in a region which is re-
stricted between two circles. A good approach is to detect the vertical goal bars on a 
circle inside this area, using an edge detector that finds the edges of the blue and yel-
low regions. 
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3   Experimental Results 

In order to verify the improvement of the technique introduced in this article, we have 
compared several features of the analysis by synthesis technique with the previous 
version of the self-localization algorithm used by the robots. This algorithm is similar 
to many of the current algorithms in its performance, accuracy and computational 
cost. In this algorithm, the landmark detection is done by region growing and the coor-
dinates of the robot are calculated using the triangulation method. Both algorithms have 
run on a 1.2 GHz Pentium III notebook. In the following sections two test procedures to 
compare accuracy and computational cost of the algorithms are introduced. 

3.1   Accuracy  

The accuracy of the self-localization systems can be compared based on two parame-
ters; the average of error and its standard deviation. The standard deviation of the 
localization error is important because in many systems, a medium constant error is 
more acceptable than a lower value but rapidly varying one. The average values and 
standard deviation of position and orientation errors are given in Table 1. 

Table 1. The average and standard deviation of the localization errors 

 Position Err. 
Avg. (cm) 

Position Err. 
SD (cm) 

Orientation 
Err. Avg. (deg) 

Orientation 
Err. SD (deg) 

Old Method 24 12 5.1 2.4 
New Method 3.2 0.7 1.5 0.3 

3.2   Computational Cost 

Computational cost of self-localization algorithms is the most important factor in 
implementation of the mobile robots because these algorithms are computationally 
much more expensive than the other algorithms running on the CPU of the robot. The 
analysis by synthesis method has reduced this usage to a great amount. In order to 
compare the computational cost of the algorithms the performance indicator of Win-
dows 2000 is used. 

Another feature of the algorithms which should be compared is the constancy of 
their amount of computations during the game. This feature can be measured by de-
termining the CPU usage of both algorithms when localizing the robot in different 
positions inside the field. A comparison of CPU usage between the algorithms is 
made in Table 2. Three typical points inside the field are selected for this comparison, 
which are center of the field, inside the goals and near the poles. 

Table 2. Comparison of CPU usage between new and old methods 

 Center of the Field Inside the Goals Near the Poles 
Old Method 53% 82% 64% 
New Method 39% 36% 42% 
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4   Conclusion 

Joint vision-odometry self-localization of moving robots has attracted the attention of 
many researchers. In this work, the performance of the mobile robot self-localization 
is improved by proposing a new method called analysis by synthesis. In this method, 
the vision sensor of the system is first predicted (synthesized) using the odometric 
coordinates of the robot. The image is then analyzed based on the preliminary predic-
tion to achieve more accuracy in the robot coordinates. An integrated correction and 
delay compensation module then corrects the coordinates which are obtained from 
odometry sensor and obtains the final coordinates of the robot. This method has not 
only reduced the computational cost of the self-localization algorithm but also in-
creased the precision and reliability of the outputs. Experimental results clearly verify 
the improvements. 
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Abstract. In this study, a new method called Reverse Monte Carlo Localization
(R-MCL) for global localization of autonomous mobile agents in the robotic soc-
cer domain is proposed to overcome the uncertainty in the sensors, environment
and the motion model. This is a hybrid method based on both Markov Localiza-
tion(ML) and Monte Carlo Localization(MCL) where the ML module finds the
region where the robot should be and MCL predicts the geometrical location with
high precision by selecting samples in this region. The method is very robust and
fast and requires less computational power and memory compared to similar ap-
proaches and is accurate enough for high level decision making which is vital for
robot soccer.

Keywords: Global localization, ML, MCL, robot soccer.

1 Introduction

The localization problem is estimation of the position of a robot relative to the en-
vironment, using its actions and sensor readings. Unfortunately these sensors and the
environment are uncertain, so the results are typically erroneous and inaccurate. Conse-
quently, localization still remains as a nontrivial and challenging problem and from the
simplest geometric calculations which do not consider uncertainty at all, to statistical
solutions which cope with uncertainty by applying sophisticated models, many solutions
have been proposed for this problem [1], [2], [3]. Although some of these approaches
produce remarkable results, due to the nature of the typical environments they are not
satisfactory because fast solutions with less memory and computational resources are
demanded. This is especially true for a real-time application in a dynamical soccer field
using robots with onboard computational resources. Generally, solutions producing pre-
cise results suffer from slowness, and high memory usage. Whereas a fast solution in
practice typically produces only coarse results. Even when they produce precise local
results, some approaches like Kalman filters, fail to find the global position.

This work is a part of the Cerberus Team Robot soccer project [4], and aims to localize
the legged robots in the soccer field globally, while solving problems mentioned above.
There are a several limitations and assumptions related to the rules of the Robocup
[5]. In this work, three approaches to solve this problem were developed in parallel.
The first of these new approaches is a new geometrical localization algorithm, which is
based on just a single landmark observation at a time. This approach is later extended

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 594–601, 2005.
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to a ML based method. In addition, a novel hybrid approach called Reverse Monte
Carlo Localization(R-MCL) combining the ML and MCL methods is designed and
implemented.

The organization of the paper is as follows: In the second section, a survey of local-
ization methods is presented. In the third section detailed information about the proposed
approach can be found. In the fourth section, the results of the application of proposed
approach are present. In the fifth section, conclusions and suggestions for future work
are given.

2 Localization Methods

The simplest localization method depending on the range and bearing data is trian-
gulation, which uses geometry to compute a single point that is closest to the current
location. But in real world applications a robot can never know where it is exactly because
of the uncertainty in its sensors, and the environment. Consequently, several different
approaches which estimate the position of robot probabilistically were introduced to
integrate this uncertainty into the solutions.

Kalman filter (Kalman-Bucy filter) is a well-known approach for this problem. This
filter integrates uncertainty into computations by making the assumption of Gaussian
distributions to represent all densities including positions, odometric and sensory mea-
surements. Since only one pose hypothesis can be represented, the method is unable to
make global localization, and can not recover from total localization failures [6], [7], [3].

Many works consider Markov localization (ML) [1], [8]. ML is similar to the
Kalman filter approach, but it does not make a Gaussian distribution assumption and

Table 1. Comparison of Localization Methods

Method Capability of Accuracy Speed Memory Robustness to noise Fast recovery
global localization usage from kidnapping

EKF no H H L L L
ML yes L** M H** H H

MCL yes M** M H** M M
SRL1*** yes M** M M** M L
SRL2*** yes M** M M** L H
A-MCL yes M** M M** XH H
M-MCL yes M** M M** H H
ML-EKF yes M** M H** H H
Fuzzy* yes L** M H** H H

Geometrical yes H** H L L L
R-MCL yes M** H H** H H

* Fuzzy method is the method implemented in [12].
** These are grid based and sample based methods. So accuracy and memory usage changes

with the cell size, and the number of samples used. But they still remain in acceptable ranges.
*** SRL1 and SRL2 differ in their wish to accept additional samples on each noisy observation.

This leads fast recovery from kidnapping but increase noise and decrease accuracy.
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allows any kind of distribution to be used. Although this feature makes this approach
flexible, it adds a computational overhead.

Monte Carlo Localization (MCL) is a version of Markov localization that relies on
sample-based representation and the sampling/importance re-sampling algorithm for
belief propagation [2], [9]. Beliefs are represented by a set of K weighed samples
(particles) which are of type ((x, y, θ), p), where p’s are positive numerical weighting
factors such that sum of all p is 1. Odometric and sensory updates are similar to ML.
Most of the MCL based works suffer from the kidnapping problem, since this approach
collapses when the current estimate does not fit observations. There are several extensions
to MCL that solve this problem by adding random samples at each iteration. Some of
these methods are Sensor Resetting Localization (SRL), Mixture MCL (Mix-MCL), and
Adaptive MCL (A-MCL). In SRL, when the likelihood of the current observation is below
a threshold, a small fraction of uniformly distributed random samples is added [10]. Mix-
MCL additionally weights these samples with current probability density. This method
has been developed for extremely accurate sensor information [3]. Adaptive MCL only
adds samples when the difference between short-term estimate (slow changing noise
level in the environment and the sensors) and the long-term estimate (rapid changes in
the likelihood due to a position failure) is above a threshold. The key idea is to use a
combination of two smoothed estimates (long term and short term) of the observation
likelihoods [3].

ML-EKF method is a hybrid method aiming to make use of the advantages of both
methods, taking into consideration the fact that ML is more robust and EKF is more
accurate. So this method finds the location of the agent coarsely by grid based ML and
then inside this area uses EKF to find a more accurate solution [3].

Although there have been only a few fuzzy logic based approaches, they appear to be
promising [11], [12]. In these approaches, the uncertainty in sensor readings (distance
and heading to beacons) is represented by fuzzy sets. The above mentioned localization
approaches and their capabilities are summarized in Table 1.

Some of the comparisons of the known algorithms in this part are based on [3]. There
is an ongoing work for testing of these methods with same data set for comparison.

3 The Proposed Approach

In robot soccer, teams of robots, that are capable of seeing and moving, play matches
against each other, and the team with the highest goal score win the match. In order to
do this, the player robots must detect their location, the goals, the ball, the members of
their team and the opponent team members(optional for high level planning), and place
the ball in the opponent team’s goal to score a goal. A robot is typically expected to find
its own location using the six distinguishable unique landmarks in the field, and then use
this information to find the location of the ball and goal. Consequently, localization is a
vital problem for robot soccer.

Since, as discussed in section 2, no single method satisfies all the needs in terms
of single robot localization, three methods including a hybrid algorithm which tend to
integrate the advantageous parts of single methods and overcome the deficiencies were
developed in this work.
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3.1 Geometrical Localization

The geometrical localization method assumes the input data is measured exactly (does
not contain noise), and therefore does not need any error modeling. Our previous algo-
rithm in [13] required at least two landmarks to be seen at any time to calculate the
position accurately. Although it worked also for the one landmark case, it could not give
satisfactory results. This new method is designed to work with one landmark information
which is much more realistic within the new field sizes. So even if the robot sees more
than one landmark, they are treated separately and one-landmark information is used
at each step. The ratio of the distance between the predicted location and the observed
location of the landmark is used to predict the new x and y coordinates of the robot.

The bearing is also found by using the new predicted x and y coordinates. Whenever
a new visual data comes, the new position is calculated based on the measurement and
old position. A point between the newly measured position and the old position is taken
as the new position. This new position is placed between the two positions proportional
to the belief of the robot on them. The assumption here is that: The more you believe in a
position the closer you are to that position. This is used to reduce the effect of inaccurate
measurements on the new position. When the odometric data arrives, the position is
blurred among the moved distance and heading. The bearing is added to the original
heading and it is normalized to give the new heading of the robot. The odometric data
consists of the distance moved forward, left and the bearing of turn. This method assumes
that the measurements are exact, or noise is below a threshold.

3.2 Markov Localization

The assumption made about error in the previous subsection is not correct in general. So
we need a method to handle the uncertainty in the visual and odometric data. Since ML
is a grid-based algorithm, it gives a coarse but robust result. Unfortunately it requires
complex computations since at every step all grid cells should be taken into account.
Although the accuracy of the result might not be sufficient for implementing high level
planning which is required for robot soccer. It can converge faster than the sample based
algorithms. So a ML based method is designed and implemented. This method works in
a similar manner as the geometrical localization algorithm (Figure 1):

For all grid cells
If visual data available

Apply visual update
Else if odometric data availabla

Apply odometric update
Calculate probability of each cell according to ML
// use current beliefs and probability, and newly calculated belief and probability
//of each cell and calculate the weighted average

return the best cells (with maximum probability)

Fig. 1. The ML based proposed algorithm
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Unfortunately, as the uncertainty increases, the maximum probability decreases and
the number of grid cells with the maximum probability increases, so the accuracy of the
final position decreases. One solution is to use the averages of the centers of the cells,
as the final position. But this parameter will not cover all space uniformly. So it would
be useful to use a sample based method within the ML method, in order to increase
coverage speed and accuracy. If a method is used to update only several cells but not all
at each update, then the computational complexity would decrease drastically, too.

3.3 R-MCL

As indicated in the previous method, ML is robust and converges fast, but coarse and
computationally complex. On the other hand, sample based MCL is not as computa-
tionally complex as ML, and gives accurate results. However, it can not converge to a
position as fast as ML, especially in the case of an external impact on the position of the
robot (such as kidnapping). In addition, the number of samples to be used is generally
kept very high to cover all space and converge to the right position. There are several
extensions for adaptive sample size usage, but these still do not solve the slow coverage
problem. So it might be useful to converge to several cells by ML or another grid based
method, then inside these bulk of grids, produce a limited number of samples to find
the final position. The average of these samples would give the final position and the
standard deviation might give the uncertainty of the final position as in the MCL based
methods. The algorithm in Figure 2 simply works as shown in Figure 3:

In the original MCL, the number of samples is increased to decrease bias in the result.
In R-MCL since we converge by selecting cells with maximum probability, so the bias
is already decreased, therefore we do not need this to decrease bias.

After testing this version, some improvements were done on the current version
of R-MCL and ML. In the modified ML, not only the distance but also the bearing
information is used to find the best grids, so the number of chosen grids decrease and
confidence increases. As a result of these modifications, the accuracy of the results
improved considerably. Later when the samples are drawn, also the best samples are
selected using distance and the bearing from these very good cells, and their average is
returned as the current pose. Notice that, samples are taken into consideration only when
the position reaches to a certainty level, in other words the number of chosen cells are

Apply visual/odometric update to all cells
Choose grid cells with probability > threshold as in ML //only choosing the cells with maximum probability might not be
//adequate due to test field's conditions
Apply resampling

Calculate the number of cells to be produced according to your level of uncertainty
Produce random samples of this amount from the chosen cells
Pick up samples with probability> threshold from this sample set

Find the average of the positions of chosen samples and return as final position
Find standard deviation of the positions of samples and return as the uncertainty of the final position

Fig. 2. The R-MCL based proposed algorithm
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CONTROLLER
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RE-INITIALIZE
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 GRID WORLD

VISUAL DATA

ODOMETRIC
DATA

Fig. 3. The R-MCL working schema

below a limit(e.g. 50), and there is at least one very good cell which is below or equal to
the minimum error in both distance and bearing limitations. Also if there are no samples
which satisfy the minimum bearing and distance error condition then the results of ML
are used instead. Also the bearing of the new pose is found by the ML module inside the
R-MCL because it is more accurate and robust.

4 Tests and Results

A simulator was developed which is used to produce realistic data for testing the imple-
mentations. It produces both odometric and visual data according to the user’s choice,
besides it enables the addition of random noise to the produced data optionally, to make
it more realistic. The new algorithms are tested on a set of tests based on fixed paths in
the field. In the first group of tests there is active vision and in the second, the robot could
take information about one landmark so it is a very hard and challenging case. Also noise
with a magnitude of 20 cm (chosen very high-twice the cell size- to observe the effects
easily) is added in some tests, and likewise odometry is included in a group of tests. The
tests of R-MCL are repeated 50 times each, because the samples are drawn randomly
and this affects the accuracy of the results. The average and standard deviation of the
errors that are produced during the tests are presented in the Table 2. As seen from the

Table 2. Experimental results

test no active vision noise odometry geometrical ml r-mcl
1 yes no no 18.13±35.60 4.27±1.97 3.68±1.84
2 yes yes no 20.12±33.56 16.63±24.10 17.22±24.08
3 yes no yes 18.13±35.61 4.27±1.97 3.72±1.55
4 yes yes yes 23.48±31.70 11.30±2.73 9.13±3.46
5 no no no 168.60±1.68 5.70±0.68 4.06±1.75
6 no yes no 169.29±2.65 35.28±27.94 34.41±25.12
7 no no yes 168.76±1.75 5.70±0.68 3.37±2.49
8 no yes yes 167.94±3.01 5.69±0.68 3.90±1.77
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test results, when active vision is used, the geometrical method performs relatively well.
ML performs very good, both in case of passive vision and noise. R-MCL outperforms
all, and its performance is close to ML as predicted, in the problematic cases, since it
uses the output of ML in these cases. The effect of odometry on the results of ML seems
ignorable since the step size is ignorable compared to the cell size. In currently ongoing
works, these effects are tested in details.

5 Conclusions

Localization in a totally unknown area is a very hard task for autonomous mobile robots.
This work aims to propose a fast, reliable, computationally and resource efficient solution
to global localization problem. The solution should be successful in environments like
the Robocup Games and the challenges which require very high accuracy and speed.
For this reason in this paper several new localization algorithms are developed. The first
method is a new geometrical localization method which is based on one observation at
a time. This property makes this method more robust and realistic. Extending this idea,
a ML based method is also developed. Next, to make use of the robustness of ML but to
make the results more precise, a hybrid method called R-MCL method is implemented.
This method recovers from kidnapping in a very fast manner and it is very robust to
even high levels of noise and inadequate environmental information. It is higly accurate
and its accuracy can be improved by improving resampling and choosing the best cells
and samples. It performs quite well when compared with the outperforming methods
such as ML-EKF, and A-MCL, and there is an ongoing research for testing it with these
methods on the same data set from ERS 210 quadrupled robots.
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Abstract. Soccer simulation commentary system is a suitable test bed for 
exploring real time systems. The rapidly changing simulation environment 
requires that the system generates real time comments based on the information 
received from the Soccer Server. In this article, a three-layer architecture of 
Caspian Soccer Commentary system is presented, and each component of the 
system is briefly described. The emphasis of this paper is on design and 
implementation of the Analyzer and the Content Selector subsystems. The 
Analyzer takes advantage of the State Machine to keep track of the game 
situations. The Scheduling and Interruption mechanism is proposed to improve 
the efficiency of the Content Selector subsystem. The presented Commentary 
System together with the other Caspian presentation and analysis tools won the 
first place in RoboCup 2003 Game Presentation and Match Analysis 
competitions. 

1   Introduction 

The development of a live commentary system for Soccer Simulation requires dealing 
with time pressure issues. That is, once the commentator recognized the game 
situation, he has to report it in a small time interval. This is because of the fast rate of 
situation change in such environments. Using simulated soccer games, makes it 
possible to take advantage of rich simulator’s log file, instead of dealing with 
challenges of image processing in real soccer matches. [1][2][3] 

In order to have an influence on the audience, the artificial commentator should 
speak through the language used by a human commentator using his common jargon. 
In addition the more natural voice it has the more acceptances it will receive from the 
audience. To achieve this, it has been decided to use prerecorded human report 
statements. It is clear that using natural human voice has a great impact on the quality 
of communication with the audience, but the excitement of the game cannot be 
experienced without the existence of the special sound effects like chants, applause 
and referee whistle. Therefore it is important to generate appropriate special sound 
effects according to the game trend. More details on this process in Caspian 
commentator is presented in “Special Sound Effects Manager” section. 
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In this article Caspian commentary system architecture is presented, including its 
subsystems and their functionality which are listed below: 

1. Analyzer 
2. Statistical Analyzer 
3. Content Selector  
4. Special Sound Effects Manager  
5. Sound Manager 

The emphasis of this paper is on the design and implementation of the Analyzer 
and the Content Selector subsystems. The Analyzer takes advantage of the State 
Machine to keep track of the game situations. The Scheduling and Interruption 
mechanisms are proposed to improve the efficiency of the Content Selector 
subsystem. 

2   Related Work 

So far, three soccer commentary systems have been developed: 

1. Rocco from DFKI [4] 
2. Byrne from Sony CSL [5] 
3. MIKE from ETL [6][7] 

The functionality of these three systems is that, after receiving data from the 
Soccer Server in each cycle, generate comments to describe the game situation. [8] 

 

Fig. 1. An instance of the Rocco’s textual commentary 

Generally, the transformation process from the Soccer Server data to an 
appropriate report statement is done through the following steps: 

1. Game analysis 
2. Topic control and content selection 
3. Natural language generation 

Although MIKE and Rocco produce disembodied speech, Byrne uses a face as an 
additional means of communication. Rocco uses a template-based generator instead 

“kasuga” 9 kick off, 
“andhill” 5, well done, 
we are life from an exciting game, team “andhill” in red versus 
“kasuga” in yellow, he finds “andhill” 9, 
yellow 6 intercepts the pass from “andhill” 9, forward from red 7, 
yellow 4 intercepts, 
still number 4, 
number 9 is arriving, 
ball played forward by “kasuga” 11, 
failed, good luck for “andhill”, 
the keeper kicks off the goal, 
number 2 does well there,
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of fully fledged natural language generation components. That is, the language is 
generated by selecting templates consisting of strings and variables that will be 
instantiated with natural reference to object delivered by nominal-phrase generator. 
MIKE (Multi-agent Interaction Knowledgably Explained) is an automatic real-time 
commentary system capable of producing output in English, Japanese, and French. 
Figure 1 illustrates an instance of the text commentary, generated by Rocco. 

All these three systems generated natural-language utterances using a speech 
synthesizer. As the generated verbal comments have a noticeable difference with the 
human natural voice, these systems could not effectively catch the attention of the 
audience. 

Our vision is to develop a live soccer commentary system, so that one can hardly 
recognize an artificial commentator is reporting the game. To achieve this, it has been 
decided to use prerecorded human report statements instead of generating text and 
then converting it to speech. Note that a soccer game consists of many similar 
situations that can be grouped together. For example many situations in a game can be 
described as “It is a definite chance!” Therefore it is possible to have some 
prerecorded report statements for each group of situations. Not only it doesn’t limit 
the commentator functionality, but it also has an effective influence on the audience. 

3   System Architecture 

A three-layer architecture has been used for the Caspian Live Commentary system. 
The Analyzer and the Statistical Analyzer, form the bottom layer of our architecture. 
Above this layer, there is Content Selector and Special Sound Effects Manager. 
Sound Manager comprises the third layer of the proposed architecture as shown in 
figure 2.  

The Analyzer receives information from the Soccer Server and determines the 
game status. Some examples of the games status determined by the Analyzer are 
“One and One”, and “Scoring Chance”. The Statistical Analyzer subsystem performs 
statistical analysis on data received from the Analyzer. The Content Selector 
subsystem takes the game states from the Analyzer and selects an appropriate 
statement to report the current situation of the game. Then, it sends a request to the 
Sound Manager to play the selected statement. The Special Sound Effects Manager 
works in parallel with the Content Selector and decides on the suitable environmental 
sounds for the current situation, and sends a request to the Sound Manager. Finally 
the Sound Manager organizes the submitted requests and plays the sounds in a 
consistent way. 

4   Analyzer 

The Caspian Commentary system is designed to report both live and replayed games. 
In order to report a live game, the commentary system connects to the Soccer Server 
and receives the same information that the monitor program gets for updating its 
visualization. The system uses the rcg log file of the Soccer Server to report on a 
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replayed game. The rcg log file is a binary file generated by the Soccer Server during 
the time that the game is running and contains the data related to each cycle of the 
game. As a result, two different sources of data input, has been considered for the 
Analyzer: 

1. Soccer Server: to report on a live match. 
2. Log File: to report on a replayed match. 

No matter which of these two input streams are used, the received information 
consists of: 

1. players’ locations and orientations 
2. ball position and velocity 
3. play modes such as goal, throw-in, free kick, and so on 

 

Fig. 2. System architecture and its interrelated components 

Analyzer determines the game state using a State Machine, based on the data 
received from the input stream. There are two main points in designing the State 
Machine. One is to integrate a set of game states that can best cover different possible 
situations in a soccer game. The other one is to develop reliable state transition 
functions. For example, assume that the current game state is “One and one” this state 
can be followed by any of the following states: 

1. Goal: goal is scored. 
2. Out: the attacker kicked out the ball. 
3. Defender: the opponent defenders got the ball. 
4. Keeper: the opponent goal keeper caught the ball. 

A portion of the state machine which detects “One and One” and the successive 
game situations is illustrated in figure 3. 
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4.1   Set of Game States 

Game states in the state machine are divided into three categories: 

1. Primitive States: The states that have only the Initial State as their 
predecessor. For example, the “One-And-One” is an instance of a primitive 
state, as shown in figure 3. 

2. Non Primitive States: The states that can be reached by visiting at least one 
primitive or non-primitive state in the machine. In other words, a non-primitive 
state is dependent on the previous game state. For example, the transition to 
“Goal-After-OneAndOne” can happen only if the previous game state was 
“One-And-One”. 

3. Final States: The states that have no successor in the state machine. For 
example, “Throw-In” is a final state. Every time the machine reaches a final 
state a transition to the Initial State will occur immediately. 

 

Fig. 3. A portion of the state machine which detects “One and One” and the successive game 
situations  

4.2   State Transition Functions 

A State transition function determines whether a transition to a specific new state can 
take place. This is done by verifying a set of preconditions. In other word, if the 
preconditions are satisfied then the transition to the new state will take place. For 
example consider the “One-And-one” state illustrated in figure 3. “is_OneAndOne” is 
a state transition function which determines whether a transition to the  
“One-And-One” state can take place.  

There are two challenges that should be addressed in the design of each state 
transition function.  

1. Which preconditions should be considered? 
2. How to verify whether the precondition is satisfied? 

is_GoalScored 

is_BallGoOut 
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Many transitions between different states of the state machine are carried out 
when the team in possession, looses the ball. So, it is very important to implement the 
function which detects the team in possession, quite well.  

5   Statistical Analyzer 

The Statistical Analyzer retrieves the statistical information based on the current game 
state determined by the Analyzer. Here are some instances of the statistical 
information: successful pass rate, number of shots, ball possession, number of 
offsides, etc. The results show that, the audience is really interested in the presented 
statistical information, especially those that cannot be easily retrieved by them. Also it 
can be used as a reliable metric to judge about the efficiency of the players’ skills. For 
example, an increase in the successful pass rate shows that the agent’s pass skill has 
been improved. 

Some of the statistical information like number of offsides can be retrieved by 
keeping track of play mode changes (announced by the referee). On the other hand, 
there are some items like successful pass rate that should be extracted by analyzing 
the game. 

Table 1. The classification of the commentator’s report statements 

 

6   Content Selector 

The Content Selector receives the current game situation and statistical information as 
an input, and decides on the statement to be reported. This module selects the 
appropriate utterance from a set of prerecorded report statements. The classification 
of the commentator’s statements is given in table 1. Only those statements that satisfy 
the following criteria are picked up. 

1. Concise and Meaningful: Since the commentary system has to keep up with a 
rapidly changing environment, it is important to use concise statements to 
describe the current situation. In fact, the current situation may change in every 

• Play Mode Comments: comments on play modes, such as: offside, 
free kick, free kick fault, throw in, corner, and goal. 

• Play Situations: situations like: good scoring chance, poor scoring 
chance, out after good scoring chance, good defending, poor 
defending, one and one, out after one and one, keeper caught after one 
and one, defender got the ball after one and one, good catch by the goal 
keeper, poor catch by the goal keeper, etc. 

• Players’ Actions: good tackle, good pass, good dribble, etc. 

• Misc.: greeting comments (e.g. Hello every body….), full time (e.g. Full 
time here and the score is two-nil), after scoring (e.g. The dead lock broken 
there and the score is one-nil), dispossession (e.g. He lost the ball), long 
possession (e.g. The ball wasn’t lost for long) 
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simulation cycle and using long statements may lead to inconsistence 
commentary. 

2. Various and Exciting: A commentator, who always expresses a specific 
situation by identical statements, is boring to the audience. For example it is 
not pleasing to announce “It is a corner now!” on every corner kick situation. 
For this purpose, various statements are considered in the set of prerecorded 
statements to report each situation. In addition, each statement is designed to be 
exciting so that the audience will experience the fun and excitement of the 
game. 

3. Impartial: In fact, the commentator should not report biased statements. 
Consequently, a set of impartial prerecorded statements have been picked to 
achieve this goal.  

Having an integrated set of prerecorded statements, the commentary system 
should decide which one is appropriate for the current situation. The selection 
procedure is a combination of the Scheduling and Interruption mechanisms which are 
described below. 

6.1   Scheduling Mechanism 

This mechanism is designed to set a suitable time interval between two successive 
report statements. This means that, the commentator may refuse to report a new state 
in order to meet time restrictions. But, there are some exceptions for important events, 
such as scoring, that should be considered in the design of this mechanism.  

6.2   Interruption Mechanism 

As it is mentioned in scheduling mechanism, there are some game states that are 
really important (e.g. scoring the goal). Therefore it is worth to interrupt the current 
reporting statement and announce the critical event. In other word, it is required to 
introduce the Interruption mechanism. Although the interruption mechanism is 
necessary for the commentary system, but having several interruptions during the 
game, makes the audience feel confused! For this reason, the interruption rate during 
the game should be in an acceptable range. Therefore, the interruption mechanism is 
considered only for critical events like scoring the goal. 

Applying the described algorithm in the Caspian Commentary system results in a 
consistent report of the game, but it still has some shortcomings that will be described 
in Conclusion and Future Work section. 

7   Special Sound Effects Manager 

Having implemented the commentator, we found out although the commentator was 
doing well at reporting the game, it couldn’t bring excitement to the audience. To 
address these problems, a new module named Special Sound Effects Manager was 
introduced which itself is made up of three sub modules. 
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This module receives the current game state as an input and picks up the 
appropriate environmental sounds including cheering of spectators, referee whistle 
and stadium announcer. Then it submits the sound requests to the Sound Manager. 

This module plays a key role in conveying fun and excitement to the people who 
are watching the game.  

7.1   Crowd Sound Effect 

This is the most effective sound effect among the other ones. In the current 
implementation spectators are the soccer fans. They wisely keep track of the flow of 
the game, and make critical situations stand out by the sound effects associated to 
them. There are three sound effects implemented into this module, namely chant, 
applause, and scream. 

7.2   Referee Whistle 

According to the FIFA rules, there are several kinds of whistle blows for different 
events during a game. For example kick off, half time and corner kicks; each has its 
own style of blowing. The implemented referee whistle module, fully complies with 
the official FIFA rules.  

7.3   Stadium Announcer 

It announces the beginning and the end of a match. It also makes an announcement 
each time a goal is scored. 

8   Conclusion and Future Work 

The presented commentary system along with the other Caspian presentation tools, 
won the first place in RoboCup 2003 Soccer Simulation League, Game Presentation 
and Match Analysis Competitions, in Padua, Italy.  

Caspian Commentator is designed to be an effective means of communication 
with the audience, by reporting the game facts at the right time and in a realistic way. 
It has been observed that the Caspian Commentator has a great impact on conveying 
the excitement to the people who are watching the game. More specifically, 
successful implementation of the State Machine in the Analyzer Module, leads to 
correct recognition and tracking of the game states. In addition, utilizing effective 
scheduling and interruption mechanism prevents the commentary system to 
overwhelm audience with his comments. But it has still some shortcomings and needs 
to be improved. One is that the audience is interested in receiving the meta-
information while being informed about the general flow of the game. Some instances 
of the meta-information are history of the teams, how many times they play in front of 
each other, and what the results of previous matches were. 

Furthermore, the audience is concerned about receiving technical information such 
as formation, player skills, and the commonly used strategies in a specific team. To 
meet this requirement, the Analyzer of the commentary system should be improved, 
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so that it can retrieve the required information. Considering that “Team Modeling” is 
one of the major challenges in the Soccer Simulation Coach Competitions, it is 
possible to utilize the research studies in this domain, to improve the Commentary 
system’s performance. 
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Abstract. The paper discusses a top-down approach to model soccer knowledge,
as it can be found in soccer theory books. The goal is to model soccer strategies
and tactics in a way that they are usable for multiple RoboCup soccer leagues,
i.e. for different hardware platforms. We investigate if and how soccer theory can
be formalized such that specification and execution is possible. The advantage
is clear: theory abstracts from hardware and from specific situations in leagues.
We introduce basic primitives compliant with the terminology known in soccer
theory, discuss an example on an abstract level and formalize it. We then consider
aspects of different RoboCup leagues in a case study and examine how examples
can be instantiated in three different leagues.

1 Motivation

Thinking about the goal of the RoboCup community “to beat the human soccer cham-
pion by the year 2050” we start thinking about the human way of playing soccer. Talk-
ing to real experts in that field revealed that strategy and tactics play a major part in the
game. But a computer scientist is more intrigued by available methods and restrictions
that do exist for various reasons (e.g. expressivity of languages used). The following
question arises: Can we apply soccer theory to the RoboCup domain in a way that the
majority of the leagues would benefit? The motivation of this paper is therefore to take
an adequate soccer theory book and examine its formalization.

Success in modern soccer games largely depends on the physical and tactical abili-
ties of single players and on the overall strategy that coordinates team behavior whose

� This research has been carried out within the special research program DFG-SPP 1125 Coop-
erative Teams of Mobile Robots in Dynamic Environments and the Transregional Collaborative
Research Center SFB/TR 8 on Spatial Cognition. Both research programs are funded by the
German Research Council (DFG).
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goal is to sustain the strength of the individual players and to restrict the abilities of
the opponents. Additionally, the use of an appropriate tactic is the foundation for co-
ordinated team behavior. A big advantage of this approach is that the outcome can be
applied to more than one RoboCup league. We go further and argue that it is possible
to have a team of robots from different institutions that are able to play soccer together.

The paper is organized as follows: We motivated our approach in Sect. 1, introduce
basic primitives compliant with the terminology known in soccer theory. We discuss
an example on an abstract level formalizing it with Golog as specification language in
Sect. 2. We then consider aspects of different RoboCup leagues in a case study and
examine how examples can be instantiated in three different leagues in Sect. 3. We
discuss our approach in Sect. 4.

2 World Modeling for the Soccer Domain

This section contains a description of how modern soccer knowledge is organized.
Nowadays there are many textbooks on soccer theory. Here, we focus on Lucchesi’s
book [8], because it concentrates on the presentation of tactics (and not on training
lessons). We derive basic primitives from [8] and formally specify some soccer tactics.

2.1 The Organization of Soccer Knowledge

According to [8], we interpret a soccer strategy as a tuple str = 〈RD,CBP〉. With RD as a
set of role descriptions that describe the overall required abilities of each player position
in relation to CBP, the set of complex behavior patterns is associated with the strategy.
Given the strategy str, the associated role description rd ∈ RD can be described by the
defense tactics task, the offense tactics task, the tactical abilities, and the physical skills.
Although soccer strategies in current literature [8, 10] are not as highly structured as
strategies for American football, they provide sufficient structure to build up a top-level
ontology with respect to specialization and aggregation. According to [8], the offensive
phase can be structured into four sub-phases: gaining ball possession, building up play,
final touch and shooting. In general, there are two ways to build up the play: either
we introduce the phase in a counter-attack manner, fast and direct with a long pass or
deliberately by a diagonal pass or a deep pass followed by a back pass. In the sequel,
we will concentrate on the building-up phase.

2.2 Basic Primitives

Following the lines of [8], we distinguish between role (back, midfield, forward) and
side (left, center, right) in soccer. This distinction is more or less independent from
the pattern of play (e.g. 3-4-1-2 or 4-2-3-1). The combination of role and side (e.g.
center forward) can be interpreted as type of a (human or robotic) soccer player or as
position (region or point) on the soccer field. Therefore, we basically have nine different
positions, as illustrated in Fig. 1(a).

The notions player type and position can be seen as instances or specializations of
the notion of an abstract address, usually associated with its (actual) coordinates or a
region on the soccer field. Also the ball (strictly speaking, its position) is an address,
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i.e. the parameter or goal of a test or operation of a soccer player (agent). A movable
object in the context of soccer may be a player or the ball. An object is in a current
state, which includes besides other data the current speed or view direction.

Although not explicitly mentioned, a model of behavior is assigned to every object,
e.g. average or maximum speed or as a special case a deceleration rate for the ball.
Additionally every player needs to hold data about other agents’ states. We abstract this
by the term world model. All this is summarized in the class diagram in Fig. 1(b).

In [8–p. ii] only few symbols are introduced that are used throughout the many di-
agrams in that book: players (in many cases only the team-mates, not the opponents
are shown), the ball, passing, movement of the player receiving the ball, and dribbling.
Conceptually, all symbols correspond to actions, which we abbreviate as pass, goto,
and dribble. Since all actions are drawn as arrows starting at some player, naturally
two arguments can be assumed: player and address. goto(player[LF ],region[CF ]) e.g.
means that the left forward player moves in front of the opponent goal.

Although in most cases this is not explicitly mentioned in [8], actions require that
certain prerequisites are satisfied, when they are performed. Since our approach aims at
a very abstract and universal (league-independent) formalization of soccer, we restrict
ourselves to only two tests: possession of ball and reachability. Each of them can be
seen as predicate with several arguments: hasBall has the argument player (the ball
owner); reachable has two arguments, namely an object and an address.

A pass e.g. presupposes reachability, i.e. it should be guaranteed that the ball reaches
the team-mate. Clearly, the implementation of the reachability test is heavily dependent
of the respective soccer league and its (physical) laws. Therefore, at this point, we only
give a very general and abstract definition: Object o can reach an address a iff o can
move to a and after that the ball is not in possession of the opponent team. This also
covers the case of going to a position where the ball will be intercepted. We will go into
further details in Sect. 2.5.

2.3 Towards a Formal Specification of Soccer Tactics

For specifying soccer moves we use the logic-based programming language Golog [6].
Golog is a language for reasoning about actions and change and is based on the sit-
uation calculus [12]. Properties of the world are described by fluents, functions and
relations with a situation term as their last arguments. The way actions change fluents
is specified in terms of so-called successor state axioms, which also provide a solution
to the frame problem. Together with action precondition axioms, axioms for the initial
situation, a few foundational axioms and a domain closure and unique names assump-
tion these form the basic action theories [12]. Golog uses basic action theories to define
the meaning of primitive actions. In addition it provides familiar control structures like
sequence, if-then-else, or procedures to specify complex action patterns. Recent exten-
sions dealing with concurrency, continuous change and time [2, 5] make the language
suitable for the soccer domain.

While Golog has been and is used to implement soccer agents [3], we use it here
merely as a specification language, because it comes equipped with a formal seman-
tics. As we will see, the language allows a fairly natural representation of typical play
situations. The primitive actions we consider here are goto(player,region), pass(player,
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Fig. 1. Tactical regions and address hierarchy derived from [8]. The field is divided into three rows
(corresponding to player roles) back (B), midfield (M), and forward (F) and three lanes (sides):
left (L), center (C), right (R). An address may be one of the nine regions or player types

region), and dribble(player, region). Further we need the action intercept which is a
complex action built from the primitive ones. The arguments of the actions are player
and region denoting that the particular player should go to, pass, or dribble the ball to
the given position. For describing the properties of the world on the soccer field we
need the fluents reachable and hasBall(player) among others.

2.4 Example

Fig. 2(a) depicts a possible move for a counter-attack. There, player movements are
represented by arrows (→ or �), passes are indicated by dashed arrows (���), and
squiggly arrows (�) stand for dribbling. Before we are able to formalize the whole
manœuvre, we have to think about what passing means exactly. As in several action
calculi, we introduce constraints associated with this action. A pass from player p to
p′ requires that beforehand p is in ball possession and the ball can be passed to p′,
i.e. the logical conjunction hasBall(p) ∧ reachable(ball, p′). Afterwards p′ is in ball
possession, i.e. hasBall(p′). In [8–p. 27], three different types of passes are mentioned
that can be formalized by additional constraints: long pass with p.role = B∧ p′.role =
F , diagonal pass with p.side �= p′.side, and deep pass with p.role < p′.role where we
assume that the roles (which can also be understood as rows in Fig. 1(a)) are ordered.

In Fig. 2(a), player 8 just captured the ball from the opponent team, dribbles toward
the goal while the forwards (player 9 and player 11) revolve the opponent defense in
order to get a scoring opportunity from both corners of the penalty area while player 10
starts a red herring by running to the center. The white circles represent the opponents.1

The counter-attack can be specified with Golog as shown in Fig. 2(b). The program
is from the view of player 8, that is, all actions and tests are performed by this player.
Player 8 gains the ball with an intercept action. He dribbles toward the center (denoted

1 In the original figure (diagram 21 in [8]) there are no opponent players as well as no dedicated
regions; we inserted them here for illustration purposes.
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(a) Extended diagram 21 from [8].

proc counterattack 21
intercept;
startDribble(region[CF]);
waitFor(reachable(p11,region[RF])∨

reachable(p9,region[RF])∨
∃x.Opponent(x)∧Tackles(x));

endDribble;
if reachable(p11,region[LF])

then pass(region[LF]);
else if reachable(p9,region[RF])

then pass(region[RF]);
endproc

(b) The specification in Golog.

Fig. 2. Counter-attack example

by region[CF ])) until either player 11 or player 9 is able to receive the pass or an op-
ponent forces player 8 to do another action (which is not specified in this example).
In the specification above we use the action pair startDribble and endDribble instead
of a single dribble action accounting for temporal aspects of that action. Splitting the
dribble action into initiation and termination is a form of implicit concurrency, since
other actions can be performed while dribbling. We omit further technical details and
refer to [5].

The next step in the presented sequence is a waitFor construct. Its meaning is that
no further actions are initiated until one of the conditions becomes true, i.e. player 11
or 9 are able to receive a pass in their respective region or an opponent tackles player 8,
i.e., an opponent can intercept the ball (go-reachability). It is perhaps worth mentioning
that during the blocking of the waitFor the dribbling of player 8 continues and sensor
inputs are processed to update the relation reachable, which is discussed in more detail
in Sect. 2.5. See [5] for details of how sensor updates can be formalized in Golog.

Finally, in the conditional we have to test which condition became true to choose the
appropriate pass. Note that we do not choose an action in the case of neither player 9
nor player 11 can receive the pass as this would be the matter of another soccer move
procedure. The counter-attack programs for the other players can be specified similarly.

2.5 Reachability

For our theory, reachability is central. As our theory aims at being a general one for dif-
ferent soccer leagues, we do not have a specific reachability relation. Building a specific
reachability relation is dependent on the league and even within a league, it depends on
abilities of single robots or agents. However, the different reachability relations share
some properties independent of the league. In general, we can distinguish three different
reachability relations:
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1. a player p not being in ball possession will reach an address a on the field before
any other player: reachablego(p,a) with prerequisite ¬hasBall(p)

2. a player p being in ball possession is able to dribble towards address a with high
probability of still being in ball possession afterwards: reachabledribble(p,a) with
prerequisite hasBall(p)

3. a player p being in ball possession is able to pass the ball b towards address a with
high probability of a team-mate being in ball possession afterwards: reachablepass

(b,a) with prerequisite hasBall(p)

We are aware of the fact that we need as precise world knowledge as possible,
e.g. current positions and speed, for determining the future ball possession like above.
Additionally we need assumptions on future behaviors, e.g. the ball path after being
kicked. While for team-mates we know the agent’s internal structure we may conclude
possible future actions with high probability. About opponent agents a lot less is known
and therefore predictions are more uncertain. The uncertainty of world data is quite
different over the leagues. In the simulation league world data is quite reliable while in
the four-legged league, e.g. position estimations are not very accurate.

Many different implementations of reachability can be thought of for the different
leagues. The use of Voronoi diagrams and their dual, the Delaunay triangulation (see
e.g. [1]) has been proven useful in the past, especially in the simulation league. Here
only direct neighboring players, team-mates and opponents, are connected. Note that a
direct approach with Voronoi diagrams is only one possibility for implementing reach-
ability. It will only be applicable for robotic soccer, if all agents more or less have the
same physical abilities in each region on the soccer field.

3 The RoboCup as Case Study

So far, we have only presented a very abstract way of describing team-play and cooper-
ative moves in soccer. We investigated the reachability relation, that forms a central part
of the theory, and discussed some of the underlying models and assumptions, as well
as the simplifications we made, but nothing has been said about the concrete problems
that arise when one tries to actually carry out the specified moves. Thus, in this section
we will discuss possible ways of realizing the abstract specifications in the mid-size,
simulation, and legged league.

Mid-Size League. The design of robots in the mid-size league underlies only few re-
strictions like the maximum size of robots. As the robots are fully autonomous, one
central problem is the perception of the environment and dealing with actuators like
ball kicking devices. Therefore, many problems in this league rather deal with low-
level problems, e.g. vision or ball handling, than with high-level aspects (team-play).
Concerning the primitive actions as in the example in Sect. 2.4, goto, pass, and dribbling
facilities are needed.

On the other hand, it was shown in [3] that Golog with extensions like decision-
theoretic planning or probabilistic projection can be applied in the mid-size league in
the RoboCup (2003 and 2004) and is really competitive and, thus, it should be possible
to adapt the moves described in [8].
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Simulation League. From a technical point of view, the simulation league is suited
best for carrying out the tactics presented in [8]. First of all, this is the only league
where teams of 11 players play against each other. So the number of players that is
needed for making the presented moves is given. In addition, the skills of the players
are developed well enough in this league, too, such that team-play can easily be realized.

As dribbling is an expensive and potentially unsafe behavior in the simulation league,
and passing is preferred, we focus on describing possibilities of implementing pass
reachability (see Sect. 2.5). The reachability of a pass partner is usually determined
by checking a cone from the player with the ball towards a potential pass recipient. If
this cone is free of opponent players, the recipient is reachable with a pass. A possible
implementation is presented in [14].

Sony Four-Legged Robot League. As in the mid-size league, the four players are too
few for carrying out tactical diagrams such as the ones in [8], and, moreover, with the
current field size there is no need for passing the ball.

One method used in this league by the GermanTeam [13] to describe robot behav-
ior is the Extensible Agent Behavior Specification Language (XABSL) [7]. It describes
behavior in the form of a hierarchy of state machines, so-called options, using XML. In
each option, the current state defines which sub-option or which basic behavior (some
pre-coded routine such as pass) is active. So at each point in time, a path from the root
option through several levels of other options to a basic behavior is active. This path
changes whenever the current state of an option is changed to another one based on a
decision tree. In principle, the behavior of player 8 in diagram 21 in [8] (counter-attack)
can be modeled in XABSL. As the XML description would be out of proportion for this
paper, we refer the reader to the long version [4].

4 Conclusions

As mentioned in Sect. 2.5, the concept of reachability is important. Reachable can
be based on some qualitative information such as distance (e.g., near, intermediate,
far away) or orientation (e.g., front-left, right, back-right). Examples of how to use
qualitative spatio-temporal knowledge and reasoning for the RoboCup can be found in
[9, 15, 16].

The intention of our investigation was to apply soccer theory as stated in soccer
expert books to the RoboCup soccer domain. Our motivation was the significance of
strategies and tactics in real soccer games. The main goal was to figure out whether we
would be able to find an abstract level of formalization that enables us to bring benefit to
multiple soccer leagues in RoboCup. We have chosen two examples for counter-attacks
and used Golog as specification language. Please note that Golog is only one example
for a specification language.

The biggest lesson learned is that we are able to formalize soccer theory on an
abstract level. This might not be surprising, however, some of the concepts real soccer
experts use are quite fuzzy and therefore difficult to define and implement. A prominent
example is the concept of reachability, which is used in our examples. It turned out that
the definition plays a crucial part in the implementation.
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Our case study revealed that there is a lot of work to be done. There are still many
problems concerning the low-level skills such as receiving the ball in the mid-size
league. The simulation league has an excellent platform for this kind of experiments.
The move has been implemented prototypically for the simulation league teams of both,
RoboLog Koblenz2 and Allemaniacs Aachen as a proof of concept. We will carry out
systematic experiments in the future. The behavior of the German Team in the Sony
legged league is modeled in XABSL as mentioned in the previous section. It turned out
that the abstract behavior could be modeled and therefore implemented.
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Abstract. Motion detection and tracking while moving is a desired ability for 
any soccer player. For instance, this ability allows the determination of the ball 
trajectory when the player is moving himself or when he is moving his head, for 
making or planning a soccer-play. If a robot soccer player should have a similar 
functionality, then it requires an algorithm for real-time movement analysis and 
tracking that performs well when the camera is moving. The aim of this paper is 
to propose such an algorithm for an AIBO robot. The proposed algorithm uses 
motion compensation for having a stabilized background, where the movement 
is detected, and Kalman Filtering for a robust tracking of the moving objects. 
The algorithm can be adapted for almost any kind of mobile robot. Results of 
the motion detection and tracking algorithm, working in real-world video 
sequences, are shown. 

1   Introduction 

Movement analysis is a fundamental ability for any kind of robot. It is especially 
important for determining and understanding the dynamics of the robot’s surrounding 
environment. In the case of robot soccer players, movement analysis is employed for 
determining the trajectory of relevant objects (ball, team mates, etc.).  

However, most of the existing movement analysis methods require the use of a 
fixed camera (no movement of the camera while analyzing the movement of objects). 
As an example, the popular background subtraction movement detection algorithm 
employs a fixed background for determining the foreground pixels by subtracting the 
current frame with the background model. The requirement of a fixed camera restricts 
the real-time analysis that a soccer player can carry out. For instance, a human soccer 
player very often requires the determination of the ball trajectory when he is moving 
himself, or when he is moving his head, for making or planning a soccer-play. If a 
robot soccer player should have a similar functionality, then it requires an algorithm 
for real-time movement analysis that can perform well when the camera is moving. 
The aim of this paper is to propose such an algorithm for an AIBO robot. This 
algorithm can be adapted for almost any kind of mobile robot. 

The rationale behind our algorithm is to compensate in software the camera 
movement using the information about the robot body and robot head movements. 

                                                           
1 This project was partially funded by the FONDECYT (Chile) project 1030500. 
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This information is used to correctly align the current frame and the background. In 
this way a stabilized background is obtained, although the camera is always moving. 
Afterward, different traditional movement analysis algorithms can be applied over the 
stabilized background. Another feature of our algorithm is the use of a Kalman Filter 
for the robust tracking of the moving objects. This allows to have reliable detections 
and to deal with common situations such as double detections or no detection in some 
frames because of lighting conditions. 

2   Related Work 

A large literature exists concerning movement analysis in video streams using fixed 
cameras. As an example, every year is held the PETS event, in which several state-of-
the-art tracking and surveillance systems are presented and tested (see for example [4] 
and [5]). Different approaches have been proposed for moving object segmentation; 
including frame difference, double frame difference, and background suppression or 
subtraction. In the absence of any a priori knowledge about target and environment, 
the most widely adopted approach is background subtraction [3]. Motion History is 
another simple and fast motion detection algorithm. According to [8], the Motion 
History and Background Subtraction algorithms have complementary properties, and 
when possible it is useful their join use. 

Image alignment using gradient descending is one of the most used alignment 
algorithms. It can be divided into two formulations: the additive approach, which 
consists on start from an initial estimation of the parameters, and iteratively find 
appropriates parameters increments until the estimated parameters converge [7]; and 
the compositional approach, which estimates the parameters using an incremental 
warp. This last approach iteratively solves the estimation problem using an 
incremental warp of the images to be aligned with respect to a template. This allows 
pre-computing the Jacobean more efficiently [1]. But the key for obtaining an 
efficient algorithm is switching the role of the image and the template. This leads to 
the formulation of the inverse compositional algorithm [2], where the most 
computationally expensive operations are pre-calculated, allowing a faster 
convergence. In [6] it was proposed the robust inverse compositional algorithm as an 
extension to the inverse compositional algorithm, allowing the existence of outliers 
into the alignment with almost the same efficiency. 

Regarding moving objects tracking, Kalman Filtering, Extended Kalman Filtering 
and Particle Filtering (also known as Condensation and Monte Carlo algorithms) are 
some of the most common used algorithms. Due to its simplicity, the Kalman filter is 
still been used in most of the general-purpose applications. 

The here-proposed motion detection and tracking system is based in the described 
algorithms: background difference and motion history for motion detection, robust 
inverse compositional algorithm for the image and background alignment, and 
Kalman filtering for the tracking of moving objects. 
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3   Proposed Motion Detection System 

3.1   System Overview 

In figure 1 is shown a block diagram of the proposed system. The system is composed 
by four main subsystems: Image Alignment, Motion Detection, Detection Estimation, 
and Background Update. In the Image Alignment module, the last updated 
background image (Bk-1) and the last frame image (Ik-1) are aligned with respect to the 
current frame image (Ik). The camera motion angles (ακ) are employed in this 
alignment operation. Both aligned images, Bk

*  and Ik−1
* , respectively, are then 

compared with Ik in the Motion Detection module for determining the current moving 
pixels. As a result of these comparisons the Motion History and Background 
Subtraction algorithms generate preliminary detections (a set of moving pixels),  

KHD  and 
KBD , respectively. These detections are joined in the Rejection Filter 

module, and a single set of candidate blobs (in this case moving objects), built using 
adjacent moving pixels, Detk, is obtained. The motion detections are analyzed in the 
Detection Estimation module using a Kalman Filter, and the final detections Detk* are 
obtained. Finally, the background is updated using Bk

* , Ik and Detk* (which defines 
the new foreground pixels) by the Background Update module. 

 

Fig. 1. Block diagram of the proposed system. Parameters are described in the main text 

3.2   Image Alignment 

The alignment of the last updated background image (Bk-1) and the last frame image 
(Ik-1) is implemented using the robust inverse compositional algorithm [6]. The 
alignment operation is implemented as a sequence of incremental warps (see section 
2). The initial estimation of the warp is calculated based on the camera motion angles 
(stored in the αk vector; they correspond to the tilt, pan and roll camera rotation 
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angles). The initial estimated warp is a composition of a rotation followed by a 
displacement. The angle of rotation is estimated as the variation of the roll angle of 
the camera, while the displacement Dx/Dy in the X/Y axis corresponds to the pan/tilt 
angle: 

( ) ( )
( )
( ) ( ) ( ) ( )( ) 180coscos

180

sinsin

1122

12

121122

⋅⋅−−⋅−=

⋅−=

−+−⋅−−⋅=

pantiltpantilt

panpan

rollrolltiltpantiltpanR

BABADy

Dx

BABA

αααα
αα

ααααααα
                (1) 

where 
Rα  represent the rotation in radians, Dx and Dy represent the displacement in 

pixels in their respective axis, BA is the angle of the body, and the angles 
1tiltα , 

1panα , 

1rollα , 
2tiltα , 

2panα , 
2rollα  are the tilt, pan and roll angles of the robot’s head in the last 

and in the current image, respectively, measured in radians. 
Then the warp is defined by a set of six parameters as: 

( )
( ) 6412

5311

PyPxPWy

PyPxPWx

+⋅++⋅=
+⋅+⋅+=                                              (2) 

where (Wx,Wy) define the new pixel coordinates which initial coordinates were (x,y). 
A pure displacement warp has the parameters P1 to P4 equals to zero, and the 
parameters P5 and P6 equals to the displacement in pixels in the x and y axis 
respectively. A pure rotation warp has the parameters P1 to P4 equals to the rotation 
matrix, and the parameters P5 and P6 equals to zero. Finally, a compound warp of a 
rotation followed by a translation have the parameters: ( ) 1cos1 −= RP α , 

( )RP α−= sin2 , ( )RP αsin3 = , ( ) 1cos4 −= RP α , DxP =5 , DyP =6 . 
For aligning Bk-1, the area of the current image (Ik), which has being estimated to 

overlap the background, is chosen as a template for the algorithm. This preliminary 
template is divided into nine blocks (sub-images). In each block is calculated the 
normalized variance of its pixels (intra-block variance), and the normalized variance 
of the error with respect to the correspondent block in the background (inter-block 
variance). A variability factor is computed as the quotient of the intra-block variance 
and the inter-block variance. The six blocks with the largest variability factor are 
selected as the final templates for the background alignment. Taking into account the 
normal camera motion, Bk-1 and Ik should have different spatial sizes for a correct 
alignment. In our implementation Bk-1 has the same height than Ik, but the double of its 
width. We will denote the set of parameters defining the warping of the background 
PB. The algorithm for obtaining PB is detailed described in [6].  

For aligning Ik-1 the calculated warp of Bk-1 is employed as a first approximation. 
However, given that Ik-1 and Ik have the same size, the calculated warp has to be 
actualized with a composition with a prior displacement to achieve the same spatial 
configuration of the background (Ik-1 should be translated into background spatial 
coordinates), and then with a composition with a post displacement to reach the 
spatial configuration of the current image (the warped image should be taken back to 
its original coordinates). Thus, defining P1 as the set of parameters needed to produce 
a displacement equal to the last position of Ik-1 inside the background, and defining P2 
as the set of parameters needed to produce a displacement equal to the inverse of the 
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estimated final position of Ik inside the background, the warp needed to align Ik-1 is 
(the set of parameters defining this warping are PI):  

  W (x,PI) = W (x, P2 ) (W (x, PB) W (x, P1 ))                              (3) 

For simplicity on the notation, x denotes both spatial image coordinates. The 
function W(x, P*) corresponds to a warping operation over x using the set of 
parameters P*. 

3.3   Motion Detection 

The motion detection module is composed by three algorithms, Motion History and 
Background Subtraction for movement detection, and Rejection Filter for filtering 
wrong detections and forming the movement blobs.  

3.3.1   Motion History 
The difference image DMk is defined as: 

>−= −

otherwise0

)()( if
)(

*
1 mkk

k

TIImIncrement
DM

xx
x                             (4) 

where mIncrement corresponds to a factor of increment in the motion and Tm 
corresponds to a motion threshold. DMk contains the initial set of points that are 
candidate to belong to the MVOs (Moving Visual Object). In order to consolidate the 
blobs to be detected, a 3x3 morphological closing [10] is applied to DMk. Isolated 
detected moving pixels are discarded applying a 3x3 morphological opening [10]. The 
motion history image MHk, calculated from DMk, is then updated as: 

kkk DMrDecayFactoMHMH += − *1
                                          (5) 

Finally, all pixels of MHk whose luminance is larger than a motion detection 
threshold (Th) are considered as pixels in motion. These pixels generate the detection 
image 

KHD . 3x3 morphological closing and opening are applied to 
KHD . 

3.3.2   Background Subtraction 
Foreground pixels are selected at each time k by computing the distance between the 
current image Ik and the current aligned background *

kB , obtaining 
KBD  as: 

>−

=
otherwise   0

TBI  if

D

pkk

Bk

)()(  1

)(

* xx

x
                                                (6) 

In order to consolidate the blobs to be detected, a 3x3 morphological closing is 
applied followed by a 3x3 morphological opening.  
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3.3.3   Rejection Filter 
By means of 8-connectivity movement blobs, composed by connected candidate 
moving pixels, are built using 

KHD  and 
KBD . For each blob b is defined a movement 

density MDb as: 

( ) ( )

)(

1

bArea

xIxI
MD bx

kk

b
∈

−−
=                                                     (7) 

MDb measures the average change in the last frame for the blob b. Ghosts (groups 
of pixel that are not moving, detected like movement because they were part of a 
MVO in the past) should have a low MDb, while the MVOs should have a large MDb. 
Then, blobs with a small area (area  Tb), with a large area (area  Ts) and blobs with 
a small movement density (MDb  Td) are considered miss detections and discarded. 

3.4   Detection Estimation 

Targets (the MVOs) are tracked by keeping a list with the state of each of them. The 
state of a given target u includes: the position of the center of mass (xu, yu), the speed 
(Vxu, Vyu), the area (au) and the growing speed (Vau). For each received movement 
blob is calculated the area and the center of mass. These variables are used as sensor 
measurements, and integrated across the different motion detections (the ones coming 
from 

KHD  and 
KBD ) and over time using a first order Kalman Filter [10]. This process 

includes 6 stages: prediction, measure-target matching, update, detection of new 
targets, deprecated targets elimination and targets merge. After those 6 stages the 
target state list, whose values are estimated by the Kalman Filter, corresponds to the 
final motion detections (Detk*). 

Prediction. Using a first order cinematic model it predicts the state vector for each 
target, based on the last estimated state, and projects the error covariance ahead. 

Measure-Target matching. In order to update the targets is imperative identifying 
which (blob) measure affects each target. For each measure-target combination is 
calculated a confidence value as the probability function given by the Kalman filter 
for the target evaluated on the measure. For each target, all measures with a 
confidence value over a threshold Tt1 are associated with the target. If a measure does 
not have any associated target, then it is consider as a new target candidate and passed 
to the Detection of new targets stage. For each measure associated with a target, 
speeds (spatial speed: Vx and Vy, and growing speed Va) are to be estimated. This 
estimation is performed using the difference between the target state before the 
prediction and the measured state, divided by the elapsed time since last prediction. 

Update. It computes the Kalman gain, updates the state vector for each target using 
their associated measures, and updates the error covariance. The targets without 
associated measures are not updated. 

Detection of new targets. All measures without an associated target are considered as 
new target candidates. Their spatial speed is calculated as the distance from the image 
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border, in the opposite direction of the image center, divided by the elapsed time since 
the last frame, and their growing speed is set to zero. 

Deprecated targets elimination. Targets without associated detections in the last 2 
frames are considered as disappeared MVO and eliminated from the target list. 

Targets merge. For each target-target combination two confidence value are 
calculated as the probability function given by the Kalman filter for one target 
evaluated on the other target state. If any of this confidence values is over a threshold 
Tj, then the two targets are considered equivalents, and the target with the largest 
covariance (measured as the Euclidian norm of the covariance matrix) is eliminated 
from the target list. 

3.5   Background Update 

The background model is computed as the weighted average of a sequence of 
previous frames and the previously computed background: 
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4   Experiments 

For the experiments, an AIBO robot using the motion software of the UChile1 AIBO 
soccer team [11], configured for allowing just head movements was used. The 
algorithm runs in the robot in real time. For analysis purposes, two video sequences 
were employed. In both, the robot moves its head in an ellipsoidal way, keeping the 
roll angle of the camera approximately aligned with the horizon. While the robot is 
moving its head, a ball is moving, once in the same direction of the camera 
movement, and once in the opposite direction. In figure 2 are shown the different 
stages of the algorithm while processing the frame 28 of the first video sequence. 

The here-proposed motion detection algorithm can be enhanced using additional 
object information, such as color when detecting moving balls. Thus, in the Rejection 
Filter module was implemented a ball color filter applied to the blobs. This color 
filter uses the average U-V values (YUV color space) from each blob for filtering. If 
the Euclidean distance between the U-V average value of a blob and the ball U-V 
value (model) is larger than a threshold Tc, then the blob is discard. This filter 
decreases significantly the number of false positives errors. It should be stressed that 
this filter can be applied only after blobs have been already detected. 

The first/second video sequence was 33/37 frames long. 11/14 frames contain a 
moving ball, but the first appearance of the ball cannot be detected because there is no 
way to know if the ball is moving or if it is stopped. Thus the relevant information are 
only 9/12 frames with moving ball, 6/9 of them were successfully detected, which 
correspond to a successful detections rate of 67%/75%. In table 1 are shown some 
statistics of the analysis of these video sequences, using and not using the color filter. 
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(a) (b) 

  
(c) (d) (e) 

  
(f) (g) (h) 

Fig. 2. Process stages at frame 28 in video sequence 1. (a) Motion history representation MHk. 
(b) Background model *

kB . (c) Motion history error image. (d) Background subtraction error. 
(e) Current Image Ik. (f) Motion history detection DHk in black overlapped to current image. (g) 
Background subtraction detection DBk in black overlapped to current image. (h) Final detections 
DETk*, generated by the Kalman Filter 

Table 1. Analysis of detections in the video sequence 1 and 2 

Sequence number 1 2 

Number of frames 33 37 

Frames with a moving ball present 11 14 

Ball color filter Off On Off On 

Frames with successful moving ball detection 6 (55%) 6 (55%) 9 (64%) 6 (43%) 
Frames with a moving ball present but not detected 5 (45%) 5 (45%) 5 (36%) 8 (57%) 

Detections corresponding to moving balls 7 6 9 6 
Detections corresponding to ghosts 9 0 7 0 
Detections corresponding to other moving objects 10 0 8 0 
Fake detections (excluding ghosts) 296 2 265 5 
Total number of detections 322 8 289 11 

False detections average by frame, excluding ghosts 8,97 0,24 7.16 0,14 
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5   Conclusions 

Results of the motion detection and tracking of objects in real-world video sequences 
using the proposed approach were shown. The system operates in real-time and the 
relevant moving objects, the ball in this case, are detected and tracked. 

In a future work we will extend our system by using also body displacement. This 
extension would consider additional image displacements and rotations based on the 
robot joint angles. We will also share the ball tracking information between different 
robots by implementation a cooperative tracking algorithm. Another feature of the 
system to be improved is the high amount of false detections. We are working on a 
heuristic for reducing this kind of detections, beyond the use of a simple color filter. 
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Abstract. This paper describes methods used in stabilizing the walking gait of
Tao-Pie-Pie, a small humanoid robot given rate feedback from two RC gyro-
scopes. Tao-Pie-Pie is a fully autonomous small humanoid robot (30cm tall).
Although Tao-Pie-Pie uses a minimal set of actuators and sensors, it has proven
itself in international competitions, winning honors at the RoboCup and FIRA
HuroSot competitions in 2002 and 2003. The feedback control law is based solely
on the rate information from two RC gyroscopes. This alleviates drift problems in-
troduced by integrating the RC gyroscope feedback in the more common position
control approaches.

1 Introduction

Recent years have seen increased interest in humanoid robots, with many small humanoid
robots emerging from research labs, hobbyists, and universities mainly in Japan, but also
other countries ([4], [5], [3]).

This paper describes our first attempts at using feedback control to balance the walk-
ing gait of Tao-Pie-Pie. Tao-Pie-Pie was intended as a research vehicle to investigate
methods for deriving control methods for stable walking patterns for humanoid robots.
Stable walking, especially over uneven terrain, is a difficult problem. One problem is that
current actuator technology (RC Servos, DC motors) generate less torque in comparison
to their weight than human muscle. Another problem is that feedback from gyroscopes
and actuators is very noisy. The necessary smoothing of the input signals makes it hard
to use them in actively controlling the walking motion.

Cost was an important design criteria in Tao-Pie-Pie’s development. Previous ex-
perience has shown us that the use of commonly available cheap components not only
helps to keep the cost of a project down, but it also has led to the development of novel,
versatile, and robust approaches to problems in robotics.

Another design goal was to reduce the number of degrees of freedom (DOF) of the
robot. This reduces the cost of the humanoid robot as well as increases its robustness.
Each DOF adds extra complexity in the mechanical design and the design of the con-
trol electronics. Furthermore, reducing the number of DOFs allows us to exploit the
dimensions of the humanoid walking problem. The minimum set of DOFs that allow a
humanoid robot to walk is also of interest, since it leads to energy efficient designs.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 628–635, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Front and side view of Tao-Pie-Pie

Tao-Pie-Pie is the third generation of humanoid robots developed in our lab. Figure 1
shows the mechanical construction of Tao-Pie-Pie.

The actuators and sensors consist of widely available RC servos and RC gyroscopes
for remote controlled cars and helicopters.

The Eyebot controller ([2]) was chosen as embedded processor, since it is relatively
inexpensive, yet powerful enough to provide vision information. A small CMOS camera
provides visual feedback for the robot.

The mechanical design was done in conjunction with Nadir Ould Kheddal’s robotics
group at Temasek Politechnic, Singapore. Tao-Pie-Pie is constructed out of 0.5mm
aluminum, with RC servos used as structural components in the design.

Furthermore, Tao-Pie-Pie is intended to compete at international humanoid robotic
competitions such as RoboCup and FIRA HuroSot ([1]. Among other things, this means
that Tao-Pie-Pie must be able to actively balance, walk, run an obstacle course, dance,
and kick a ball.

The remainder of this paper is structured as follows. The methodology used to develop
and details of the implementation of the walking gaits are given in section 2, while
section 3 presents an evaluation of this approach.

2 The Walking Gait

One of the fundamental problems in humanoid robots is the development of stable
walking patterns. A walking pattern is dynamically stable if the center of pressure (COP)
is within the supporting area. A statically stable walking pattern also has the center of
mass (COM) within the supporting area.
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Fig. 2. Walking Pattern of Tao-Pie-Pie

We employ a divide and conquer approach and partition the statically stable walking
gaitinto six phases: three for the right leg and three for the left. The phases were selected
in such a way that the robot is statically stable at the end of eachphase.

The six phases of the walking pattern for a straight walk is shown in Figure 2. The
bottom row of images in Figure 2 shows the approximate position of the COM in each
phase. We describe these phases moving from left to right in the figure.

Tao-Pie-Pie starts in phase 1 — “Two Leg Stand” — where the right leg is in front
and the left leg is behind. Both legs are on the ground and the COM is between the two
legs.

From phase 1, Tao-Pie-Pie moves to phase 2 — “One Leg Stand” —. In this phase,
the ankle servo generates a torque which moves the COM to the inside edge of the right
leg. This also results in the back (left) leg to lift off the ground.

During the transition from phase 2 to phase 3 — “Ready for Landing” — is in static
balance. Tao-Pie-Pie moves the free left leg forward and positions it so that it is ready for
landing. The COM moves to the front of the supporting leg. This stabilizes the transition
to phase 4.

During the transition from phase 3 to phase 4 — “Two Leg Stand Inverse” — the
robot is in dynamic balance. The supporting leg extends its knee joint to shift the COM
over the front edge of the supporting leg. The ankle servo of the supporting leg generates
a torque to move the COM over the right side. The left leg will touch the ground in front
of the right leg.

Phases 5 and 6 are the mirror images of phases 2 and 3 respectively. After phase 6,
the motion continues with a transition to phase 1.

2.1 Sensor Feedback

The only feedback about the motion of Tao-Pie-Pie is provided by two gyroscopes that
provide information about the angular velocity in the lateral plane and saggital plane
respectively.

The raw sensor data of the gyroscopes is very noisy. We therefore compute a running
average over five samples to smooth out the noise. Figure 3 shows the gyroscope readings
for the lateral and saggital plane over approximately twenty steps.
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Fig. 3. Gyroscope Readings in the lateral and saggital plane over 10 Steps. Linear Approximation
of the Safe Zone

Since Tao-Pie-Pie did not fall over during this extended walking trial, these gyro-
scope readings were used to determine a “safe zone” for the velocity feedback of the
gyroscopes.

We then created a linear approximation of the “safe zone envelope” and generated
minimum and maximum thresholds for the gyroscope readings. The approximation is
shown using red and blue lines in Fig. 3.

2.2 Sensor Feedback in Detecting a Fall

Initially, we ran a series of experiments to verify the accuracy of the approximated “safe
zone” by making Tao-Pie-Pie beep whenever the measured angular velocity was above
or below the threshold in the saggital and lateral plane respectively. The goal was to
show that Tao-Pie-Pie would beep just before falling over. These experiments proved
very successful. Tao-Pie-Pie detected a fall with 95% accuracy with few (< 5%) false
positives.
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2.3 Motion Compensation

After verifying that the gyroscope data can be used to predict a fall for Tao-Pie-Pie, the
next step was to develop a method for modifying the motion parameters to avoid a fall.
There are three inputs to the motion compensation algorithm:

1. Saggital plane gyroscope reading;
2. Lateral plane gyroscope reading; and
3. The current phase of the walk.

Initially, the most common cause for Tao-Pie-Pie falling over was a fall to the right
in phase 2 (see Fig. 2) or to the left in phase 5. This is due to the fact that because of the
limited number of DOFs, Tao-Pie-Pie uses the ankle servo to move the COM over the
right or left foot. Since the torso of Tao-Pie-Pie is fixed, Tao-Pie-Pie is precariously
balanced at this point and the robot sometimes moves to far, resulting in a fall to the
right or left respectively.

The first motion compensation algorithm is active when the lateral plane gyroscope
reading is larger/smaller than the maximum/minimum velocity threshold in phase 2/5
respectively. In this case, the robot tends to fall towards the right/left.

There are two ways in which the rotational velocity in the saggital plane can be
controlled:

1. The set point for the right or left ankle servo can be changed to induce a torque in
the opposite direction to the fall;

2. The robot can extend the knee and hip joint, resulting in a slowed down rotation.
This effect is similar to the effect of slowing down the rotation of a chair while
seated in it by extending one’s arms.

We focus on modifying the angular velocity through the first method, since during a
straight walk, the left-right velocity is mainly generated through the ankle servos. The
second method is disadvantageous in that it also modifies the forward-backward balance
of the robot. The set points for the servos are based on linear interpolations between a
set of control points.

If the angular velocity is too large, then the motion compensator modifies the set
point of the servo by moving it 10% closer to the start point of the pattern. Similarly, if
the angular velocity is not large enough, then the set point is slightly extended.

The same approach is used when controlling falls in the saggital plane. In this case,
however, there is no single servo that is responsible for the angular velocity. Instead,
both set points for the knee and hip joint are modified by 90% to prevent a fall.

The feedback from the gyroscopes is also used to detect abnormal behavior. For
example, if the robot’s foot is caught on the carpet, instead of moving the leg forward,
the robot will fall onto the leg too early. If this abnormal feedback is detected the robot
attempts to stabilize itself by constraining all movement within the phases, in essence
putting both feet on the ground as quickly as possible and straightening up its upper
body. The constrainment will continue until both gyroscopes show appropriate angular
velocities.
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3 Evaluation

We evaluated the motion compensation algorithm by subjectively looking at the static
walking pattern. The standard walking pattern of Tao-Pie-Pie is quite stable even without
motion compensation. The robot did not fall during any of these experiments. However,
the walking gait with motion compensation was more balanced resulting in a straight line
walk. Without motion compensation, Tao-Pie-Pie would veer to the right significantly.
The walking speed of the robot remains unchanged.

We also evaluated the motion compensation by subjectively by comparing the gyro-
scope feedback with and without motion compensation. The results of this comparison
are shown in Fig. 4.

Fig. 4. Comparison of original walking gait (left column) and walking gait with motion compen-
sation (right column) in the saggital (top row) and lateral (bottom row) plane

As can be seen from the plots, the motion compensation does constrain the walking
gait so that the gyroscope feedback is more in the desired envelope. Most of the time,
the walking gait remains in the desired velocity envelope.

Work is currently underway on developing a dynamic (shuffle-like) walk with cor-
respondingly dynamic turns. When feedback correction was applied to walk, the walk
covered more distance than without. Subjectively as well, the gyroscope feedback was
not only better maintained within the desired envelope, but also formed a much more
regular path, as shown in Fig. 5.
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Fig. 5. Corrected and uncorrected dynamic walking gait in the saggital (top) and lateral (bottom)
plane.

4 Conclusion

This paper describes our first experiments into the design of robust feedback control for
walking of small humanoid robots. There is much work left to be done.

The current motion compensation algorithm is simple, but works surprisingly well in
practice. We plan on investigating more complex methods for motion compensation and
balancing in the future. For example, the motion compensation should not be a constant
factor, but should be proportional to the current velocity.

We intend to extend this evaluation into more uneven terrains. The hope is that
by using feedback, Tao-Pie-Pie is able to compensate for uneven terrain and adapt
its walking gait. As well, these corrections could be applied to kicking and turning
movements in order to correct for all movements the robot makes.

As noted in section 2, safe zones need to be developed from a previously stable walk.
Thus speeding up a walk requires developing a stable walk in order to re-calibrate the
safe envelopes. Investigation should proceed into the safe envelopes and their correlation
to a change in speed or the desired walk pattern (fast, slow, left turn, right turn, etc). This
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could lead to implementing a gait or gait corrections without previously developing the
stable walk.

Tao-Pie-Pie has shown itself to be a powerful and flexible platform for research into
humanoid robotics. It has proven itself during international competitions winning a sec-
ond place in theRoboCup anda technical merit award in the FIRA 2002 competitions.We
have learned important lessons in the design of humanoid robots from Tao-Pie-Pie,
which we will use in the design of the next generation humanoid robot Hiro. Hiro will
use four additional DOFs (two in thehip and one for each leg). Hiro will also have more
sensors,especially a set of force sensors in the feet. It also features a faster embedded
processor (Intel Stayton), which allows us toimplementbetter on-board computer vision
algorithms. One of the maingoals of the Hiro platform will be to investigate methods
for augmenting the balancing of the robotusing visual feedback.
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Abstract. The UT Austin Villa 2003 simulated online soccer coach was
a first time entry in the RoboCup Coach Competition. In developing the
coach, the main research focus was placed on treating advice-giving as
a machine learning problem. Competing against a field of mostly hand-
coded coaches, the UT Austin Villa coach earned first place in the com-
petition. In this paper, we present the multi-faceted learning strategy
that our coach used and examine which aspects contributed most to the
coach’s success.

1 Introduction

The Coach Competition is a fairly recent addition to the RoboCup Simulated
Soccer League. The competition aims to encourage research in multiagent mod-
eling and advice-giving. The challenge is to create a coaching agent that signifi-
cantly improves a team’s performance by providing strategic advice.

In the RoboCup simulator [1], an online coach agent has three main advan-
tages over a standard player. First, a coach is given a noise-free omniscient view
of the field at all times. Second, the coach is not required to execute actions in
every simulator cycle and can, therefore, allocate more resources to high-level
considerations. Third, in competition, the coach has access to logfiles of past
games played by the opponent, giving it access to important strategic insights.

On the other hand, the coaching problem is quite difficult due to two main
constraints. First, to avoid reducing the domain to a centralized control task,
a coach agent is limited in how often it can communicate with its team mem-
bers. In addition, the coach must give advice to players that have been devel-
oped independently, often by other researchers. For this to be possible, coaches
communicate with coachable players via a standardized coach language called
Clang [1].

Our UT Austin Villa coach was a first time entry in the coach competition.
Similarly to some previous approaches to coaching ([5],[6],[7]), we treat advice-
giving as a machine learning problem. Competing against a field of mostly hand-
coded coaches, the UT Austin Villa coach earned first place in the competition.
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In this paper, we present the multi-faceted learning strategy that our coach used
and examine which aspects contributed most to the coach’s success.

2 Coach Framework

The basic operation of our UT Austin Villa1 coach is as follows. Prior to a match,
the coach examines the provided logfiles of games played by the fixed opponent.
We call this team the fixed opponent, because in competitions it is determined
by the league organizers and is the common opponent for all coach entries. The
logfiles contain data from the fixed opponent’s previous games. In particular, the
coach does not see log files of the coachable team itself playing against the fixed
opponent. All coaches advise the same coachable team consisting of players that
understand and react to Clang messages.

The coach collects data about players on the fixed opponent team as well as
the players on the team the fixed opponent is playing against. For each player,
the coach collects aggregate data such as the player’s average location, as well
as data about high-level events, such as passes and dribbles. After every change
in possession, the coach’s game analysis module attempts to classify the prior
possession as a sequence of high-level events. The details of the identification
procedure are described in our team description [2].

The data collected during logfile analysis are fed into a group of learning
algorithms that generate player models for both teams. The models are then used
to produce three different kinds of advice: formational, offensive, and defensive.
The learned advice is combined with a few hand-coded rules and sent to the
coachable team at the beginning of the match.

In past years’ competitions, the team to be coached consisted of players de-
veloped at a single institution. Even in the absence of a coach, the players con-
stituted a coherent team. In order to magnify the impact of a coach, in the 2003
competition, coachable teams were assembled from players developed at three
different institutions: UT Austin Villa (our own), Wyverns from Carnegie Mel-
lon, and WrightEagle from USTC in China. Furthermore, the coachable players
were designed with only limited default strategy.

As a result, it was necessary to provide the players with advice about general
game play. After brief experimentation with the coachable players, we identified
the basic skills that they were missing and added hand-coded rules to help them
overcome these weaknesses.

While the coach is best able to reason about players in terms of their roles,
Clang requires players to be specified by their uniform numbers. For this reason,
the coach maintains a mapping between roles and uniform numbers for each
player on both teams. Learned rules and hand-coded advice are created with
role variables in the place of uniform numbers. When the rules are sent, the
coach uses the current role map to insert the uniform numbers corresponding
to each role variable. If during the course of the game players change roles, the

1 http:/www.cs.utexas.edu/~AustinVilla
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affected rules are sent again with the updated player numbers. The details of
how role mapping was used in the 2003 competition are described in our team
description [2].

3 Learning

The core of the UT Austin Villa coach is its ability to learn player models from
logfiles of past games. Similarly to Riley et al. [7], we break this problem down
into learning three basic types of strategies: offensive (how the player should try
to score), defensive (how they should act near their own goal), and formational
(where the players should position themselves by default). This paper describes
an independent formulation and implementation of these three basic strategies
which differs in many of the particulars from previous work.

We assume that the set of available logfiles of the fixed opponent includes
some games in which the opponent wins and some games in which it loses;
in competition, we were given two of each. In the logfiles in which the fixed
opponent performs well, we model the fixed opponent’s offense and attempt to
learn defensive advice to counter it. For the games in which the fixed opponent
loses, we model the winning team and learn formational and offensive action
selection advice.

For both offensive and defensive advice, the product of our learning algorithm
is a classifier that is able predict the next high-level event to occur, given the
current state of the game. To encode the simulator’s state, we used a large set
of features including the positions of all 22 players, the position of the ball, and
the distances between them.

We used the J48 decision tree algorithm, implemented in the Weka machine
learning software package [8], to train a series of decision trees, one for each
modeled player. Because the structure of a decision tree is easily understandable,
it is fairly straightforward to convert a tree into Clang advice. The details of
the example creation and advice generation procedures for the offensive and
defensive advice are described in the following two sections. We then present the
methods behind our formational advice learning.

3.1 Offensive Advice

When learning offensive advice, the coach attempts to model the behavior of the
player with the ball. During the learning process, the coach builds a classifier
for each player that tries to predict what that player will do with the ball in any
given situation. For player i, we define the possible classes to be:

– Pass(k): Pass to teammate with uniform number k ∈ {1..11} − {i}.
– Shot: Take a shot on goal.

During logfile analysis, when a shot or pass is identified, the state of the envi-
ronment at the last kickable time is stored in the database along with the true
class label and the player number: i. A classifier is then built for each player
using only the examples corresponding to its own player number.
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Once we have trained a decision tree for player i, we can convert it into
advice to be given to our own corresponding player. To understand the advice
generation process, consider the example decision tree for player 5 shown in
Figure 1. Each leaf node of the decision tree is an action. The path from the
root to the leaf defines a conjunction of conditions under which that action
should be executed. Therefore we can construct a rule, {condition}→{action},
for each leaf node in the decision tree. For example, the rule for the leftmost leaf
of the example decision tree is:

(BallX < 10) ∧ (BallY < 10)->Pass(6)
< 10

< 10 >= 10

>= 10

BallX

BallY Shot

Pass(8)Pass(6)

Fig. 1. Example
decision tree
learned for offen-
sive advice

Or in Clang:

(define
(definerule OffRule1 direc
((and (bpos (rec (pt -52.5 -34) (pt 10 34)))

(bpos (rec (pt -52.5 -34) (pt 52.5 10))))
(do our {5} (pass {6})))

)
)

3.2 Defensive Advice

To generate defensive advice, we model the behavior of the opponent and attempt
to foil its predicted strategy. Here, we aim to predict how a given player will
acquire the ball. The set of classes is Pass(k) where k is the uniform number of
the player by whom the pass was made. Because we are interested in predicting
a pass before it is made, we don’t just record the state at the last kick time as
we did in the offensive case. Instead, we record the 10 cycles (1 second) prior
to the last kickable time and label each instance with the true class label and
the player number of the pass receiver. An example tree learned for player 5 is
shown in Figure 2.

We use a heuristic model to convert the learned predictions regarding oppo-
nent behaviors to defensive actions that can prevent that action. To prevent a
pass, it is a good idea to position a defender along a passing lane closer to the
intended receiver than to the passer. We found that positioning
the defender at about 70% of the pass length away from

< 10 >= 10

Pass(6) Pass(8)

BallY

>= 0

Opp6Y

Pass(6) Pass(9)

BallX

< 0

< 5 >= 5

Fig. 2. Example deci-
sion tree learned for
defensive advice

the ball was a reasonable choice. Assuming that our player
7 is guarding opponent 5, then the Clang rule corre-
sponding to the leftmost branch of the decision tree in
Figure 2 is:

(define
(definerule DefRule1 direc
((and (bpos (rec (pt -52.5 -34) (pt 0 34)))

(bpos (rec (pt -52.5 -34) (pt 52.5 10))))
(do our {7} (pos (((pt opp 6) * (pt .7 .7)) +

(pt opp 5) * (pt .3 .3)))))
)

)
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3.3 Learning Formations

Our approach to learning a team formation is similar to our approach to learn-
ing offensive advice. The coach observes a team that can beat the opponent
and then attempts to mimic that team’s behavior. We model the formation as
a home position (X, Y ) and ball attraction vector (BX,BY ) for each player. In
Clang, a formation is a positioning rule of the following form for each player, P :

(do our {$P} (pos ((pt $X $Y) + ((pt ball) * (pt $BX $BY)))))

The X and Y values are calculated as the average x and y coordinates of the
observed player during the course of the game. Values for BX and BY were
handpicked for each position and were found through brief experimentation. In
some cases, we found that the ball attraction would cause the forwards to play
too far towards the opponent goal, so to compensate, we manually moved the
home positions back a bit.

4 Experimental Results

In this section we present the results of several experiments involving our learned
coach, both in competition and in more controlled settings.

4.1 The Competition

The UT Austin Villa coach came in first place out of 12 entries in the 2003
RoboCup Coach competition. The competition consisted of three rounds. In
each round, the coached team played three ten-minute games against a fixed
opponent. Coaches were evaluated based on goal difference: the number of goals
scored by the coachable team minus the number of goals scored by the oppo-
nent. The fixed opponents were all teams that competed in the main simulator
competition: Boldhearts in round 1, Sirim in round 2, and EKA-PWr2 in round 3.

The score differences and rankings for the top four finishing teams are shown
in Table 1.3 Our coach was ranked 7th after the first round. After making im-
provements to the hand-coded advice (but still retaining the learned offensive
and formation advice as described above), we moved into first place after the
second round. Four coaches (our own UT Austin Villa along with FC Portugal4,
Iraniansand Helli-Amistres5) progressed to the final round with UT Austin Villa
coming out on top.

Because the number of games in the coach competition is too small to provide
statistically significant results, we reran the final round for 50 games on our
own. The advice sent by the other coaches was extracted from the logfiles of

2 http://autonom.ict.pwr.wroc.pl/RoboCup/english/english.html
3 Complete results are available from www.uni-koblenz.de/~fruit/orga/rc03/
4 http://www.ieeta.pt/robocup/
5 http://www.allamehelli.net/pages/robo.html
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Table 1. Total scores and rankings for the top four finishing teams in the 2003
RoboCup coach competition. The score consists of the number of goals scored by the
coached team followed by the number scored by the fixed opponent

1st Round 2nd Round 3rd Round
Coach (Boldhearts) (Sirim) (EKA-PWr)

UT Austin Villa 0:19 7th 0:2 1st 8:2 1st
FC Portugal 1:21 8th 0:8 4th 7:3 2nd
Iranians 0:14 4th 0:5 3rd 3:2 3rd
Helli-Amistres 1:12 2nd 0:3 2nd 7:7 4th

Table 2. Summary of 50 runs of the final round of the 2003 RoboCup Coach Com-
petition. Average goal differences are shown along with their standard deviations and
overall ranking

Coach Score StdDev Rank

UT Austin Villa 2.38 2.61 1st
FC Portual 2.24 1.53 1st
Iranians -0.4 1.74 4th
Helli-Amistres 0.85 1.81 3rd

the competition and duplicated verbatim. We used the same team of coachable
players as the one used in the competition so as to reproduce the exact conditions.
The results of the comparision are summarized in Table 2.

In our tests, our coach had the highest average, but based on a two-tailed
student’s t-test the results are not statistically better than those of the second
place team, FC Portugal. Even after 50 games, the results were not significant
(p > 0.9). However, the scores for FC Portugal and our UT Austin Villa coach
were significantly6 better than the next best team: Helli-Amistres. Therefore,
under controlled conditions our coach tied with FC Portugal for first place.

4.2 Additional Experiments

After the competition, we conducted additional controlled experiments to isolate
the key components of our learned coach agent. For all tests, we used the same
fixed opponents as in the competition (BoldHearts, Sirim, and EKA-PWr), and
the same scoring metric. All reported scores have been averaged over 25 games.

Our first experiments were aimed at isolating the impact of each variety of
advice given by our coach. We tested several different configurations of advice
using a coachable team consisting of only our (UT Austin Villa) players.

The results of these first experiments are presented in Table 3. In the table,
the column labled “w/ HC” indicates whether or not the hand-coded advice was

6 For all of the results presented in this paper, significance was determined by using
a two-tailed student’s t-test with p < 0.05.
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Table 3. Average goal differences with varying levels of advice

Opponent w/ HC None Formation Offensive Defensive Full

BoldHearts N -8.8 -3.3 -2.9 -2.9 -2.7
Y -6.8 -0.5 -1.4 -5.7 -6.5

Sirim N -4.1 2.6 1.2 0.9 1.7
Y -5.4 -1.6 -0.3 0.8 -0.4

EKA-PWr N -0.6 2.8 2.9 3.4 2.7
Y 1.0 3.62 2 2.12 2.43

included (Yes/No). The column labeled “Formation” contains the results for
learned formation advice only. The “Offensive” and “Defensive” columns show
the results of adding offensive and defensive advice, respectively. “Full” includes
all three types of learned advice. These advice configurations were compared
with the default behavior of the coachable players without any advice, labeled
“None”.

From the table, it is clear that both with and without hand-coded rules,
across all opponents, the learned advice did significantly better than no advice
at all (p < 0.05).

Another observation that is true across the board is that the learned forma-
tion advice had the most significant impact of all advice types. On the other
hand, with the exception of EKA-PWr, it appears that the offensive and defen-
sive advice conflicted with the hand-coded advice. During the competition, we
noticed that this was occuring after the first round. As a result, we decided to
turn off the learned defensive advice for the remaining rounds. In retrospect,
this was a very prudent decision.

Except in the case of Boldhearts (with defensive advice removed), we would
have probably achieved higher scores in the competition, had we not added
the hand-coded rules. This is a surprise considering the preliminary tests we
performed with the coachable players, which suggested that hand-coded advice
was necessary.

5 Related Work

Some previous work has been done on learning to give advice to RoboCup sim-
ulated soccer players. Similarly to our own work, Riley et al. [7] approached
advice-giving as an action-prediction problem. Both offensive and defensive mod-
els were generated using the C4.5 [3] decision tree learning algorithm. Their
work also stressed the importance of learned formation advice. While our de-
composition of the problem is similar to theirs, our model representations and
advice-generation procedures are quite different. For example, whereas our ap-
proach learns the player’s average position and then considers the positioning of
the players with respect to the ball when giving advice, theirs ignores the ball
and instead focuses on correlations between players. In addition, the semantics
of our learned defensive rules, which aim to learn not what the player with the
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ball will do, but how it will get the ball in the first place differs from what was
done previously.

In other work, Riley and Veloso [6] used Bayesian modeling to predict op-
ponent movement during set plays. The model was used to generate adaptive
plans to counter the opponent’s plays. In addition, Riley and Veloso [5] have
tried to model high-level adversarial behavior by classifying opponent actions as
belonging to one of a set of predefined behavioral classes. Their system was able
to classify fixed duration windows of behavior using a set of sequence-invariant
action features.

ISAAC [4] is a game analysis system created as tool for simulated soccer team
designers. Similar to a coach, this system analyzes logfiles of a game in order to
suggest advice for how a team’s play can be improved. However, this advice is
meant to be understood by the team’s developers instead of the agents themselves.

6 Conclusion and Future Work

We have presented our multi-facted learning approach to giving advice in
RoboCup simulated soccer. Using this approach, our UT Austin Villa coach
won first place in the 2003 RoboCup Coach Competition. Through controlled
experiments, we found that our coach was significantly better than the third and
fourth place finishing teams and at least as good as the second place finisher.
In addition, we have identified the learned formation rules as the most effective
type of advice.

In our research we are continuing to enhance and carefully test the learned
defensive and offensive advice, and we plan to test the degree to which each type
of learned advice is opponent-specific. Meanwhile, we plan to continue working on
finding ways to learn better, more adaptive formations. In addition, we intend
to explore various methods for generating set play advice. Finally, we will be
adapting our learning strategy to include online learning.
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Abstract. ITAS is a tool that allows a human to play soccer in the RoboCup 
Soccer Simulator environment. This is essentially the reverse challenge to that 
of RoboCup. Instead of bringing the machine to the real world, ITAS strives to 
seamlessly interface man to the machine world.  This presents a fundamental 
human-computer interaction design problem.  This paper shows how the reverse 
RoboCup challenge can benefit the RoboCup community and what value it 
brings to robotics and AI research in large. An overview of the features of ITAS 
and its development using the Usability Engineering Lifecycle are then given, 
followed by a comparison with a related system, OZ-RP. ITAS is an open source 
project. The most recent releases are available at http://itas.sourceforge.net. 

1   Introduction 

ITAS, In The Agent’s Shoes, is a RoboCup Simulation League soccer player that is 
controlled in real time by a human user. It provides the user with a representation of 
the sensory stimuli and the action commands that the RoboCup Soccer Simulator 
provides an agent. Originally developed as a tool with the purpose of logging a human 
player’s interaction with the simulator as data for machine learning, it was quickly 
realized that developing a competitively performing human controlled player pre-
sented quite a challenge. 

Since a human is as alien to the simulated environment as a robot is to the real 
world, this presents a fundamental human-computer interaction design problem. De-
velopment of ITAS has lead to the recognition of the Reverse RoboCup challenge as 
an important undertaking unto itself and meeting this challenge became the project’s 
main objective. The following is the statement of the Reverse RoboCup Challenge 
and an invitation to others to take on this challenge to develop the best human inter-
face to the RoboCup Soccer Simulator (RCSS) environment.  

“To develop a team of human controlled simulated soccer players 
 that can win against the RoboCup Simulation League champion team.” 

2   Why the Reverse RoboCup Challenge? 

2.1   Human Element in RoboCup Competition 

Perhaps the most important benefit that the Reverse RoboCup Challenge brings to the 
RoboCup community is the introduction of a human element into the competition. 
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Even though RoboCup’s mission statement is to defeat the human world soccer 
champions, so far the evolution of RoboCup players has been mostly based on com-
petition amongst robots/agents.  How can the progress of RoboCup towards its origi-
nal goal be validated without the introduction of a human challenger in some form? 

Until meticulous, full scale humanoid robotics are a reality, this problem cannot be 
addressed in the physical domain.  However, human intelligence, strategy, decision-
making and team work can be introduced to the competition by allowing real soccer 
players to play in the simulated soccer environment of the RoboCup Simulation 
League.  As such, ITAS strives to be a tool that reflects the soccer play experience 
with respect to the kinds of decisions that are made in real time and the key environ-
ment and state information required to make those decisions.  

2.2   Machine Learning 

Generating data for machine learning was the original purpose of ITAS.  To have a 
human player perform soccer tasks in RoboCup’s simulated environment can be of 
great value.  Logs of the player’s actions will be based on the simulator parameters, 
facilitating interpretation and processing of the data for machine learning.  However, 
the value of the data collected will depend on the quality of the human player’s per-
formance, which in turn depends on the quality of the interface to the simulated 
player. 

2.3   Telerobotics 

Interfaces developed for the reverse challenge can be adapted into interfaces for tel-
erobotics control systems.  The most obvious field being the RoboCup robotics 
leagues, as a start.  ITAS’s interface approach is particularly well suited for dealing 
with dynamic or unfamiliar environments since it is not dependant on relating incom-
ing data to a predefined global model and placing the user in it, but rather presents the 
state of the environment as it is perceived in real time.  The open source nature of the 
project makes it very accessible to robotics teams for such implementations and we 
encourage them to explore that option. 

2.4   Other Areas 

The reverse challenge makes for a great medium for research in collaborative and 
competitive interaction between artificial agents and human users in simulated or 
virtual environments.  This can be of interest to researchers from many disciplines 
ranging from cognitive science and human factors to computer science and artificial 
intelligence. 

Another exciting application for the reverse challenge is exploring the potential of 
the hybrid agent.  This is an agent that combines the efficiency and accuracy of an 
artificial agent at performing tasks in the simulated environment, such as passing, 
dribbling, shooting and evasion, with the real-time strategic input of an actual soccer 
player.  Such an agent may provide valuable competition to RoboCup champions with 
regards to facing a more human-like competitor. 

Other areas of interest include user input devices.  The complexity of the task at 
hand demands intuitive user control over the actions of an agent in a fast paced envi-
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ronment, making it a good platform for testing new and different hardware.  The OZ-
RP group (another reverse RoboCup challenger) have implemented their interface on 
several platforms utilising a variety of control devices. 

3   ITAS 

3.1   Development Approach  

ITAS development follows the processes defined by the Usability Engineering Life-
cycle (UEL).  The UEL consists of three phases, namely Requirement Analysis, De-
sign/Verification/Development, and Installation, each composed of iterative sub 
phases.  Perhaps the most valuable aspect of UEL to this project has been the focus on 
user profile and contextual task analysis that are part of the Requirement Analysis 
phase, as they have shaped the usability objectives of ITAS. 

The contextual task analysis for this project considered two task domains which 
were important.  The first is real life soccer.  This is the native environment of the 
ideal user for ITAS, so understanding it goes a long way in understanding the user’s 
expectations and actions in the simulated environment.  The physical characteristics 
and constraints of the real world are of little interest here, but rather the situational char-
acteristics, as they provide the context in which the user will perceive the environment, 
set objectives and make decisions.  The second domain is that of the simulated envi-
ronment, ranging from the parameters, data objects and commands RCSS handles to the 
constraints and requirements of the ITAS interface. Understanding and then relating the 
two task domains to one another formed the base of ITAS’s interface design. 

Soccer objectives change dynamically depending on game situations.  We found 
the most significant state variable affecting a player’s task priorities to be ball posses-
sion (both relative to the individual and team-wide ball possession state).  Team pos-
session affects the whole team’s strategy whereas individual possession affects the 
particular player’s decisions.  Based on observation of and discussions with our test 
group of experienced soccer players and the aforementioned states, a soccer task or-
ganization model was developed. 

Fig. 1. Soccer task organization model 
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As shown in the Soccer task organization model, soccer play was broken down 
into two main team-wide objectives based on the team’s state with regards to ball 
possession.  Players work towards attaining these objectives or modes through per-
forming the necessary key tasks.  The key tasks named above define the decision-
making domain in which we aim to place the ITAS user.  So by providing the tools 
necessary to perform these tasks intuitively and efficiently, the user is left to make 
decisions as to when, where and how (‘how’ relating to the parameters of the task 
rather than it’s mechanics) to perform these tasks. 

With the exception of communication, which will be implemented in a later ver-
sion of ITAS, each of the tasks defined in the task organization model requires the 
application of one or more of three basic skills, awareness of surroundings (objects 
and environment), maneuvering and ball handling. 

These three skills relate almost directly to the three basic commands that RCSS 
provides; turn, dash and kick.  The advanced tasks from the task organization model 
were designed by combining the use of these commands with interpretations of in-
coming sensory data to provide the user with higher level commands and a more 
informative and intuitive display.  Conceptual mock-ups of the advanced controls and 
display features were discussed with our test group of soccer players and revised, 
before implementation.  The tasks identified also helped design the drills that were 
used to test the different iterations of ITAS throughout development.   

As well as following UEL, ITAS’s development was split into two stages.  An ini-
tial version, ITAS-basic, aimed to instantiate all the fundamental interactions between 
an agent and the RoboCup Soccer Simulator in the simplest form that is comprehensi-
ble to the user.  This includes displaying real time visual and player state information 
sent by RCSS and providing the basic commands RCSS accepts such as dash, turn 
and kick.  ITAS-basic is the platform on which more complex versions can be based.  
The second stage of ITAS is a version that provides the user with more advanced 
stimuli and control mechanisms.  The advanced features in the most recent version of 
ITAS, as well as features currently in development, enrich the user experience by 
providing intuitive visual interpretations of the sensory information form the server as 
well as commands to perform more advanced tasks automatically. 

3.2   Display 

A birds-eye view was chosen to represent the player’s visual field as it best represents 
the relative distances of all visible objects.  The player is represented by a blue or red 
circle at the bottom of the screen.  The limits of the player’s field of view are indi-
cated by shading the area outside of it in a dark green, helping the user focus on the 
relevant area of the display while maintaining situational awareness.  Objects seen by 
the player are plotted in real time in the field of view. 

A stamina-meter at the bottom of the screen indicates the stamina level of the 
player, changing color from green to orange then to red as the player’s stamina level 
decreases to critical levels. 

The basic visual information about the soccer field provided by RCSS is rather 
limited, as only 15 flags actually lie on field lines.  The rest are on the outside of the 
field.  Testers found the ITAS-basic (Fig. 2.b) display confusing since the familiar 
visual queues of a soccer field were missing.  The latest ITAS (Fig 2.a), however, 
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calculates and draws missing field lines that aren’t indicated as visible objects by 
inferring them from the visible flags.  The inclusion of internal field lines, such as the 
kick-off circle and center line provides users with even more visual queues that aid in 
positional awareness. 

a)   b)  

Fig. 2. a) ITAS screenshot b) ITAS-basic screenshot showing only the raw RCSS data 

In RCSS, accuracy and consistency of visual information decrease to varying de-
grees over different ranges.  These ranges are visually represented in ITAS using 
different shades of green in the visible area of the field of view, helping the user make 
better decisions and have more control over the reliability of what they see. 

3.3   Controls 

Movement – Instead of the basic dash command, ITAS has a run command which 
repeatedly sends dash commands as long as the left mouse button is held down.  The 
speed of the running changes dynamically as the mouse pointer is moved closer or 
farther away from the player representation, allowing for smooth acceleration and 
deceleration. 

Our testers had a hard time turning using the simple RCSS Turn command, as it 
involves an instant change of orientation in the field.  This is analogous of closing 
one’s eyes, turning and then opening them again.  One needs to reestablish what it is 
they are looking at and where they are oriented, as the view of the environment is no 
longer persistent.  This is even more confusing in the alien environment of the simula-
tor. To fix this, we added a panning command.  Panning is gradual turning involving 
many small turns, while the right mouse button is held down.  The size of these turns 
(or the rate of panning) changes dynamically relative to the angle of the mouse 
pointer to the centre of the field of vision.  This allows for a more persistent and less 
confusing world view. 
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ITAS also combines running and panning to allow for otherwise unachievable 
smooth movement.  It took our testers a little time to get used to this feature, but was 
found to be incredibly useful once mastered.  This feature allows players to easily 
move in circles, arcs and figure-8s, something that was very difficult to do in 
ITAS-basic. 

Kick – Hitting the spacebar performs a kick in the direction of the mouse pointer and 
with a power relative to the distance of the mouse pointer from the on screen repre-
sentation of the player. 

Findball – This feature allows the player to locate and face the ball on the field with a 
single button press.  This was implemented as a necessary component to other ad-
vanced features, rather than a stand-alone command. 

Chaseball/Intercept – This command utilizes the Findball command to track the ball 
and the run command to reach it.  This is a useful command for intercepting the ball 
or tackling.  It’s also a main component of the Dribble command, which is currently 
under development.  It is initiated by holding the ‘c’ key and aborted upon its release. 

Other ITAS commands include shoot, turn-neck, and view adjustment. 

3.4   Performance and Testing 

Using a set of drills which gauge performance of the basic skills required to perform 
the key tasks identified in Fig. 1, ITAS was continuously evaluated by a test group of 
soccer players that also have some computer experience.  This verification process 
allows for iterative development of the different features and ensures the involvement 
of target users throughout development.  These drills also serve as a great way to 
introduce new players to the ITAS interface.  The set of drills includes simple drills 
that each focus on a specific action, such as movement or kicking.  In the movement 
drills, for example, the player was timed while repeatedly traversing one of a set of 
predefined paths (circle, zigzag, figure-8).  Other more complex drills required coor-
dination of several different actions and communication with other players to perform 
a more complex task.  These included passing drills, ‘monkey-in-the-middle’ and set 
plays such as cross-ins.  Performance on these was gauged by the number of success-
ful attempts at the task and the time taken to complete it.  Results from the latest 
round of tests comparing drill performance between ITAS-basic and ITAS-advanced 
showed improved performance for part of the movement drills (particularly the fig-
ure-8s) and significant improvement for the complex task drills.  

Although some games against agent teams have been played, ITAS isn’t yet ready 
for full game testing against stronger RoboCup teams since two important features are 
still under development, namely Dribbling and Kick-to (which are discussed in the 
next section). 

3.5   What’s Next? 

Completing ITAS’s planned features is the next step.  These planned features include 
Dribbling, Kick-to (which is a command for kicking the ball so as to end its move-
ment within the vicinity of a target location – position of mouse click) and a symbolic 
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team communication tool. Also planned is an online platform for launching RCSS 
games with cooperating or competing ITAS players and the option of adding agent 
team players to play with and/or against. 

Potential directions for ITAS once initially planned features have all been imple-
mented include developing a hybrid agent (one that can act intelligently as well as 
accept real-time commands from a user), modifying ITAS to be used as a remote 
control interface for a RoboCup robot and experimenting with new user input hard-
ware variants to the current mouse and keyboard setup. 

4   Related Work 

Another project that seems to be taking on the reverse RoboCup challenge is Ni-
shino's OZ-RP (OZ-Real Players) from Japan.  While both attempting to solve the 
same problem, ITAS and OZ-RP differ in their approach to the solution with regards 
to the display of the player’s environment and the player control model. 

Instead of limiting the user to the soccer player’s perspective, OZ-RP fits incom-
ing data into a global model and provides the user with a full field view.  OZ-RP 
players also send head turn commands periodically so as to have 360° vision.  These 
features have the great advantage of raising the user’s positional awareness on the 
field.  ITAS, on the other hand, aims to provide the user with a player oriented view 
which, while initially takes some getting used to, is a closer representation of a soccer 
player’s experience.  While OZ-RP’s approach focuses on maximizing the player’s 
performance through providing them with a complete world model, ITAS focuses 
more on trying to faithfully model the soccer playing experience relative to the player.  
Each approach has its merits.  OZ-RP’s approach allows the player to concentrate 
more on strategic decisions on a team level.  ITAS’s modeling of the soccer experi-
ence makes for a more up hill challenge, but aims to bring authentic human player-
level involvement to the simulation league.  The lack of a solid world model in ITAS 
also makes for a better candidate interface for adaptation for telerobotics and remote 
control in real world dynamic or unfamiliar environments. 

The two systems also have different control models for the player’s movement.  
OZ-RP adopts a rather intuitive ‘run to click’ approach, combining both the dash and 
turn commands into one atomic action which involves turning to where the mouse 
was clicked then running forwards until that point is reached.  ITAS gives the user con-
trol over both running and turning separately.  This makes for a more complex move-
ment control model, but it allows for more fluent movement (e.g. arcs and figure-8s). 

5   Summary 

The primary purpose of the Reverse RoboCup challenge is to take steps towards in-
troducing a human challenger into the RoboCup Simulation League.  The Reverse 
Challenge also has the potential of opening several new areas of research to the Ro-
boCup community.  ITAS is an open source project and welcomes the RoboCup 
community to partake in and benefit from the RoboCup Reverse Challenge in the 
many creative ways that are possible. 
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Abstract. This article describes a software development toolkit for pro-
gramming mobile robots, that has been used on different platforms and
for different robotic application. In this paper we address design choices,
implementation issues and results in the realization of our robot pro-
gramming environment, that has been devised and built from many peo-
ple since 1998. We believe that the proposed framework is extremely
useful not only for experienced robotic software developers, but also for
students approaching robotic research projects.

1 Introduction

Research on developing autonomous agents, and in particular mobile robots,
has been carried out within the field of Artificial Intelligence and Robotics from
many different perspectives and for several different kinds of applications, and
the development of robotic applications is receiving increasing attention in many
laboratories. Moreover, robotic competitions (e.g. AAAI contexts, RoboCup,
etc.) have encouraged researchers to develop effective robotic systems with a
predefined goal (e.g. playing soccer, searching victims in a disaster scenario,
etc.). These robots have been obviously used not only for these competitions,
but also for experimenting the research techniques developed within robotic
research projects. Moreover, mobile robots are also used for teaching purposes
within computer science laboratories and often students are required to work
and develop robotic applications on them1.

This increasing population of robots in the research laboratories and the con-
sequent need for developing robotic applications have started a process of design
and implementation of robotic software, that aims in a special way at having
a design methodology and a software engineering approach in the development
of such applications, which integrates several functionalities and architectural
choices that go beyond the scope of conventional robotic applications.

Furthermore, companies producing and selling mobile robots make available
to their users development libraries and software tools for building and debug-

1 e.g. CMRoboBits Course at CMU http://www.andrew.cmu.edu/course/15-491/.

D. Nardi et al. (Eds.): RoboCup 2004, LNAI 3276, pp. 653–660, 2005.
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ging robotic applications (e.g. Saphira for Pioneer robots [4], OPEN-R SDK for
Sony AIBO [5], etc.). These tools are obviously platform dependent and thus
they cannot easily be used for building multi-platform robotic systems, and also
they usually lack some features that are required from a general purpose robot
development toolkit. For instance, the OPEN-R SDK completely lacks facilities
for remote monitoring the behavior of the robot. It just support wireless network
communication among processes and all the remote information exchange must
be explicitly coded. On the contrary, the Saphira environment, although it is
specifically implemented for the Pioneer robots, has several facilities for build-
ing robotic applications and debugging them also by using a Pioneer simulator
and allowing for a graphical display of the robot status.

Finally, a number of open source multi-platform robotic development envi-
ronments have been realized. For example, OROCOS (Open RObot COntrol
Software)2 is an European project that has recently started with the objective
of realizing a framework for developing robot control software under Real Time
Linux. This project has many general goals, like independence to architectures
used for connecting the components together, to robot platforms, to robotic de-
vices, to computer platforms. The OROCOS project has a long time target and
it is currently under development. Player/Stage [2] is also a general framework
for controlling a robotic system. Player supports a wide range of devices, algo-
rithms and viewers, that can be tested through Stage, a simulator able to work
on complex multi robot scenarios. Each of these devices can be either a server
or a client, allowing for a great flexibility in spreading the computation on dif-
ferent machines. However, Player/Stage provides only limited support for high
level specification of user-defined modules and their interaction. CARMEN3 com-
prises a set of independent utilities, that communicate with each other through
the UNIX inter process communication facilities. This framework has been used
for implementing a set of interesting algorithms, but it is mainly suited with the
low level activities of the robots (such as navigation and exploration). Also the
works in [7, 8] are focused on proposing robot middle-ware that are not specific
to a given platform or to a particular application domain. In particular, the sys-
tem presented in [8] is explicitly focused on the realization of soccer applications,
while in [7] mostly low level interface issues are addressed.

In this paper we describe a Robot Development Toolkit (RDK) for mod-
ular programming of mobile robots. The toolkit we have realized includes a
middle-ware that implements all the basic requirements for the development
of a typical robotic application, a set of modules implementing the basic func-
tionalities of the robot, and a set of tools that are useful for developing, moni-
toring and debugging the entire application. In particular the middle-ware im-
plements an infrastructure for: task management, interfacing with the robot
hardware, representation of the status of the robot, remote monitoring and de-
bugging.

2 Orocos project, www.orocos.org.
3 Carmen project, www-2.cs.cmu.edu/∼carmen/
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Our development toolkit is currently named SPQR-RDK, and is available to
be used by robotic programmers4.

We are currently using our framework for developing different kinds of robotic
applications: i) RoboCup soccer [3] ii) RoboCup Rescue [6] iii) RoboCare [1] -
a project for developing a multi robot system for assistance of elderly people in
a health care house. The development of these applications has given us a real
testbed for evaluating the proposed RDK and, by a comparison with the devel-
opment of similar applications by using a different development environment (in
particular, we refer to the robotic soccer application with Sony AIBO robots by
using OPEN-R SDK), we have experimented the effectiveness of our toolkit.

2 Design Choices

During the development of our RDK, we have identified a set of fundamen-
tal functionalities and a set of software requirements needed for our frame-
work.

As our applications have been developed through the years by different peo-
ple which were able to work at the application only for a limited period of time,
modularity and re-usability appear to be the main issues to address: the proper
division of the code in independent modules exchanging data inside a clear frame-
work ensures to have a coherent software generation, resulting in highly modular
and re-usable code. Efficiency is also a primary requirement, the middle-ware
needed for running the modules must have a minimum overhead with respect to
the entire application. Moreover, the hardware computational capabilities must
always be considered, posing strict constraints on the implementation choices
for our middle-ware; therefore most of the design choices that we have done
(e.g. language, operating system, shared memory for information exchange) are
motivated by this requirement.

As for functionalities we have identified three main issues to be addressed:
i) Remote Inspection Capability ii) Information Sharing iii) Common
Robot Hardware Interface.

Remote Inspection is a fundamental functionality for every robotic appli-
cation. The Remote Inspection mechanism, should allow the developers to use a
general mechanism for remote inspecting the internal status of the application,
with limited network bandwidth and with minimum computational overhead
with respect to the normal execution of the robotic application.

Another important problem that we have faced during our past developments
has been the exchange of data among modules. A basic use of shared memory,
without any data access policy, is not satisfactory because the management of
all the shared data in the program can become very complex. Similarly, the
use of message exchanging typically arises the same problems and may also
affect modularity of the system, when a module is implemented by including the
details of other interacting modules. Therefore, an important functionality for

4 Available from http://www.dis.uniroma1.it/∼spqr/.
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the RDK is an Information Sharing mechanism providing a uniform interface
and a policy for sharing data among modules.

When dealing with several different types of mobile bases and sensing de-
vices the independence of the application from the low level details of platforms
and devices becomes an important issue. Hence, the development of a Robot
Hardware Interface has been detected as another important functionality: a
uniform interface has to be defined between robot devices and user modules, and
hardware configuration is described in a configuration file.

3 Software Architecture and Implementation of the
Middle-Ware

The RDK we are presenting in this article is based on a middle-ware that provides
the basic functionalities for the development of robotic applications. This middle-
ware is composed by a minimum set of modules, common to all the applications
that can be developed within our framework. In particular, the middle-ware is
made up by the following modules Robot Hardware Interface, Task Man-
ager, Robot Perceptual Space and Remote Inspection Server as shown
in Figure 1. In the following a description of each of those modules is given.

3.1 Robot Hardware Interface

The Robot Hardware Interface implements a level of abstraction with respect
to the specific mobile base in use, providing the user with a common interface
for accessing all the robotic platforms and devices. We decided to model this
abstraction by exploiting the fact that usually each robotic platform comprises
several sensors and actuators (devices), but only one mobile base. For robots
and devices we implemented an abstract interface through a class hierarchy; in
this way robots and devices of the same kind can be accessed through a common
interface, and a user module can thus directly access the information and the
services provided by a device, using the more general class needed. Moreover,
by enforcing the abstraction on the robot hardware, it is possible to port all the
written software on a new mobile base, simply by writing the low level interface.

The Robot Hardware Interface (RHI) module encapsulates the functionalities
for accessing the mobile base and the on board devices and provides an abstrac-
tion for: i) mobile robot kinematics, by implementing the functions for reading

Robot
Perceptual
Space

Remote
Inspection
Server

Task
Manager

Robot
Hardware
Interface

Robot Low Level
Library

Pluggable User Modules

Process Scheduler

Fig. 1. Middle-ware Architecture Layered View
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odometry and for controlling the motion that are specific to a mobile platform
kinematics model (for example, distinguishing holonomic5 mobile bases from
unicycle-like6 ones); ii) mobile base connection, by providing a standard way to
access the mobile base and its specific control functions.

Each mobile base is generally equipped with various kinds of sensors and
actuators like sonar rings, laser scanners, cameras, kickers (in the case of our
soccer robots) and so on, that are generically defined as Device. These devices
are connected to the robot and grouped in a set of hierarchical classes.

Both devices and robot drivers can be replaced by simulators or players of
real data streams recorded before, allowing for off-line application development
and debugging.

3.2 Task Manager

The Task Manager has been designed in order to allow the user to dynamically
load his/her modules, to specify their execution features (i.e. execution period,
scheduling policy, priority and so on) and to export the information to be shared
among them.

A first feature of the Task Manager is to allow the users to easily define the
scheduling policy of their modules by wrapping the Linux thread libraries.

Moreover, the Task Manager allows for the exchange of information among
modules. When modules need to directly exchange information each other, the
simplest solution is to couple them. However, this simple solution has the effect
of limiting the software modularity and may results in cyclic references which
are difficult to resolve in the linking phase.

Therefore, besides the mechanism of directly coupling two modules, the Task
Manager offers another possibility to exchange information, by abstracting on
the type of information. In fact, if a module needs data provided by some other
module, it only needs to know where to read such data and when the data are
available. On the other hand, a module that produces information can easily de-
clare the kind of such information without knowing which user module will use
it. This solution grants a complete independence among modules sharing data
and it is possible to substitute a module with another, by only ensuring that the
two modules produce the same kind of data. This mechanism has been used for
sharing information among user modules, as well as between a device and a user
module. Notice that the such mechanism requires the use of a shared memory
thus limiting the spreading of computation on different machines. However, dis-
tributed robotic applications are currently not within the scope of our RDK and
solutions explicitly designed for such applications are already provided in other
programming frameworks (such as Times tool7 or Charon8).

5 An holonomic robot has three degrees of freedom in its motion.
6 A unicycle robot has translational and rotational velocity bounded by a given kine-

matic law.
7 http://www.timestool.com/
8 http://www.cis.upenn.edu/mobies/charon/examples.html
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3.3 Robot Perceptual Space

The Robot Perceptual Space (RPS) contains all the information known by the
robot about the environment, and represents the current knowledge shared by
all the modules in the application.

The RPS defines a uniform interface for accessing its data, thus similarly
to the Task Manager provides a mean for information exchange. However, the
semantics of the information contained in the RPS is different from the informa-
tion shared through the Task Manager: RPS represents an updated snapshot of
the robot perception of the environment, and the information contained in the
RPS are specific to the robot application and thus generically useful for all the
modules; the information exchanged by user modules through the Task Manager
are instead parameters depending on the implementation of such modules and
not on the characteristics of the environment.

3.4 Remote Inspection

The lessons learned from the past difficulties in debugging our software yielded
to the design of a mechanism for remote control and debug that allows a module
to generate and export information that can be received and displayed by a
(graphical) remote client application (remote console). Information computed
within the user modules are of different kinds and should be represented in
different graphical forms: scanner readings, images, sonar readings, detected map
features, position hypotheses, etc.

In facing the problem of building a debug interface, a key issue is to con-
sider the high noise level and the latencies imposed by current wireless net-
works, therefore particular care has to be given in keeping low the bandwidth
requirements. According to this consideration it has been designed a sharing
mechanism that allows for a flexible run time selection of the information to
inspect, in fact avoiding the differentiation of a release version from a debug
one. We have thus chosen to implement a publish/subscribe mechanism for de-
bugging information, in order to allow the user for selectively monitor the data
of interest.

The Remote Inspection Server (RIS) defined in our middle-ware exports fa-
cilities for publishing information that can be monitored by remote clients. The
publishing mechanism comprises two steps: The first one is refresh, where the
RIS copies the information requested by at least one client in a local buffer.
The second one is transmission, where the RIS performs the transmission of
the buffered information to the clients. In this way network latency only affects
the communication of the information to the remote host and not the efficiency
of the publishing module on the robot. During the normal operation, when it
is not needed to monitor the robot behavior in such a deep way, and clients
do not request information to the robot, there is no overhead at all, since the
Remote Inspection Server detects this situation and avoids useless computa-
tion.
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4 Developing a Robotic Application: Pluggable Modules
and Supervisor Tools

The development of a robotic application requires the realization of a set of
modules implementing specific functionalities that must be appropriately con-
nected together. The middleware realized for our RDK is suitable both for the
realization and connection of the application modules.

It is interesting to notice that the composition of an application, in terms of
which modules are activated and how they are connected, is simply described in
a configuration file. Moreover, once we are satisfied with the robotic application
in the virtual environment, our framework allows for an easy interchangeability
of modules simulating the behavior of some sensors with actual sensor data
interpretation modules, in order to make the application work on a real robot.

As an example in figure 2 and 3 two instances of robotic applications obtained
by implementing and connecting modules developed within our framework are
shown.

5 Conclusions

In this paper we have presented a framework (SPQR-RDK) for developing mod-
ular multi-platform robotic applications, that has been designed for providing
modularity, effectiveness and efficiency. This RDK allows a group of program-
mers to design and implement the modules composing a multi-platform multi-
robot application, having both remote control and remote debugging capabili-
ties, with a very small effort, by using a software engineering approach and by
focusing on the semantics of the information exchanged among the modules.
The main use of our framework is for people (mainly students) that want to
develop a solution for a single topic or for a specific application (e.g. localiza-
tion in an office-like environment, path planning with moving obstacles, multi
robot coordination in a soccer domain, etc.), by using available modules for all
the other capabilities of the robot. Our RDK provides these programmers with
an easy methodological tool for implementing the robotic application and also
it allows for easily evaluating the specific application developed under different
environment conditions and in comparison with different solutions.
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The presented RDK has several advantages with respect to other robotic de-
velopment libraries distributed by robot producing companies (e.g. Saphira [4],
OPEN-R SDK [5], etc.), since it has been specifically designed for multi-platform
applications. Furthermore, differently from other general-purpose robotic devel-
opment tools, like the works in [7, 8] or the tools CARMEN and Player-Stage,
our RDK provides in an integrated framework some important facilities, such
as easy and efficient implementation of modular solutions to a specific robotic
problem, remote control and inspection, information sharing, abstraction with
respect to the mobile base and the connected devices, and a set of useful tools
for developing typical robotic applications.

The SPQR-RDK is continuously increasing in the number of modules that
are realized for the different applications that are currently under development
within our group, but always maintaining the same middle-ware. This is an
important achievement for our group since having several modules that can be
combined for building different robotic applications with a small effort, allows
for developing different solutions to common robotic problems and to evaluate
them in several scenarios and in general to increase over time the quality and
the effectiveness of the robotic applications developed.
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Abstract. In the effort to meet the steadily changing demands of teach-
ing computer science and computer engineering, new methods of learn-
ing and teaching are used by which multifarious knowledge and learning
techniques can be imparted, practical skills and abilities can be devel-
oped and teamwork and creativity are encouraged. A promising attempt
is the use of robotic construction kits.

This paper portrays the educational environment that was used at the
courses ”Hamburg RoboCup: Mobile autonomous robots play soccer” at
the University of Hamburg, Germany and ”Advanced robotics - Soccer
playing mobile autonomous robots” at the California State University
of Chico, USA and compares the experiences made during both courses
due to intercultural differences.

1 Introduction

For over thirty years the ”Epistemology and Learning Group” of the Mas-
sachusetts Institute of Technology (MIT) did research about correlations be-
tween learning environments and learned skills. One of the results based on the
research of Seymour Papert is the idea of using robotic construction kits coupled
with user-friendly programming environments [1].

While the utilization of robotic construction kits at schools was analyzed in
detail and appreciated [2][3], it was often depreciated as a toy and therefore
considered irrelevant in the context of universities [4]. Using ”real” robots at
universities has the disadvantage of being very expensive so that many students
often have to share a single robot. Additionally it can be difficult to motivate the
students to work with ”real” robots because the orientation time of a complex
robot system often requires weeks or even months so the course is nearly over
before the students have figured out all the possibilities of the robot. To avoid
these obstacles in the courses at the University of Hamburg and the California
State University of Chico we decided to use robotic construction kits which are
less expensive (and therefore available in sufficient numbers), more flexible and
easier to understand.
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c© Springer-Verlag Berlin Heidelberg 2005



662 P. Roßmeyer, B. Koch, and D.P.F. Möller

The opportunity to offer the same course at different universities arose from
the USE-ME Project. USE-ME means ”US-Europe Multicultural Educational
Alliance in Computer Science and Engineering”, a cooperation project to pro-
mote the development of new student-centered teaching units in computer mod-
elling and simulation with exchanges of students and instructors between Eu-
ropean and US universities. For this reason the courses were held by the same
instructors under the same circumstances at both universities which makes them
easy to compare.

2 Robotic Construction Kits and Programming
Environments

To understand the relevance of using robotic construction kits at universities it
is important to know the elements contained and the possibilities of program-
ming. In the following this is exemplified through the LEGO Mindstorms robotic
construction kit [5].

The LEGO Mindstorms kit contains a programmable RCX-brick (Hitachi
H8/3293-microcontroller with 16 KB ROM and 32KB RAM), two touch sensors,
a light sensor, two motors and lots of common LEGO bricks. Also included
are an infrared sender to transmit data between the RCX-brick and a personal
computer, the programming environment Robotics Invention System (RIS) and
a construction handbook. The RCX-brick provides three inputs for sensors, three
outputs for motors or lamps, five spots for programs, a LCD-display, four control
buttons, a speaker and an infrared interface. Figure 1 shows a RCX-brick with
two motors, two touch sensors and a light sensor.

The RCX-brick comes with the firmware installed. The firmware is necessary
to communicate with a personal computer to load programs from the computer

Fig. 1. RCX-brick with sensors and motors
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to the robot. Five simple programs are preinstalled so the robot can be tested
immediately after just short periods of configuration.

The Robotic Invention System (RIS) is a graphic-based programming envi-
ronment that works with blocks. Every programming instruction is represented
by one block. The blocks are joined by ”Drag and Drop” in form of a chain
while programming and executed in this order when the program is running. To
include sensor-data of the robot, parallel chains of blocks can be used.

Besides the software RIS that comes with the LEGO Mindstorms construc-
tion kit and that is directed to children and teenagers without programming
skills, several other possibilities to program on an advanced level have been de-
veloped by active LEGO online-groups. Most of this software can be downloaded
as freeware.

Some examples of programming environments used during the courses in
Hamburg and Chico are:

– ROBOLAB: works with a kind of advanced flowcharts, based on LabVIEW,
was developed especially for use in schools

– RCX Command Center: with the programming language Not Quite C (NQC),
a language similar to C, programs can be written text-based

– LEGO Java Operating System (lejOS): an implementation of a Java Virtual
Machine (JVM)

Other programming environments can be found in [6][7][8][9].

3 General Structure of the Course

The overall goal of the courses was to build teams of soccer playing robots
according to the rules of the RoboCup Junior league. Two teams, consisting of
two robots each, play against each other on a field measuring 122 cm by 183
cm with a wall around it to keep the ball and the robots from falling of. The
game lasts for two 10-minute halves with a 5-minute break in between. For more
details see [10][11][12].

In Hamburg prerequisites were made by offering the course as a seminar only
open to advanced students with intermediate diploma in computer science. Ten
students were participating. In Chico a quite similar restriction was made by of-
fering the course in the advanced level. Among the fifteen students participating
one lacked the official qualifications but was still admitted and had no problems
following the course.

Both courses where held with a quite similar structure. During the first ses-
sions the students got a brief introduction on the general topic of robotics. They
also got some first hands on experience with the LEGO Mindstorms kit. The
students were then grouped into teams: Each team was given two LEGO Mind-
storms kits and they should come up with a soccer-team at the end of the course.
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Additional they had to choose one out of a list of relevant special interest topics,
work it out and present it to the other students. Afterwards they served as
specialists for this topic and answered students questions on their topic for the
remaining time of the course.

One example of such a special interest topic is modelling a robot with fuzzy
logic. Fuzzy behavior of the robots recognized by the students can be precisely
expressed with fuzzy logic. While students work with the robots they find out
that the robots do not move on a straight line although both motors run with
the same performance. In this situation fuzzy logic can be very helpful to solve
the problem. The students learn by means of linguistic variables of the mobile
robot to determine the membership function of the linguistic variables and to
draw up rules to describe the dynamic behavior of the soccer-playing robots.

Some contests where held during the course to test the performance of ideas
and solutions on their real world behavior. Several problems crop up during these
contests: the robots could not find the ball, the robots aimed at the wrong goal
or had no orientation at all, the robots fell apart when they touched the wall
or other robots, etc. Most of the students were stimulated by these problems to
extend their work on the project. Finally a tournament was held at the end of
the course. Figure 2 shows one of the LEGO Mindstorms robots build by the
students.

Fig. 2. Soccer playing LEGO Mindstorms robot

To evaluate students opinions about robotic construction kits being utilized
in university education several questionnaires were given to the students during
and at the end of the courses. These questionnaires also served to find out
about the students understanding and interest for robotics in general and their
willingness to learn with interactive elements.
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4 Experiences During the Courses in Hamburg
(Germany) and Chico (USA)

As shown in Figure 3 neither the students in Hamburg nor those in Chico had
any experience with LEGO Mindstorms. Only one student in Hamburg had no
experience with LEGO. The experience of the other students resulted in short
time for building the robots, very fast adaptation whenever a hardware problem
occurred and some rebuilding of the robots to adjust it to specific problems
rather than solving them with the software. In Chico a majority of the students
had no experience with LEGO at all. This was caused by a great number of
students coming from India and China (the same number as students stated to
have no experience with LEGO) where LEGO is not as widely spread as a kids
toy as it is in Europe and the USA. As a result the robots built in Chico were
closer to those shown in the LEGO construction handbook and underwent fewer
changes during the course. Adaptations were made in the software rather then
changing any hardware.

Fig. 3. “Do you have any experience with LEGO or LEGO Mindstorms?”

Interesting results also came from the questions ”Was the class as you ex-
pected?”. Overall students expectations were met total or at least party. But
there are interesting differences in the details. The first questionnaire was an-
swered shortly after the presentation of the special topics and before most work
was done on the LEGO Mindstorms. The second questionnaire was answered
at the very end of the course. While total agreement fell from first to second
questionnaire in Hamburg it rose in Chico. This indicates that students in Ham-
burg rather expect theoretical work than hands on experience in courses while
students in Chico seem to have expected less theory and more practical work.
This is shown in Figure 4.

A very encouraging result came from the question: ”Would you take the class
another time?” In Hamburg and Chico all students stated they would do so on
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Fig. 4. “Is/Was the course as you expected?”

Fig. 5. “Would you like to do more research in robotics?”

both questionnaires. In Chico a large majority would also like to make some
more research in robotics (Figure 5), unfortunately this question was not on
the Hamburg questionnaire but since a lot of students continued in the field of
robotics it seems to would have been quite similar.

Some students in Chico later stated that an introduction to LEGO at the
beginning of the course would have been very helpful. This was not given by
the instructors because of the assumption it would be irrelevant based on the
experience made in Hamburg. If this course should be taught in an ”unknown”
environment again, the instructors will make this their first question (since ex-
perience with LEGO Mindstorms should not be a prerequisite) and adjust the
beginning of the course according to the answer.
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5 Conclusion

Although the students in Hamburg and Chico had quite different prerequisites
they all reached the overall goal of the course to come up with a team of soccer-
playing LEGO Mindstorms robots. But according to their different prerequisites
they took different approaches and learned different new skills during the course.

As expected those students not familiar with LEGO had built their own
robots but still were not as creative with the hardware as those that had played
with LEGO since early childhood. But they still started to change the given
designs from the handbook to more suitable designs for soccer playing robots.

Those students who tried to solve most problems by changing the hardware
learned that this was not always possible and that the software also had to
been taken in account. In fact, most problems where solved by a nice piece of
software because the hardware of a LEGO Mindstorms robotic construction kit is
too simple to solve such complex problems like playing soccer without sufficient
use of proper software (meaning more than a few simple ”if X then Y else Z”
statements).

Regarding the different prerequisites in learning-skills of the students it can
be said that most students adopted those skills they lacked before. The ones who
had not presented a scientific topic before had to learn gathering information and
presenting it in a decent way. Those not used to actively forming a course had to
give up their inertness and communicate, on the one hand with other students
to build decent robots and programs on the other hand with the instructors to
come up with good presentations for the special interest topics.

6 Future Perspectives

The experiences made during the first Hamburg course and the course in Chico
already lead to some consequences. Points criticized during the first Hamburg
course were tried to avoid in future courses (some self fulfilling like eliminating
the waiting time for delivery of hardware). Students taking the course a second
time rose the overall performance of the robots because they told the new stu-
dents which ideas had already proven to be good or bad so the same mistakes
were not made again. One problem persisting was the very limited hardware
performance of the LEGO Mindstorms robot construction kit. Some students
programs were too big for the memory of the RCX-brick or too complex for the
Hitachi H8/3293-microcontroller of the RCX-brick to run in decent time. To be
able to run even more complex programs there was a need for more powerful
hardware. Hence the idea of a continuing course using more complex hardware
arose. Since most students focused on building good programs while simply
assuming sound working hardware a new approach was made by using SONY
AIBO ERS-210A robots. Since the Sony Fourlegged League in Robocup prohibits
any changes in hardware this league automatically focuses on the software. So
this league meets exactly the demands of students which have participated in
the LEGO Mindstorms course and wanted to continue on a higher level of pro-
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gramming robots. Some of the students changing from the LEGO Mindstorms
course to the Sony Fourlegged League participate at RoboCup 2004 in Lisbon
as ”Hamburg Dog Bots”.
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Abstract. Component-based software engineering is useful for embedded ap-
plications such as robotics. However, heavyweight component systems such as
CORBA overstrain the ressources available in many embedded systems. Here, a
lightweight component-based approach is used to implement the system software
of the so-called CubeSystem, CubeOS. Since 1998, CubeOS and its component
system have been successfully used in various areas from industry projects over
RoboCup-related research to edutainment applications. Many of the components
used in RoboCup soccer have been carried over in the implementation of the IUB
Rescue robots, demonstrating the potential for software reuse.

1 Introduction

Component-based software engineering has emerged in recent years as a widely used
approach to simplify software reuse. It relies on a large base of reusable software com-
ponents and an integrating framework for those components [21]. Such frameworks for
application software are CORBA [20] or JavaBeans [22] which alreay have been used
in Robocup[16].

The main benefit of software component approaches are the possibility to reuse
components within a framework. This leads to a significantly reduced development time
both for implementation and testing/debugging if a high number of tested components
is readily available.

The same advantages of component-oriented software engineering can also be used in
the design of software for embedded systems. With the tendency towards more and more
complex embedded systems, handling this complexity in the software design process
becomes more important and component-oriented approaches are one solution to this.

Lightweight component architectures try to limit the overhead that is created by the
component infrastructure without losing the advantages of the component-oriented soft-
ware engineering approach and maintaining a maximum of the protection features of a
heavyweight component architecture. Examples of lightweight component architectures
for implementing embedded operating systems are pebble [3] and eCos [13].

In this paper, a very simple lightweight component-oriented approach is described
and it is shown how it has been applied to the design of the system and application
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software for robots. The main design goals for this software system have been minimal
performance overhead, very modest hardware requirements and the possibility for code
reuse by multiple groups and projects.

The CubeOS system described here has been continously developed since 1998 and
has been used in several research projects. Its main benefit was the reuse of existing
component code for future projects. For example a large part of the low-level control
software of the current robots platforms of the IUB Robocup Rescue [7] team is based
on existing components of the VUB AI Lab Robocup Smallsize League [6] team.

2 Autonomous Systems

In the recent years, research on autonomous systems, i.e. networked embedded devices
has shown the need for reliable energy-efficient low-cost computing platforms. Where it
is possible, such as in systems used in the RoboCup [14] Middle-Size Robot League, this
computing platform mostly consists of embedded PC hardware, running commercial or
free general-purpose operating systems. However, for applications where the physical
size and the energy sources of a device are restricted even further, these PC-hardware-
based approaches are of limited use. Several other available platforms such as Lego
Mindstorms [17] have limited compute ressources that restrict their use to Edutainment
applications [2]. The need for a small and energy-efficient extendible platform led to the
development of the CubeSystem [10]. Apart from its use as a standalone controller [6]
the cube system can also be used in combination with PC hardware to execute realtime
control tasks [8, 7].

Together with this new hardware platform, a new approach to system software design
based on lightweight components has been pursued. For autonomous systems, the system
software has to provide only limited services

– Standard operating system functions such as concurrent thread execution, inter-
thread communication and synchronization, time measurement and realtime clock
services.

– Interface code for sensor- and actuator devices ranging from simple i/o functions to
complex software for computer vision applications

– Ad-hoc network communication service between multiple systems using various
communication interfaces, e.g. wired bus systems, radio communication etc.

– Mechanisms that allow the extension of the system by third parties to enable the
integration of new hard- and software.

Many of the features mentioned here are available in commercial operating systems
for deeply embedded devices. Unfortunately, these come at a significant cost and/or
restrictive license conditions. However, in order to benefit from the component-oriented
software engineering approach through code reuse and to be able to use CubeOS for var-
ious projects with different licensing requirements, an open-source approach was chosen
for the implementation of CubeOS. Other Projects such as eCos [13] later followed a
similar approach.
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3 A Look at the CubeSystem Hardware Platform

The RoboCube hardware platform [10] is using the CPU32 Core [18] as CPU in the
M68332 MCU [19]. It is a 32-bit CISC architecture without MMU or cache. Addition-
ally, the MCU contains functions such as local memory, serial I/O, timer functions and
programmable chip selects that make it suitable for the design of embedded systems. The
RoboCube hardware platform extends the MCU with at least 1 Mbyte of Flash-ROM
and 1 Mbyte of S-RAM. These components form the CPU board.

Basic CPU board

Ext Busmaster

86mm

40mm

77mm

I2C extension

Fig. 1. The physical layout of a RoboCube stack of boards

The CPU board is about 8 × 8 centimeters in size and about two centimeters in
height. It has two stacking connectors a the edges that carry all bus and power signals
so that multiple boards with similar connectors can be stacked together. These form a
CubeSystem. In a cube system, exactly one CPU board must be present.

Apart from the CPU board, there are various extension boards available such as
memory boards (4Mbytes of SRAM), Bus Controller Boards (2x UART, 2x I2C) and
I/O Boards (24 8-bit A/D inputs, 6 D/A outputs and 16 bidirectional digital I/Os on one
I/O Board).

The users can develop application-specific extension boards.The most basic application-
specific extension boards are so-called base boards that implement application-specific
power supply and I/O. Such application-specific boards have been developed for various
projects [8, 7, 9, 5].

From this description of the hardware, it can be seen that the platform is quite flexible,
not only in the way that users can use different hardware modules of similar functional-
ity but that the hardware platform can be extended with completely new functions. The
system software has to accommodate this by supporting the user in developing software
that works with custom hardware at ease. An unfortunate feature of the CPU is that it
does not contain a memory management unit, i.e. it is unable to offer memory protec-
tion services that could be used to separate components, i.e. preventing intentional or
unintentional manipulation of memory used by a different component.

4 The Component Design of CubeOS

According to [23], a software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. Applications are created by
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combining components from possibly different origins. From this it can be concluded
that a software component is a unit of independent deployment and of third-party com-
position. Unlike an object, i.e. an instance of a class in object-oriented languages, a
component has no persistent state in itself, so there are no multiple instances of compo-
nents, either a component is available or not, but it is not available several times.

This illustrates the strong correspondence between software modules and software
components. A software module (such as a C object-code module) can implement the
code for a software component. But the module itself is not sufficient to form a component
since it does not necessarily implement well-defined interfaces, e.g. it does not protect
its internal variables.

CubeOS uses a simple approach based on object modules and the standard C linker
to form a component system.What is needed to make a software module a software
component? Three requirements have to be met:

1. In order to separate the interface of the module from its inner structure, it has to
be made clear whether an object belongs to the interface or to the implementation.(
However, for grey-box testing purposes, it is still advisable to export the inner
structure of the modules.)

2. Since the C linker identifies every object with an unique name, it has to be made sure
that no two objects use the same name for any interface or implementation object.

3. From the two former steps, it is clear that a component system can be formed by
linking the modules together if each module (and the application program) uses
the appropriate interface objects of the other modules. However, this is not suf-
ficient to make sure that the modules can be used independently. To ensure this,
modules of an appropriate size have to be defined and their interfaces have to be
documented.

CubeOS implements the first and the second requirement by prefixing every ob-
ject name of a component with the component name, e.g. KERN schedule() is the
interface to the kernel scheduler. Internal objects get an additional , e.g. theKERN com-
ponent implements the process table in a private array: extern struct process
KERN ptable[]; . This has been considered good practice for coding C-modules

but can be used in the same way in a component-based design process.
Unfortunately,neither theC language nor the hardwareused support access-protection.

Therefore, the method of marking the objects thorugh this naming scheme helps the user
to observe the acces rules.

The third requirement cannot be met within the programming language itself but is
a requirement for the implementation. The only option for a component system is to
encourage the users of making their components reusable by providing an adequate set
of tools that make it simpler to do so.

CubeOS uses the software documentation system “Doxygen” for this purpose. Al-
though originally designed to document object-oriented software, Doxygen can be used
to document component systems as well. For this, documentation groups with the same
name as the component are used. Doxygen includes the documentation in the source
code by using specially formated comments.
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APP

KERN

DUART LIBC LIST NEWLIB TTY

QSM TPU

Fig. 2. The graph representing the component interdependencies of the KERN component with
arrows pointing from the origin of the call to the called component. The LIBC and NEWLIB

interface components represent the calls to the C library, the APP component represents the
application program, in this case the CUBEOS test library. The call from KERN to APP is the
initial call of main(). Note that calls between other components such as calls from APP to
NEWLIB are not shown in this graph

The graph that is shown in Figure 2 illustrates the relation of the KERN component
with other components. This graph can automatically be created by the build system
from the object code and is helpful for documentation and error analysis.

Often, it is necessary to interface legacy code such as standard or mathematical
libraries. Examples of such legacy libraries that have been ported to CubeOS are the
XDR libraries and the open-source JPEG compression library.

5 Successful Applications of CubeOS in RoboCup

The CubeOS has been used in various robotics applications (figure 3), ranging from
educational activities [2, 5] over basic research [1] to industrial applications [8, 7] .
In all projects, the usage of CubeOS proved to be beneficial both in respect to the fast
development time of the overall systems as well as in respect to the stability and reliability
of the systems. Moreover, the use of the component-oriented approach enables code-
sharing between many of the projects mentioned that goes beyond the operating system
itself. For example, a number of general-purpose mobile robot control components has
been implemented that implement PID motor control, odometric pose tracking and high-
level motion commands.

One application is for example within the Small Robots League of RoboCup, the
world championship of robot soccer [14, 15]. The CubeOS has been used on robot teams
from the Vrije Universiteit Brussel (VUB) and recently from the International Univer-
sity Bremen (IUB). The teams participated in various tournaments, including RoboCup
World Championship’98 in Paris, RoboCup World Championship’99 in Stockholm, the
RoboCup European Championship 2000 in Amsterdam [12, 11].

When in 2002 a seemingly completely different task within RoboCup was pursued
by the IUB team, namely the creation of rescue robots, it turned out that due to the
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Fig. 3. Left: One of the IUB rescue robots performing in the NIST testing arena during RoboCup
2002 in Fukuoka, Japan. Center: Two robots designed and programmed by high school students
for a robotics competition. Right: The inside core of the RoboGuard base, a commercial semi-
autonomous robot for surveillance applications

Fig. 4. This diagram illustrates that most software used for the IUB Rescue Robots has been reused
from the soccer robots

design of CubeOS, most of the code from the soccer robots could indeed be reused.
The concrete numbers are shown in Figure 4. It shows that 97.8 % of the code were be
reused.

6 Conclusion

CubeOS demonstrates the use of a lightweight component-oriented design approach
for the design of both system and application software on multiple embedded mo-
bile robot platforms used for Robocup research. This represents an advantage over
the use of heavyweight component architectures in embedded systems since it re-
duces ressource usage that is critical for embedded applications such as mobile robotics
but still gives the benefits of component-oriented software engineering such as code
reuse. The component model of CubeOS is very simple, thereby simplifying code
reuse of existing legacy code and the from-scratch implementation of reusable com-
ponents. CubeOS and its component system have been successfully used since 1998
in various areas from industry projects over RoboCup robotics research to edutainment
applications.
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